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RECURSIVE CREDIBILITY FORMULA FOR CHAIN LADDER FACTORS
AND THE CLAIMS DEVELOPMENT RESULT

BY

HANS BUHLMANN, MAssIMO DE FELICE, ALOIS GISLER,
FRANCO MORICONI AND MARIO V. WUTHRICH

ABSTRACT

In recent Solvency II considerations much effort has been put into the develop-
ment of appropriate models for the study of the one-year loss reserving uncer-
tainty in non-life insurance. In this article we derive formulas for the conditional
mean square error of prediction of the one-year claims development result in
the context of the Bayes chain ladder model studied in Gisler-Wiithrich [9].
The key to these formulas is a recursive representation for the results obtained
in Gisler-Wiithrich [9].

KEYWORDS

Claims reserving, chain ladder method, credibility chain ladder method, claims
development result, year end expectation, loss experience prior accident years,
liability at maturity, solvency, mean square error of prediction.

1. INTRODUCTION

In the classical chain ladder model the parameters are assumed to be determin-
istic. In general, these model parameters are not known and need to be estimated
from the data, see Mack [12] for the distribution-free chain ladder approach
and its chain ladder factor estimators. In Gisler-Wiithrich [9] we have presented
a Bayesian approach assuming that the unknown model parameters follow a
prior distribution. This prior distribution indicates our uncertainty about the
true parameters and allows for determining these parameters using Bayesian
inference methods. One of the advantages of this Bayesian approach is that it
leads to a natural and unified way for the consideration of the prediction uncer-
tainty, that is, also the parameter estimation uncertainty is contained within
the model in a natural way (see also the discussion in Section 3.2.3 in Wiithrich-
Merz [6]). In the present manuscript we revisit the Bayesian approach presented
in Gisler-Wiithrich [9] by giving a recursive algorithm for the calculation of
the Bayesian estimators. This recursive approach allows for the study of the
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one-year claims development result in the chain ladder method which is of
central interest in profit & loss statements under Solvency II, a discussion is
given in Section 3 below and in Merz-Wiithrich [13].

1.1. Notation and Model Assumptions

For the notation we closely follow Gisler-Wiithrich [9]. Assume that cumula-
tive claims are denoted by C; ; >0, where i € {0, ..., I} denotes the accident year
and j € {0, ..., J} the development year (/= J). At time / we have observa-
tions in the upper trapezoid

D= {C,:itj=1I}, (1.1)

and we need to predict the future claims in the lower triangle {C;;, i+ > 1,
i <1}. The individual development factors are defined by

C. .
Y, =g (1.2)

ij

forje{0,....,J—1}.

We now define the Bayes chain ladder model considered in Gisler-Wiithrich [9],
that is, we assume that the underlying (unknown) chain ladder factors are
described by random variables Fy, ..., F; ;, and, given these variables F;, we
assume that the cumulative claims C;; satisfy the distribution-free chain ladder
model.

Model Assumptions 1.1 (Bayes Chain Ladder Model)

BI Conditionally, given ¥ = (F, ..., F; ,)', the random variables C, ; belonging
to different accident years i € {0, ..., I} are independent.

B2 Conditionally, given ¥ and {C;y, C,, ..., C;;}, the conditional distribution of
Y, ; only depends on F; and C; ;, and it holds that

j’
7 (F)

L

E[Yz/ ‘ F,Ci,Ciyseens Ci,j] = F

Var[Yi’.f ‘ F, Ci,O: Ci,], e, C ] =

L]

B3 The random variables Fy, F, ..., F;_| are independent.

We give brief model interpretations here, for an extended discussion we refer
to Section 3 in Gisler-Wiithrich [9].
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Remarks.

* The true (unknown) chain ladder factors are modelled stochastically by the
choice of a prior distribution for F;. This prior distribution can have different
meanings: (i) If the prior distribution is chosen by a pure expert choice
then the prior distribution simply reflects the expert’s uncertainty about the
true underlying chain ladder factors. (ii) If we have claims data sets of sim-
ilar individual portfolios we collect them into a collective portfolio. Typical sit-
uations are: within a company we have the same line of business in different
geographic regions (see Example 5.1 below), or different companies run the
same line of business and the prior distribution then reflects market infor-
mation, e.g., specified by the regulator (see Example 5.3 below). For the
modelling of different individual portfolios under (ii), one typically assumes
that the generic risk parameters are a priori i.i.d. On the other hand business
volume may freely vary (Model Assumptions 1.1 are only stated for a single
portfolio). (iii) If there is no prior knowledge on the chain ladder factors one
chooses uninformative priors for F; (see Section 4.3 below).

¢ In Gisler-Wiithrich [9] we have seen that the Bayesian chain ladder framework
leads to a natural approach for the estimation of the prediction uncertainty.
For uninformative priors one obtains an estimate of the conditional mean
square error of prediction for the classical chain ladder algorithm. The result-
ing formula is different but similar to the Mack [12] formula.

* Note that the conditional variance af(l?) in Model Assumptions 1.1 B2 is
a function of F.

Under Model Assumptions 1.1 we can calculate the Bayesian estimator for F},
given the observations 9, (using the posterior distribution). This can be done
analytically in closed form in the so-called “exponential family and conjugate
priors” case (exact credibility case), see Section 6 in Gisler-Wiithrich [9], how-
ever in most other cases this can not be done. In such other situations one
can either apply numerical methods like Markov chain Monte Carlo methods
(see Asmussen-Glynn [2] and Gilks et al. [8]) or one can restrict the class of
estimators to credibility estimators (for details we refer to Section 4 in Gisler-
Wiithrich [9]). Here, we consider such credibility estimators. We note that the
credibility estimators coincide with the Bayesian estimators from the exact
credibility case (see Section 6 in Gisler-Wiithrich [9]).

Definition 1.2.

The credibility based chain ladder predictor for the cumulative claim C;, k>
I-i, at time [ is given by (see Definition 4.1 in Gisler-Wiithrich [9])

== k=1 =)
Cr =6C,; 11 F (1.3)

J
j=I1-i
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=)
where the credibility estimate F;  at time / for F}is given by (see Theorem 4.3
in Gisler-Wiithrich [9])

Q(” —~ (1)

Foo=o"FE+(1-a") £, (1.4)

J J

K _ <k
where ;" =317 C;; and

) ,[:'Fl] Z:Oj_lC,-,,H I—j-1 G,

j o =y T-i-1,. ) T=j-1 Y, (L5

Sj 2 Gy w0 2y Cuy
glr-i-1
Iy _ J
o) = — , (1.6)
(RS YR
and the structural parameters are given by
f; = E[E], 6; = E[o}(F))] and 7/ = Var(F). (1.7)

-

Thus, the credibility estim/&tor F, s a weighted average between the classical
chain ladder estimator F; o (based on the information 9;) and a prior value
/f;- Moreover, it is the optimal estimator among all estimators that are linear
in the observations Y, ; (relative to the quadratic loss function). For more on
this topic we refer to Biihimann-Gisler [4]. The conditional mean square error
of prediction (MSEP) of the credibility estimator for the chain ladder factors
is given in formula (4.10) in Gisler-Wiithrich [9] which reads as

2 2
=) ag;
I _ o) - ) J — (Y .2
= E|lF - F||B —a,fm-(l—a/ )il (18)
J
with
B = {C,, €D, k < j}. (1.9)

B}I ) denotes that first j + 1 columns of the observed claims development trape-
zoid ;. These observations serve as a volume measure in the posterior esti-
mation of F;. Note also that the random variable F; is independent of fB;I ). This

independence is no longer true for fB](-Ql, that is
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RECURSIVE CREDIBILITY FORMULA FOR CHAIN LADDER FACTORS 279

dP(F|B") = dP(F) and dP(F|B;) # dP(F), (1.10)

where we write dP(F; |-) for the conditional distributions of F;.

