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Summary

This paper presents a PC-based crop yield simulation and risk analysis model
for a single farm, with the weather as the stochastic component. The ERM
allows the calculation of the distribution of the farm net returns for a specific
crop-rotation plan. Compared to other risk analysis models, the ERM does
not ask the user to supply recorded farm data related to the past nor does it
employ a specific utility function. In the ERM, the farm-specific context is
included in having the farmer specify the minimum, maximum and average crop
yield for four out of 17 analysed crops. The application of the ERM to an
arable farm is demonstrated.

Keywords: decision support system, uncertainty, weather, land allocation,
simulation.

A farmer faces a risky choice when he is uncertain about the consequences
of his decision. For a specific example, consider the problem of allocating
land of a single farm to a mix of crops to maximise the expected utility of
profits from agricultural production. Uncertainties for a farmer result from
technological, legal and social risks and human sources of risk, as well as
production and marketing risk (Sonka and Patrick, 1984), the last two being
of utmost significance for each single farmer. This paper will focus on
production risk since prices of most cash and non-cash crops in Switzerland
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are absolutely fixed within an annual planning period. In view of the fact
that weather influences production risk to the greatest extent, it was chosen
to be its crucial indicator. Production risk is strongly related to farm net
returns, liquidity and resource allocation problems (Barry, 1984). To
encounter this risky environment a new approach, decision support by the
ERM, is proposed. The ERM is a PC-based crop yield simulation and risk
analysis model with the weather as the stochastic component.

The purpose of this paper is twofold: (a) to illustrate the decision support
programme ERM and (b) to illustrate its use for the problem of allocating
land of a single farm to a mix of crops under the considerations of weather-
induced yield variations. First, a review of approaches currently used to
represent farmers' behaviour under uncertainty is outlined. This is followed
by a presentation of the objectives of the simulation and risk analysis model.
In the ensuing subsections of the paper, the methodology of the model is
presented. The conception of the yield variations induced by the weather,
the underlying data used for the analysis of the yield variations, the crop
yield simulations model itself and its statistical validation are described. In
the third section, the risk analysis model is presented and results obtained
from the application of the ERM to an arable farm with respect to their
consequences for the allocation of land to a mix of crops are discussed.
Finally, a summary and conclusions of findings of the study are given.

1. Review of current approaches

The most widely used approach employed for representing farmers' behavi-
our under uncertainty is expected utility. This analytical framework founded
by von Neumann and Morgenstern (1953) demands the specification of the
farmer's utility function. Although this specification is possible, as empirical
studies (Binswanger, 1980; Smidts, 1990) and experiences in decision analysis
(Hershey et al., 1982) show, it is not an easy task and quite time-consuming.

Stochastic dominance is another method consistent with the theory of
expected utility (King and Robinson, 1984). While this approach does not
require the specification of the farmer's utility function, its practical applica-
tion is limited to the pairwise comparison of discrete alternatives. This makes
the attainment of small and inconclusive sets of alternatives uncertain.

The expected utility framework can be utilised by a function depending
only on the mean and variance of the outcomes, assuming that the farmer
has a quadratic utility function (Markowitz, 1970), or by assuming a negative
exponential utility function and normally distributed crop returns (Freund,
1956). However, a quadratic utility function is unacceptable for theoretical
reasons, since it can violate the axiom 'monotony of preferences' of the
expected utility theory and also implies increasing absolute risk aversion
(Pratt, 1964; Arrow, 1971). Furthermore, Day's (1965) fundamental statistical
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analysis on yield distributions and Buccola's (1986) tests for non-normality
in farm net returns question the admissibility of the assumption of normally
distributed crop returns severely.

Collender and Zilberman (1985) took care of this objection and proposed
the use of the expected utility moment generating function approach, which
is independent of the nature of the underlying distribution. Like many other
studies, theoretical or empirical (Keeney and Raiffa, 1976; Smidts, 1990), it
is based upon the negative exponential utility function which implies constant
absolute risk aversion. This assumption is not in accordance with theoretical
reasoning (Arrow, 1971) and empirical findings (Binswanger, 1980; Hamal
and Anderson, 1982) of a predominantly decreasing absolute risk aversion.
It thus represents a serious handicap for its applicability. Collender and
Chalfant (1986) extended this model by the use of the empirical moment
generating function, which allows the use of any well-behaved utility function
that exhibits constant or decreasing absolute risk aversion. This model
requires sample observations on the returns of different crops, which, how-
ever, are often not available at the farm level. Another limitation that occurs
even when data is recorded is the fact that historical data on returns of
different crops are partly based on historical prices, which may well not be
very relevant for the future, and besides, the data usually contain a trend
which needs to be eliminated. Thus, historical data on returns of different
crops do not seem very suitable for the purpose of risk analysis in allocating
land to a mix of crops for years to come.

While these theoretical models are well developed and insightful, their
applications in extension work and practical farm planning are limited. The
employment of these models relies on (a) the acceptance of assumptions
which cannot always be met in practical farm planning or (b) farm data
which are usually not available.