Remark 1.3 (Exponential Family and Conjugate Priors, Exact Credibility)
We define

F" = E[F,|D)] = E[F|B8%]. (1.11)

13,(1) denotes the Bayesian estimator for F; given the observations ©,;. Note
‘ =y

that in general I:fj(l ) is different from F, , but in the case of the exponential

family and conjugate priors (exact credibility case) they coincide, i.e. ﬁj(l) =
=)

F., see Theorem 6.4 in Gisler-Wiithrich [9] and Bithlmann-Gisler [4].

J

1.2. Prediction Uncertainty
We measure the prediction uncertainty with the help of the conditional mean
square error of prediction. In general assume that at time / we have information

Pyand we need to predict the random variable X. The conditional mean square
error of prediction of a ?;-measurable predictor X'V for X is defined by

mser‘,m(i(\“)) = E[(f(\(” - X)2 ‘ Q),]. (1.12)

Applying this measure of uncertainty to the credibility based chain ladder pre-
dictor we obtain (see Theorem 4.4 and Corollary 4.5 in Gisler-Wiithrich [9]).

Result 1.4 (Conditional MSEP, ultimate claim) For i > I — J we have

2

—= ) - ) 0 5 )
msepe, (o, | Cis =E|C, —Cyl |D|=Cii 0 +Cloi AL
/\(1)
di/, — 6\
= msep, 1, | Cos s

where
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2
J-1 k-1 =) J-1 | (==
) _ 2 (1)
FI—[ - Z Fm O H E7 + Qn D (113)
k=I-i|m=1I-i n=k+1
o o1 [(==D)? o1 (==)?
— (1)
A= 2 |E | +9 F (1.14)
j=1-i j=1-i
For aggregated accident years we have
2
I =) 1 =) I
msep z’: Cislo; Zci,f =FE Zci,J - Zci,J D,
S i=1-J+1 i=1-J+1 i=1-J+1
i == I I —= ) o
= Z mSePpc, |, Ciy +2 Z ZCi,I—ick,I—i Al (1.15)
i=1-J+1 i=I-J+1 k=i+1
def  —~ =
msep s Ci./DI[ Z Cis
i=1-J+1 i=1-J+1

Remark 1.5 (Exponential Family and Conjugate Priors, Exact Credibility)

In the exact credibility case the Bayesian estimator coincides with the credibility
estimator (see (1.11)) and we have

0 = £|(F" - 5] [#"] = £[£|(7" - £ ) | 2] 7]

J

(1.16)
= E[Var(Fj ’ Q),) | EB;«”].
With (1.8) we therefore obtain
2
o
E|Var(F; | D) |3"] = a}”r’j_u = (1- ")z} (1.17)

Therefore in many cases Var(F;|D;) is approximated/predicted either by aj(»l ) sz/
SI7 "D or (1-a")77. This approximation takes an additional average over
8" and is exact in the normal-normal case. This justifies approximations
nfs?pq 1o, and rfs?p s/ ... o, 10 Result 1.4. In other cases (e.g. in the gamma-
gamma model) one can explicitly calculate Var(F;|D;) which then also leads
to an exact formula for the conditional MSEP, see Section 9.2.6 in Wiithrich-
Merz [16].

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:51:36, subject to the Cambridge Core terms of
use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.39.1.2038065


https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.39.1.2038065
https:/www.cambridge.org/core

RECURSIVE CREDIBILITY FORMULA FOR CHAIN LADDER FACTORS 281
2. RECURSIVE CREDIBILITY FORMULA

For solvency considerations one needs to study the updating process from time /
to I+ 1, i.e. the change in the predictors by the increase of information 9; —
Dy, 1, that is, when we add a new diagonal to our observations. Therefore, it
seems natural to understand the updating and estimation procedure recur-
sively. Early versions of recursive credibility estimation go back to Gerber-
Jones [7], Sundt [15] and Kremer [11].

Theorem 2.1 (Recursive Credibility Formula) For I >j we have

=) —=(-1) ===-1) (-1
(1) (1) _ (I)

F} ﬂYljlj (1_j>F} _Fj" +ﬂ 111/ F} ]’

I) _ ) (I-1)

0" = (1-4") Q)" ",

—= )

where F, =f, Q(/) r-zandfor1>j
(_I)_ CI Jj= 1/ (2 1)
T C + o207 0" :

I1-j-1,j 61 Q

Proof, We prove the claim by induction. Assume /= + 1, then a(” = ﬁ“)
and F; FO) = = Y, ; which implies that the claim is true for 7=+ 1.

Inductlon step: Assume that the claim holds true for /—1=>j+ 1. We prove
that it holds also true for /. From (1.6) and (1.8) we obtain

2

9
Q(’)
sty g2y
This implies
(7)
Q./ =1 Cl—j—l,j
N L P

Thus, there remains to show that the right-hand side is equal to 1 - f; ) in order
to prove the recursive statement for Q“) Note that

(I-1 I- 2, 2
C,_ - 1j+o‘, Q ) = S[ -y +ao;ltj,

which implies
Cr- J=Lj Cl-j-lﬂj

T-1) — o[I-j-1 :
+aj/Q( ) S(,[- / ]+0']2/7€j2

(I _
J

C

I-j-1,j
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Moreover, using the induction assumption for the credibility chain ladder factor

—=u-n

+(1-8")F,

J

B"Y

I=j=1,j

Crojoija 190 (q-n~—o~U-b (I-1
SR +(1— ¢ )<a_,- F, +(1—aj )f,)
J Jjhrj

C st

_ I-j-1,j+1 +<1_ (1))
[1-/-1] 2, 2 J [1-7-2] 2,2
Sj +0—j/‘[j Sj +0—j/‘[j

(1-al ),

[1-j-2]
Cl—j—lj 1 Si+1 - )
- : S K + (1= 8DV = al! l)f
S,[-l_"_I]wLaf/‘cf .S‘_,[-l_'/_]]+<7f/1'j2 ( ’ )< ! ) ’
—~ (1) =
o F (1= ") 1= ) s =R

This proves the claim of the theorem.

Corollary 2.2 We have seen that
C

(I+1) _ I-jj
J I-j ’
s N+ o}l

and ﬂ_/-(l *Vis Dp-measurable.

Remarks 2.3

* Note that the proof of the theorem is somehow solving the problem by
“brute force”. It is well-known in credibility theory (see, for example, Sundt
[15] or Theorem 9.6 and the successive remark in Biihimann-Gisler [4]) that
we could also give a credibility argument saying that we look for the opti-
mal /3;’ ) that minimizes

o-g||F - 2 B
J J J J (2'2)
(-1 2
= E[(8") (Yreyory = B 8| E|0- 87 | B - B |8
2 ‘7/; 2 _
:< ;_1)) m-'_(l_ ;1)) ,(-1 1)’
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where the second equality holds due to the independence of different acci-
dent years and unbiasedness. This minimization then leads exactly to the
result given in Theorem 2.1 since we consider credibility estimators that are

linear in the observations Y ;.

e With Theorem 2.1 we have found a second way to calculate the credibility
estimator for the chain ladder factors as well as the ingredients for Result 1.4
which gives the credibility based conditional MSEP estimation for the full
development period. The recursive algorithm allows however to get more.
It is the key for the derivation of estimates for the one-year claims develop-
ment result which takes into consideration the updating procedure of infor-
mation D; — D;,,. This is discussed in the next section.

* Note that [)’(’ ) given in (2.1) is sometimes not so convenient since one needs
first to calculate Q/’ D, Corollary 2.2 gives a second more straightforward
representation.

3. ONE-YEAR CLAIMS DEVELOPMENT RESULT

In the Solvency II framework the time period under consideration is one year.
Henceforth, insurance companies need to study possible shortfalls in their
profit & loss statement and in their balance sheet on a one-year time horizon.
For claims reserving, this means that the companies need to study possible
changes in their claims reserves predictions when updating the information
from D, — D, ,,. Hence, we assume that we consider “best estimate” predictors
for the ultimate claim C;;, both at time / and with updated information at
time 7+ 1. The credibility based chain ladder predictors are then given by

=) J-1 =)
C, =GC [1 F o, (3.1
j=I—i
—=(+1) J-1 =+ -1 == +1)
Ci,] = Ct,]—t+1 H F/ = Ct,]—th,I—i H F . (3.2)
j=I-i+1 j=I1-i+1

These two predictors of the ultimate claim C;; yield the claims reserves esti-
mates R(’ ) and R“ *D at times 7 and I+ 1, when we subtract the latest observed
cumulative payments at times / and 7+ 1 , respectively. The claims reserves R” )
are often called the opening reserves for accounting year / + 1 and R(’ "D the
closing reserves at the end of this accounting year (see, e.g., Ohlsson-Lauzeningks
[14]). The one-year claims development result for accident year i at time 7+ 1
analyzes possible changes in this update of predictions of ultimate claims. It
is given by (see Merz-Wiithrich [13], formula (2.19))

Q(l) —={+1

CDR, (I +1) = -C, . (3.3)
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This is a random variable viewed from time 7 and it is known at time 7+ 1.
In the one-year solvency view we need to study its volatility in order to deter-
mine the uncertainty in the annual profit & loss statement position “loss expe-
rience prior accident years” (see Table 1 for an example).

TABLE 1

EXAMPLE OF A PROFIT & LOSS STATEMENT INCOME

budget values P&L statement
(predictions at time /) (observations at time /+ 1)

a) premiums earned 4°000°000 4°020°000
b) claims incurred current accident year —-3°200°000 —3°250°000
¢) loss experience prior accident years 0 —40°000
d) underwriting and other expenses —1°000°000 -990°000
e) investment income 600’000 610°000

Income before taxes 400’000 3507000

That is, positition c) in Table 1 is predicted by 0 at time 7 (see Proposition 3.1
and (3.4), below) and we have an observed claims development result of —40°000
at time /+ 1 which reflects the information update at time /+ 1 (for a more
extended discussion we refer to Merz-Wiithrich [13] and Ohlsson-Lauzeningks
[14]).

This one-year solvency view is in contrast to the classical claims reserving
view, where one studies the uncertainties in the claims reserves over the whole
runoff period of the liabilities. Therefore, this Solvency Il one-year view has
motivated several contributions in the actuarial literature. An early paper was
written by De Felice-Moriconi [5]. In De Felice-Moriconi [5] the “year-end
obligations” of the insurer (i.e. claims paid plus best estimate reserves at time
I+1 of the ultimate loss) were considered and their predictive distribution was
derived using the over-dispersed Poisson (ODP) model. The approach was referred
to as “year-end expectation” (YEE) point of view, as opposed to the “liability-
at-maturity” (LM) approach, which corresponds to the traditional long-term
view in loss reserving. The YEE approach with the ODP model has also been
used by ISVAP [10] in a field study where solvency capital requirements on a
large sample of Italian MTPL companies have been derived. De Felice-Mori-
coni [6] also applied the YEE approach to the distribution-free chain ladder
model. The same formulas were derived independently in Wiithrich et al. [17]
for the MSEP of the one-year claims development result and a field study by
AISAM-ACME [1] analyzed the numerical results of these one-year claims
development result formulas.
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Proposition 3.1 (Expected One-Year Claims Development Result) We have for
i>1-J

E[C/D\Rl.(1+1)‘@,]

== o b)== aden| zoy =
= Ci,l i H F} -k H F} + /))j Fj F; >
j=I-i j=I1-i+l

where an empty product is equal to 1.

Proposition 3.1 says that the conditionally expected one-year claims development

result is, in general, not equal to 0, i.e. the Bayesian estimator F may differ
o . — . .
from the credibility estimator F; . Therefore, one may question the termi-
nology “best estimate” reserves (and also the prediction 0 at time / for posi-
tition ¢) in Table 1). However, in most practical situations this is the best one
can do, due to the lack of information that would allow to find F,-(I ), j=0,...,

J-1.

Remark 3.2 (Exponential Family and Conjugate Priors, Exact Credibility)
==

In the exact credibility case F;, = F; F() we obtain that the expected one-year

claims development result is equal to zero that is,

E|CDR (1 + 1)\@,] = 0. (3.4)

This exactly justifies the prediction 0 of the one-year claims development result
in the budget statement.

Proof of Proposition 3.1. The proof is essentially similar to the martingale
property of successive conditional expectations (tower (iterativity) property of
conditional expectations). Using Theorem 2.1 we find

E[C/D\Rl.(1+l)‘ﬂ),]

J-1 =) J-1 ==+
= Ci,]—z H F} —E|Y, H F; D,
j=I-i j=I-i+1
J-1 =) J-1 =) =)
_ (I+1)
_Ci,I—z F} -E YzI—l H {F] +ﬁ YI i Fj } D,
j=1-i j=I-i+1
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Hence, we need to calculate the last term of the equality above. Note that f; a*D
is D;-measurable. We have using the conditional independence of dlfferent
accident years

J-1 - (141 =)
E\Y, s 1 {E +B7 Y- F Dy
j=l—-i+l1
J-1 = I+ 1) =)
=E E[Yi,,_i‘F,ﬂ),]' 1H 1E F; +ﬁ Y, ,,— F F,D,
Jj=1-i+
J-1 =) I+ =)
=EF,_,"11'[’1 F +p;"|\F - F Dl
Jj=I-i+

Next, we use Theorem 3.2 of Gisler-Wiithrich [9] which says that F; have inde-
pendent posterior distributions, given 9,. Hence the above expression is equal to

j=I-i+1

. J-1 —= ()
e {F Y

s [==u
= E[F, ;| D] I {F, + g

|
S
<
=

F"-"F

This completes the proof.

4. MSEP ofF THE CLAIMS DEVELOPMENT RESULT

For the estimation of the conditional MSEP of the crediblity based ultimate

== =)
claim predictor C; ;  only the three quantities F; ajz and Q_,(-’) play a role
in Fl(f l) and A(I{)i (see (1.13) and (1.14)). If we want to study the volatility in the
one-year claims development / — I + 1 instead of the full development we need
to replace Q,” ), given in (1.8), by

—=u+) ==\’

D" = E|| F, - F, 3" |. (4.1)

This, we are going to explain. We start the analysis for a single accident year i >
I1-J, and in a second stage we derive the estimators for aggregated accident years.
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4.1. Single Accident Years

For the time being we concentrate on a single accident year i > /—J. Our goal
is to study the conditional MSEP of the one-year claims development result,
that is,

— 2
msepci, 1+ 1y, () = E|(CDR,(7+ 1) - 0) | ]
4.2)

=) ==u+n)?

Ci, J - Ci,J

=

_ ZZ (I+1)
=F D, = msepg, |2, Ci;

Formula (4.2) says that we predict the position one-year claims development
result in the budget statement at time / by 0 (see position ¢) in Table 1) and
we want to measure how much the realization of the one-year claims devel-

opment result C/D\Rl.(l + 1) at time 7+ 1 fluctuates around this prediction.
Formula (4.2) also explains the difference in terminology used in earlier pub-
lications by De Felice-Moriconi [6], where the expression “year end expecta-
tion” (YEE) is used instead of claims development result (CDR).

—_={ N

Note that in the exact credibility case F; = F” formula (4.2) gives the

posterior variance of the one-year claims development result CDR, (1 + 1),

given D;. Hence, in analogy to Gisler-Wiithrich [9], formula (4.15), we assume
(1)

—

that the credibility estimator F,  is a good approximation to the Bayesian
estimator F; (D which provides the following estimator for the conditional mean
square error of prediction.

Result 4.1 The conditional MSEP of the one-year claims development result for
a single accident year i = 1 —J + 1 is estimated by

—
msep— = C _-FD(” + CH_ AP
pCDR (I+l) 'Dl( ) LI—i LlI—-i=r—j
with
2
J-1 -
D(I I+1 I
P =oi (1+ 450 T ||F | +D").
j=I-i+1
2
J-1 - J-1 Q(I)
D(I) _ (1)
Al—i - H F/ +Dj s
j=1-i Jj=1-i

) -

where f3; D is given in Corollary 2.2, Q is given in (1.8) and D;" in Lemma 4.3.
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Remarks 4.2

* Note that the two terms I'°Y) and AP look very similar to the terms I\”),

and A, given in (1.13)-(1. 14) rp “ ) only contains the first summand of
! correspondlng to the one-year development However, in the I'-term we
obtain an additional factor which is given by

1+ﬁ(1+1) _ Cii- z+S1[]z+01 z/TI i

(4.3)
SI[]1+GI l/TI i

* Often one uses the terminology C; ;- . TP a5 process variance term and Ciri
AD (1 ) as parameter estimation error term. This termmology comes from a fre-
quentlst s perspective. In a Bayesian setup this is debatable because there
are also other natural splits. Moreover, the intuition of process uncertainty
and parameter uncertainty gets even more lost in the one-year claims develop-
ment view. In the one-year view the process variance components also influ-
ence parameter estimation error terms (one period later). Observe that in the
derivation of Result 4.1 we are shifting terms between variance components.
Therefore one should probably drop this frequentist’s terminology. For the
time-being we keep it because it may help to give interpretations to the
different terms.

In the remainder of this subsection we derive the estimator given in Result 4.1.
We start with auxiliary results. The fast reader (not interested into the techni-
cal details of the derivation of Result 4.1) can directly jump to Result 4.7 for
aggregated accident years.

Lemma 4.3. We have for (4.1)

2

O-A
(1 _ (pue)2 |9 (| _ p) () _ o) _ AU+D)
D; —(.f )C—”J“Qj =g 0 =0, -0 .

Proof. By definition of f; @ (see (2.1)) we have

2

0'4
(a+n)| % |~ oD
j CI_/_/_+QJ' =0

Using Theorem 2.1 we have

=)’

)
Yiojj= & B}

D](j) _ ( ;1+1))2 E
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=)

As Y, ;;and F,  belong to distinct accident years, we get

2

O'.
() _ (pU+D)? / ()] = pU+h ) _ ) (I+1)
Dj" = (p"") [P A I A R

This completes the proof of the lemma.

Corollary 4.4 We have the following useful identities

a;- (1) _ pth. (+1)
+ 0 - = 1+ ,
Cz I-i QI i Cz I-i ( ﬂ )

2
(I+1) ‘71 i (| pi) = oD (= gl+h
I1-i +Ql—1 - I1-i D - I-i -
1 I-i
Proof. By definitions (1.8) and (2.1) we have
a; o}
o) = o) (n__
J J Sj[[—;—l] Cl—j—l,j
Using the result from Lemma 4.3 we obtain
o} o] o]
1-i (I (1) _ =i (r+1 _ Or-i (7+1)
Cirei O Ciroi TE Ci,l—i<1+ﬂ1_l >’

and similarly for the last statement. This completes the proof of the corollary.
O

Lemma 4.5 We have the following approximation

J-1 ==+l = (I+1) (I +1)
E\Var\Y,, ., ]I F Dy Froigys ¥y D,
j=I-i+1
o7, o] o [F=O ?
=1
~le—+o” Il |DV+|F
Ll-i jEI—i+1

Proof. We have the following equality
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o1 =X+ SS(+) (U
E|Var|Y,,; [ F Dps Fyjirseon £y Dy
j=l-i+1
-1 (==wu+D)? SN (U+) S+
=El ][] F, Var|Y, ;| Dy, Fy_yyysen Fy D, |.
j=I-i+1

Forj=1-i+1,...,J—1 we have (see Theorem 2.1)

—u+h  =Z=U) I+ =)
F; = F  +p Yijj— &

—(I) —=((I+1)

T I+ . =
Since F; and f; are D;-measurable, the random variable F; only
depends on Y, ; ;, given D;. This implies that

— U+ —= U+

Var\Y, ;i| Drs Fy_jyyses Fyoy = Var(Y,,,

Q)IaYi—l,[—i+1"":YI—J+1,J—1)

= Var(Yi,I—[

D),

where the last equality follows from the fact that accident years are condi-
tionally independent, given F, and because the posterior of F;_; does not depend
on the observations Y; | ; ;4+1,..., Y7 ;417 1 (different development periods,
see also Theorem 3.2 in Gisler-Wiithrich [9]). This immediately implies

J-1 —=U+D (I +1) —=(I+1)
E|Var|Y,,., [ F Dyy Fiivyses Fy_| D,
j=I-i+l
J-1  (==u+n)?
= Var(Y,, | D) E| I F, D, |.
j=l-i+l1

So we need to estimate these two factors. For the first factor we obtain the
approximation

Var(Yi’,_i| ’D,) E[Var(Yi’,_i | F, Q)I)| Q),] + Var(E[Y“_i | F, Q),] ‘ ’D,)

0'12—i(F1—t)
=El—(¢c——|D + Var(F,_;| D)) (4.4)
2
~ 2ol
Cii-i =
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where in the last step we have used the approximation similar to the one
described after (1.16)-(1.17). The second factor is approximated as follows
(note that different accident years are conditionally independent, given F)

J-1  [==+D)? J-1 —~(+1))?
E [F] Dyl =E E[F/ F,D;|| D,
j=r-i+1| j=I-i+1 '
J-1 Q([‘Fl) 2
= [l E|E|| F F,D, || D,
j=I-i+1
Tl (I +1) 2
= Il E F; Dy |
j=I-i+l

where the second step follows from the fact that the product runs only over pair-
wise different development factors F; and the posterior distributions of F; given
D, are independent (see Theorem 3.2 in Gisler-Wiithrich [9]). Similar to the
derivations in Gisler-Wiithrich [9] this last term is now approximated by

2 2

J—-1 Q(I-H) J-1 o — )
[T E ; o~ [l |Dj+ E
j=I-i+1 j=l-i+l
This completes the proof.
O
Lemma 4.6 We have the following approximation
J-1 ==+l —=(I+1) —=(I+])
Var|E\Y,,.; [ F Dps Fpoivyss Fyoy Dy
j=l—i+1
2 2 2
== J-1 = = -1 (=D
= FI*[ H Dj + F} h F}
j=l-i+1 j=l-i+1
Proof. As in Lemma 4.5 above we find
J-1 —==u+h =+ =+
Var|E|Y,,; ] F Dr, Froinyson Fy_ D,
j=I—i+1
J-1 —~(I+1])
2 —
= E[Yi,l—[ @1] Var| ] F; Dy
j=l-i+1
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T —~(I+1)?2 Jo1 —~+]) 2
2 = -
- E[Yi,l—i @1] E H F] Dy| - E H E Dy
j=l—i+1 jEl—i+l1

But then the claim follows using the same arguments and approximations as

in the derivations of Lemma 4.5.
O

=)

Derivation of Result 4.1. Under the exact credibility approximation F; = }7}(’ )
we approximate

Q(I-ﬁl)

msepaRi(Hl)‘@l 0) = Var(CDRi (I+1) ‘ Q),) = Var|C, ; D,
4.5)

R J-1 Q(l+1)
=Ci_;Var|Y, H F; Dy .

jEI—i+1

There remains to estimate this last term to get an estimation.

J-1 Q(I'H)
Var| Y, ,_; H F; D,
j=I-i+l1
J-1 —= U+l (I +1) —=(I+1)
= E|Var|Y,,_; ] F; Dps Froivisen Fyo Dy
j=Il-i+l
J-1 ==u+h —=(I+]) =+
+Var|E|Y,,, [] F Dyy Fy_iorses Foo || Dy

j=l—-i+l

Using Lemmas 4.5 and 4.6 imply that we find the following approximation

J-1 —~~ (I +1])
—
Var|Y, ,_, H F D,
j=l—i+l
2 1 —~()?
O1-i o |7 |7
=l ot Y [T [D+ L
iI=i jEI—i+1
=\’ 1= oo (=D 2 o1 (==)?
+ Fl—i H Dj + F/ - H F;
j=I-i+1 j=l-i+1
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ol J-1 —(0)?
— - I-i + Q([) _ (]) H Dj('l)+ F}
i,I—1i =] —i
j=1-i+l
I- —=()? I- /\<1> 2
+ [1 [D"+| F
j=I1-i A j=I1-i

Finally, we apply Lemma 4.3 and Corollary 4.4 which provide the estimator
in Result 4.1.

O
4.2. Aggregated Accident Years

Our goal is to study the conditional MSEP of aggregated accident years given by

I~ 2
msep & »,(0) = E ( 2 CDR[(I-i-l)—O) D,
i=1-J+1 i=I-J+1
i I /\(1)
— (I +
=msep & o, 0, Z
i=1-J+1 -7-
/\(1+1) (46)
~ Var Z C D,
i=I-J+1
/\(1+1) Q(I‘Fl) - (I+1)
= Z VarC +2 > Cov| C . Cry D, |,
i=I—-J+1 I-J+1<i<k=<I

where we have used the same approximation as in (4.5). Hence, in addition to
the variance terms we need to estimate the covariance terms between different
accident years. We choose i < k. Similar to the derivations above we find the

approximation
IS+ === (I+1)
Cov| C; C D
inJ s k,J 1 (47)
l—i—lQ(” -1 /\(1+1) T-1 Q(I#—l)
~ CiiCope II F CovlY, H F I F Dy |-
j=1-k / I-i+1 j=I-i

Note that the only difference in the derivation now is that Var (Y; ;_;|D;) needs
to be replaced by (see also (4.4))
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(I +1)

iI—i» FI*[

2
I+1 1+1) 91-i 1
= B Var(Y, | 0) = 0 ==+ DY,

Cov| Y,
Cit-i (4.8)

Accounting for D{"; in AYY) we obtain in complete analogy to the single acci-

dent year case the followmg estimator:

Result 4.7 The conditional MSEP of the one-year claims development result of
aggregated accident years is estimated by

T
msep Ok (e o (0) = Z msep
i= IZJ+1 S )|D[ i=1-J+1 CDR, (I +1)|D;
N D(I)
+2 2 Cirei Crmi <A1—i + @, ):
[—J+i=i<k<I
with

—)?

F.

D(I) _ ﬁ(1+1) ‘71 i 11;[1
J

(1)
o + D],

LI-0 j=p—j+1

where /)’(”1) is given in Corollary 2.2, Q(” is given in (1.8) and D(’) in Lemma 4.3.

Remark 4.8

» We obtain an additional term ®” when aggregating accident years. This
difference to the conditional MSEP for the ultimate claim (compare with for-
mula (1.15)) comes from the fact that the process variance in the next
accounting year has also an effect on the fluctuation of the chain ladder
factor estimates one period later. This again indicates that for the one-year
claims development result there is no canonical split into process variance
and parameter estimation uncertainty as it is done in the frequentist’s
approach for the total runoff uncertainty (see also Remark 4.2).

4.3. Claims Development Result in the Asymptotic Credibility Based Chain
Ladder Model and the Classical Chain Ladder Model

In the classical chain ladder model (see Mack [12]) the chain ladder factors f;
are supposed to be deterministic parameters and they are estimated by the chain

ladder factor estimates /Fj\([) (frequentist’s approach). This gives the classical
chain ladder predictor
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—~CL J=1 _~_(I)

C[,J = Ci,]—i H ‘ Fo, (4.9)

for the ult/l/rga}tlfi claim C;; at time /. From the credibility based chain ladder
predictor C; ;  we asymptotwally/cia%a}l}n tlle\se(l?)le estimator if we send r — 00
because in that  case a —land F;, - F; ,seeformulas (1.3)and (1.4).
The predictor E:(I) for finite T < oo is called credibility based chain ladder
predictor. The asymptotic predlctor for r, oo is called asymptotic credibility

based chain ladder predictor and it gives the same best estimate reserves as the
classical chain ladder predictor C; ;

For the conditional MSEP of the asymptotic credibility based chain ladder
predictor we simply use Results 4.1 and 4.7 with

C, ..
) — (I+1) — I-J.j
a’=1 and pB; S0 (4.10)
J
hence
0 — 70? and DV = 1y o 4.11)
J Sj[l—j—l] J S.El_j] SJ[I—J—I] '

Summarizing we obtain the following result.

Result 4.9 (CDR for the Asymptotic Credibility Based CL Predictor)
(i) Single accident yearsi e {I-J+1,...,1}:

sep 0) = Cppoi Ty, + CL AL

CDR, (1+1)|n;

with
r > iI-i Jl—‘f (/1:\(1))2+ Crojj i
. =a;. : Ll |
! ! SI[]Z j=I-i+1 ! S_I[-I /] S/[-l =1
* il ——~ () 2 C] 0'2 J -1 /\(1)
A= 1 (F/ ) + [1 /]I] [7-j-1] H ( )
j=1—-i S j=I—i

(ii) Aggregated accident years:
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msep ¢ Gpr (71+1) |0 = msep ~
i:I?JJrl AShi )| ! i=1-J+1 CDR; (I +1)|D;
=SU .
+2 2 Cirmi Crr-i (Al—i +(D1—i>a
I-J+1<i<k<I
with

2
1-jj g

I-j -j-1]|"
S][ 7] S][ j-1]

. AP —~un\? C
(DI—;:h H <E )

Sl[i]i j=I-i+l

The conditional MSEP estimators in Result 4.9 are higher than the condi-
tional MSEP estimators for the claims development result in the classical chain
ladder model presented in Results 3.2 and 3.3 in Merz-Wiithrich [13]. One
obtains equality only if one linearizes Result 4.9.

For the linearization we assume

o (D)2
< ( F, ) , 4.12)
Sj

which allows for a first order approximation for I", A'; and @] (this is similar
to the approximations used in Merz-Wiithrich [13]). Property (4.12) is in many
practical example satisfied. I} ; and ® ; are approximated by

~ Ciri|l 50 [~
I =0 |1+ i ] __H' (Fj ) , (4.13)
I—i j=I-i+1
2
~ or_; =1 </\(l)>2
;= 4 (4.14)
! SI[_]ij:BHl ’

For the approximation of A} we use that for ; positive constants with 1 > g
we have

[T(1+a)-1= X a, (4.15)

Jj=1 Jj=1

where the right-hand side is a lower bound for the left-hand side (see also (A.1)
in Merz-Wiithrich [13]). Then A7 ; is approximated by
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~

2/(/F\(1) 2
-1~ I, gj J )
( ) P (4.16)

A = :1:[__ F; Sj[z—j] gl7=7-1]

j j=I-i j

This then gives the following linearized version of the conditional MSEP esti-
mator in the asymptotic credibility based chain ladder method:

Result 4.10 (Asymptotic Cred. Based CL. Method, Linear Approximation)
(i) Single accident yearsi € {I-J+1,....1}:

~ %

MSEPErk, (14 1), (0) = Cipoi L7y + Cl i Ky (4.17)
(ii) Aggregated accident years:

I
msep cﬁzi(ul)\@,(o): 2 msePcADR,,(1+1)|@,(0) (4.18)

i=1-J+1 i=1-J+1

+2 NG, Gy (B ).

I-J+1<i<k=I

Remark 4.11

As already mentioned in Remarks 4.2 and 4.8 one should interpret the sums
rather than the single components on the right-hand side of (4.17) and (4.18).
Doing so we obtain

(4.19)

HTGPC/D\RI_ (I+1) ‘ Dy (0)

() 2 —~ (1) 2 —~ (1) 2
(/\CL>2 Glz-i /<F1—i ) ‘712—1' /<F1—i ) -1 C 0}“( F, )

I-j.Jj
A + : + D . : ,
iJ Ci,l—i S[’_]] S]U‘/] Sj[l‘/‘l]

I—i j=I-i+1

and for the right-hand side of (4.18) we obtain

I
msep C/D\Ri(1+l)|fD,(0): Z msepC/D\Ri(1+l)|D,(0) (4.20)

i=1-J+1 i=I—J+1

2 ) 2 P —~ (1) 2
—~CL —~ CL Gf’i/(FI*i ) J-1 C g /< F/' )

1-j.J
2 2, Cis Cuy 2 [7-/] [7-j-1]
I-J+1<i<k<I j=I-i+1 Sj Sj

SOl

I-i
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Formulas (4.19) and (4.20) are now directly comparable to the Mack [12] for-
mulas in the classical chain ladder model (see also Estimators 3.12 and 3.16
in Wiithrich-Merz [16]). Formulas (4.19) and (4.20) show that the linearly
approximated conditional MSEP of the one-year claims development risk is
lower than the conditional MSEP of the total runoff risk for the ultimate claim
calculated by the classical Mack [12] formulas. From the process variance term
in the Mack [12] formula one only considers the first term of the sum for
the uncertainty in the one-year claims development result. For the parameter
estimation error term (4.19) contains the full first term from the Mack [12]
formula whereas all the remaining terms are scaled down by C;, ;/S/ /1< 1.

4.4. Important Inequalities

For the reason of completeness we provide various inequalities that apply to
our estimators:

(1) In the credibility based chain ladder approach, i.e. sz < oo (see Results 1.4
and 4.7), we have

—~ (1)
— — —

I
msep s, C/D\R[.(I+1)|@1(0) < msep 4 c,-,,,|@,[ > ?z‘,l
i=1-J+

i=1-J+1 i=1-J+1 1=

@.21)

This observation requires some calculation and says that the uncertainty of
the one-year claims development result is bounded from above by the total
runoff uncertainty of the ultimate claims predictors. The formal proof for (4.21)
is provided in the Appendix.

(2) Of course (4.21) also applies to the asymptotic credibility based chain
ladder case, 1.e. for sz — oo, which says that the estimator for the MSEP of the
one-year claims development result from Result 4.9 is bounded by the MSEP
of the total runoff provided by Corollary 5.3 in Gisler-Wiithrich [9], i.e. for
sz — oo We obtain

— — I —~CL
msep & C/D\R’.(I+1)|'DI(0) < msep { CU|,D]( 2 Ciso ) (4.22)

i=1-J+1 i=1-J+1 i=1-J+1

where the left-hand side now corresponds to the asymptotic credibility based
chain ladder claims development result from Result 4.9.

(3) The linear approximation (4.20) for the asymptotic credibility based chain
ladder case satisfies

—_— S —~ Mack I _—~cL
msep » C/ID\R,(1+1)|D,(O) = msep Ciyloy 2 Ci, | (4.23)
1 3 i=

. 2
i=1-J+ isI 7+l 1-J+1
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where the right-hand side is the conditional MSEP provided by the classical
Mack method [12], the proof is provided in Remark 4.11.

(4) In the asymptotic credibility based chain ladder case, i.e. for sz — 0o, We
find that the linear approximations are lower bounds.

—_

msep % COR,(1+1)|0,(0) = msep & (1+1)‘D1(0)

i=1-J+1 i=I-J+1

—~~ Mack I —~CL — I _—~~CL (4'24)
I . < I .
msep C,-;D,(I 2 Cuy ) < msep Cul@z( > C., )

PN ._ bX o
i=I-J+1 =1-J+1 ie oy 41 i=1-J+1

This follows directly from the derivations.
We illustrate these inequalities in the next section.

5. EXAMPLES

We study three examples.

Example 5.1 (Gisler-Wiithrich [9] revisited)

We revisit the example given in Gisler-Wiithrich [9] with the same parameter
choices. The example in Gisler-Wiithrich [9] considers the line of business
“building engineering” in different geographic zones in Switzerland, that is,
we assume that all these portfolios have a similar behaviour so that prior to
any observations we may assume that they satisfy Model Assumptions 1.1 with
the same priors.

For the g; we choose the estimators that are taken over the whole portfolio,
see Gisler-Wiithrich [9]. The results are illustrated in Table 2

The case a” )< 1 corresponds to the credlblhty based chain ladder predictors
with an approprlate choice for r . The case rj (a(” =1) gives the MSEP
estimate for the asymptotic cred1b111ty based chain ladder predictors, see Gisler-
Wiithrich [9] and Subsection 4.3 (Result 4.9, above). Columns (C4), (C6) and
(C8) exactly correspond to inequality (4.21) that compares the total runoff
risk to the one-year risk in the crediblity based chain ladder case, i.e. for sz < oo.
Columns (C3), (C5) and (C7) correspond to inequality (4.22) that does the
same consideration in the asymptotic credibility based chain ladder case, i.e. for
';,-2 — oo. We see that the one-year claims development uncertainty makes almost
80% of the entire claims development uncertainty.

Example 5.2 (Merz-Wiithrich [13] revisited)

We revisit the example given in Merz-Wiithrich [13]. There, we have derived esti-
mates for the conditional MSEP of the one-year claims development result in
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TABLE 2

EXAMPLE [9], REVISITED: CLAIMS RESERVES FROM THE ASYMPTOTIC CREDIBILITY BASED CHAIN LADDER
METHOD AND THE CREDIBILITY BASED METHOD, msep'’> OVER THE ENTIRE CLAIMS DEVELOPMENT
(FULL RUNOFF RISK) AND FOR THE ONE-YEAR CDR.

BU reserves reserves msepl/?2
CL factors cred. factors || full claims development one-year CDR one-year in % full
7Y 7" || CredCL  Cred CL | Cred CL  Cred CL | Cred CL  Cred CL
a;l) =1 ay) <1 a;.l) =1 a§.1) <1 a;.l) =1 a;” <1
(C1) (C2) (C3) (C4) (Cs) (C6) (C7) (C8)
A 486 504 510 498 427 419 83.7% 84.1%
B 235 244 425 402 324 311 76.4% 77.4%
(@] 701 517 566 520 448 415 79.2% 79.9%
D 1’029 899 765 729 598 573 78.1% 78.6%
E 495 621 593 584 469 465 79.0% 79.5%
F 40 25 163 143 114 100 69.7% 69.9%
Total 2’987 2’810 1’313 1’254 1°038 1’000 79.1% 79.7%
TABLE 3

EXAMPLE [13], REVISITED: CLAIMS RESERVES FROM THE ASYMPTOTIC CREDIBILITY BASED CHAIN LADDER
METHOD, THE msep'?> OVER THE ENTIRE CLAIMS DEVELOPMENT AND FOR THE ONE-YEAR CDR
(RESULT 4.10 AND RESULT 4.9).

acc. year reserves overall msep!/? CDR msep'/? CDR msep!/?2  CDR in %
i C/':JCL formula (1.15) Result 4.10 Result 4.9 of (1.15)
(CL factors) | asym. cred. based CL | linearized version  non-linearized version
ol =1 ol =1 ol =1
(C1) (C2) (C3) (C4) (C5)
0 0
1 4’378 567 567.4 567.4 100.0%
2 9’348 1’566 1°488.2 1°488.2 95.0%
3 28’392 4’157 3’922.6 3'922.6 94.4%
4 51’444 10’536 9°722.8 9'722.8 92.3%
5 111’811 30’319 28442.5 28’442.5 93.8%
6 187°084 35’967 20’954.0 20’954.1 58.3%
7 411°864 45’090 28’119.3 28'119.3 62.4%
8 1°433’505 69’552 53’320.4 53’320.5 76.7%
Total 27237826 108’402 81’°080.3 81°080.4 74.8%

the classical CL model which are equal to linearized formulas (4.19)-(4.20),
above. We now compare that result with the one obtained from the asymptotic
credibility based CL method (non linearized version, see formulas (4.17)-(4.18)).
This example also highlights the appropriateness of the linear approximations
used in Subsection 4.3. The results are presented in Table 3.
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Columns (C2), (C4) and (C5) correspond to inequality (4.22), that is, in this
example the one-year claims development result makes about 75% of the total
runoff risk measured in terms of the conditional MSEP.

Finally, Columns (C3) and (C4) correspond to inequality (4.24) saying that
(4.19)-(4.20) (and the method in Merz-Wiithrich [13] for the classical chain lad-
der model, respectively) give a linear lower bound to Result 4.9. This comes from
the fact that in Result 4.9 also higher order terms in the parameter uncertainty are
considered. However, the difference in the higher order terms is negligible (as for
many real data sets). This is in line with the findings in Buchwalder et al. [3].

Example 5.3 (Italian MTPL Market)

This example has immediate practical importance in the context of Solvency 11
where national development factors will be used for companies that are new in
the business. Then as they gain data, their own estimates might be credibility
weighted with the nation-wide factors. Of course, from a theoretical point of
view there is no reason to treat new companies differently from established ones.
For branches like Motor Third Party Liability (MTPL) insurance the credi-
bility approach should be used for all companies. As our example will illustrate
big companies will automatically have high credibility weights for their own
observations.

The example describes a field study on paid losses data of the MTPL market.
Complete data of 37 companies was available. That is, these companies have
provided 12 x 12 sufficiently regular runoff triangles of observations which
has allowed for doing our credibility based chain ladder analysis (the data pro-
vided was as of end 2006). These 12 x 12 triangles were considered to be
sufficiently developed in order to do our analysis, moreover we have neglected
any possible tail development factor.

For anonymity reasons we have coded the companies according to their
business volume. For further protection the business volume of the largest four
companies was set equal to their average volume and their ranking is random.
The results are given in Table 4. We have used the following abbrevations:

g t))
reserves credibility factors F; a](»') <1
%A reserves = -1, (5.1)

—~(I) ) _
reserves CL factors F; o =1,

overall asymptotic credibility msep'?, "’ = 1
%msep 1 , (5.2)
reserves CL factors,

overall credibility msep"?, &{” < 1
%msep 1 , (5.3)
reserves CL factors
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TABLE 4

EXAMPLE ITALIAN MTPL, THE CAPTION IS GIVEN IN FORMULAS (5.1)-(5.5).

company  business | %A reserve | %msep 1  %msep 2 | %msep CDR1 %msep CDR 2 %m(yifé’sg?f{ 1 %";)‘21’5;]32‘1 2
volume (%) (%) (%) (%) (%) (%) (%)
1 100.0 2.5 4.03 3.99 3.24 3.21 80.4 80.3
2 100.0 -0.3 2.90 2.86 2.36 2.33 81.4 81.4
3 100.0 -0.6 2.41 2.38 1.98 1.96 82.3 82.3
4 100.0 -2.5 3.45 3.37 2.85 2.78 82.6 82.5
5 61.8 -1.1 3.66 3.58 3.04 2.97 82.9 82.8
6 56.9 4.2 5.54 5.50 4.50 4.47 81.2 81.2
7 53.0 0.9 4.52 4.44 3.70 3.63 81.8 81.8
8 49.4 0.6 4.60 4.52 3.82 3.75 83.1 83.0
9 46.2 5.1 5.61 5.52 4.59 4.52 81.8 81.8
10 41.6 14 5.32 5.22 4.36 4.28 82.0 82.0
11 38.6 -2.3 4.47 4.29 3.65 3.50 81.8 81.6
12 324 -4.0 4.68 4.47 3.88 3.70 82.9 82.8
13 28.5 3.8 6.80 6.58 5.47 5.30 80.5 80.5
14 28.3 -6.6 4.75 4.32 3.81 3.47 80.3 80.3
15 27.7 1.3 6.40 6.23 5.17 5.04 80.7 80.9
16 27.3 11 6.97 6.70 5.80 5.56 83.3 82.9
17 26.6 2.1 6.10 5.86 4.99 4.79 81.8 81.7
18 20.8 2.4 7.03 6.72 5.69 5.45 81.0 81.1
19 19.3 5.3 8.71 8.40 7.07 6.81 81.1 81.1
20 14.0 -2.6 7.90 7.35 6.49 6.03 82.1 82.1
21 13.1 -5.5 8.05 7.42 6.54 6.04 81.2 81.3
22 12.3 -3.2 7.97 7.23 6.50 5.91 81.6 81.8
23 11.8 6.8 9.87 9.31 8.07 7.63 81.7 81.9
24 9.2 -4.5 9.73 8.39 7.95 6.87 81.7 81.9
25 8.3 -1.4 10.21 9.15 8.43 7.58 82.6 82.8
26 7.8 -2.2 11.21 10.22 9.25 8.45 82.5 82.7
27 7.4 -1.7 12.83 12.02 10.86 10.10 84.6 84.0
28 6.8 -2.6 11.87 10.49 9.59 8.55 80.8 81.4
29 6.1 -9.7 11.00 9.27 8.90 7.58 80.9 81.7
30 3.5 14.7 18.02 16.54 14.78 13.75 82.0 83.1
31 3.4 5.2 17.23 14.99 13.92 12.35 80.8 82.4
32 2.6 -0.7 18.73 15.68 14.89 12.85 79.5 81.9
33 2.5 16.3 23.11 21.46 19.10 17.97 82.6 83.7
34 2.2 -22.1 20.83 16.64 17.53 13.98 84.2 84.0
35 2.0 -24.0 17.01 12.96 13.87 10.72 81.5 82.8
36 1.8 13.8 26.16 24.03 21.54 20.16 82.4 83.9
37 1.8 31.9 27.79 24.14 22.25 20.15 80.1 83.5
Total -0.2 0.96 0.93 0.78 0.76 81.8 81.8
. _ CDR asymptotic credibility msep'”?, aj(l) =1
Yomsep CDR 1 = , (5.4)

reserves CL factors,

credibility CDR msep'?, af»” <1
Y%msep CDR 1 : .

(5.5)
reserves CL factors.
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Findings.

* Especially for smaller companies there is a material difference between the
credibility based chain ladder reserves and the chain ladder reserves (column %A
reserves). This comes from the fact that only small credibility weight is
attributed to their own observations F; so that their reserves heavily rely on
the market parameters f;, see (1.4). For the large companies the credibility
factors a(l ) were around 94%, whereas for small companies they were in the
range of 16%.

* The %msep’s are increasing for decreasing volume. This comes from more
diversification and better estimators in larger portfolios. Heuristically, this
is a reasonable feature that is also reflected in our observations.

* The %msep’s coming from ozj(l )< 1 are smaller than the ones from a_}l )=1.
This empirical finding comes from the fact that the prior distribution takes
for a_}l ) <1 some part of the parameter uncertainty.

* The ratios between the uncertainty of the one-year claims development result
compared to the total uncertainty of the ultimate claim is around 80%. This
corresponds to (4.21)-(4.22). These numerical findings are in line with the
field study presented in AISAM-ACME [1].

APPENDIX

A. Proof of inequality (4.21)

We start with the derivation for single accident years i. Using Corollary 4.4 in
the second step we obtain

T
msep— 0) = C, ., TPY + ¢ APD
pCDR‘.(1+l)‘Z)1() LI=i LI =i
2 a; (I+1) =)’ o =7 o= ’ )
+
=Cl- C <1+ﬁ ) F_; + D, | T F; + Dj
il j=I-i+1
— 2
I-1 (==
_ F.
Er (A.1)
2 —~)?| o1 [(==m)?
_ 2 91- () o = (N
=Cir C., +Q +|F; F, + D;
il j=I—-i+1
J-1 (==
- F
j=1-i
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In the next step we use that

D = o < gih), (A.2)

which implies

—

msep——

0)=¢C,,,TPD 42 APD
CDR[(I+])‘DI( ) [ A VAV

12

, ol o (=0 oo [(==m)? o
-1
Cir-i c.. T O~ +| Fi-; [] F; +0;
LI-i j=1-i+1

A

-1 (==mn)?
- II | (A.3)
jEl-i

5 J-1 QU)Z 0 5 0
=Ci -0, I1 F, +0; |+ Gl AL

i J
j=I—i+1

==

IA

(1) 2 (I _ =
Copi Iy, + Gl AL = MSePe., |2, Cis |-

where in the last step we have used that we only need to consider the first term
of the sum in I}"").

Note that we obtain a strict inequality if sz > () for some j> 1 —i and all
chain ladder factor estimators are strictly positive.

For aggregated accident years we need to consider in addition the covari-
ance terms. For i < k this implies using Corollary 4.4.

D(I) D(I)
Al—i + (Dl—i

2 —~n)> -1 [(==m)? -1 (==m)?
Oy_; — — —
S L/ e PSR I e B D O [ R B T )
Ll—-i j=I-i+1 j=I1-i
—)? ol = [(FE=e 2 ol = (E=o 2
= || Fr- +0;2: | 11 F; + D; F
j=I1-i+1 Jj=1-i (A4)
-1 [(=wm)? ol e (E=o 2 "
< F | +0! Foo| =AY,
Jj=1-i Jj=1-i

This completes the proof of inequality (4.21).
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