2. The crop yield simulation and risk analysis model

The problems discussed with the expected utility models or with the stochas-
tic dominance gave rise to the development of the decision support pro-
gramme ERM. It should be noted that the ERM does not solve the discussed
problems. The ERM neither requires a utility function nor relies on recorded
farm data to be supplied by the user. In this respect it circumvents the
difficulties associated with the other approaches. The primary goal of the
ERM is to give the farmer as much information as possible about the effects
of different crop-rotation plans on his farm net returns, considering the
weather as a stochastic component. This enables the farmer to choose among
alternative crop-rotation plans in order of his preference, irrespective of the
particular specification of his preference function. A PC-based crop yield
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simulation and risk analysis model was therefore developed. This programme
pursues the following two objectives:
(a) the simulation of weather-induced yield variations of 17 crops at farm

level (discussed in section 2.1);
(b) the support of farmers' and extension officers' decision-making pro-

cesses, regarding weather-induced yield variations (discussed in
section 3).

2.1. Methodology of the crop yield simulation model

2.1.1. Yield variations induced by the weather. A large body of literature
identifies two basic methods of describing yield variations induced by the
weather at the farm level. These include:
1. plant growth models;
2. analog models.

With reference to (1), plant growth models try to quantify the influence
of the weather and that of all other factors determining the magnitude of
the yield (Penning de Vries et al., 1989; Jones and Kiniry, 1986). In a farm
level approach, this method does not seem to be appropriate since the
individual farmer is not in possession of accurate and adequate records of
the prevailing weather conditions (temperature, hours of sunshine, etc.) on
his farm.

With reference to (2), analog models (Palutikof et al., 1984) on the other
hand, attempt to quantify all factors that influence the magnitude of the
yield, with the exception of the weather (Frankenberg, 1984: 25; Oskam,
1991). This approach thus divides the time series of yields into a systematic
and a stochastic part, with the stochastic component interpreted as weather-
induced yield variations. Further, it is assumed that the systematic and the
stochastic part of the overall yield variations are separable from each other
(Oskam, 1991). These yield variations induced by the weather are mathemati-
cally described and used for the simulation to reconstruct an analog.

The analysis of the crop yield variations was carried out with Swiss
national mean yield data from 1949 to 1986, which is based on data records
of individual farmers throughout the country. All crops included in the
analysis are shown in Table 1.

A time series data of the yield of each crop was used to determine the
yield variations induced by the weather. Hattenschwiler (1984), who built a
national crop yield simulation model based on national mean yield data
from 1949 to 1979, showed that crop yield determining factors like fertilisa-
tion (nitrogen, phosphor and potassium) and plant protection agents almost
monotonously increased over the observed period. Other yield determining
factors like technical progress, cultivation improvements and soil conditions
were assumed to increase monotonously over the observed time. Since the
weather was the only stochastic yield determining factor, it was possible to
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Table 1. Crops included in the analysis

No.

1.
2.
3.
4.
5.
6.
7.
8.
9.

Crop

winter wheat (WW)
summer wheat (SW)
winter barley (WB)
summer barley (SB)
sugar beet (SBT)
fodder beet (FBT)
spelt (SP)
rye (RY)
oats (OA)

No.

10.
11.
12.
13.
14.
15.
16.
17.

Crop

lay farming (first cut) (LI)
lay farming (further cuts) (L2-5)
permanent grassland (first cut) (Gl)
permanent grassland (further cuts) (G2-5)
silage maize (SM)
grain maize (GM)
potatoes (PO)
rape (RA)

include all 'monotonically' increasing factors in a time variable (t). Thus, the
crop yield (y) can be written as a function of t

y=f(t) + e (i)

where the residuals e are interpreted as the yield variations induced by the
weather. The function f(t) was estimated by OLS regression technique and
represents the trend. The assumption that all noise is denned as weather-
induced yield variations seems heroic at first glance. Hattenschwiler (1984),
however, proved that fertilisation and plant protection agents are not signifi-
cant exogenous variables that can be used to explain the residuals of the
trend functions. Thus, it is not possible to split the noise into weather-
induced and production-induced yield variations.

The obtained residuals of all trend functions represent a multivariate
distribution, where the corresponding density function is unknown. Thus, it
was not possible to simulate straightforwardly with the help of the inverse
multivariate distribution function. The only way to model the multivariate
distribution was to draw on partial information about the multivariate
distribution. Therefore, the correlation matrix of the residuals and the mar-
ginal distribution of the residuals of each single crop were considered to
exhibit some 'details' of the multivariate distribution. To show the linear
relationships between the weather-induced yield variations of the various
crops, the simple correlation coefficient (r), of the residuals of all 17 trend
functions was calculated (see Table 2).

The question of the utilisation of aggregate data as opposed to farm-level
data needs to be addressed as well. Before it is possible to advance to this
point, however, a few fundamental aspects of the ERM have to be outlined.
The discussion about aggregate data versus farm-level data has therefore
been deferred to the end of section 2.1.5.

2.1.2. Basis crops. In this section, the core of the ERM will be introduced.
The idea is to split the crops to be analysed into two 'crop bundles'. The
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Table 2. The correlation matrix of the weather-induced yield variations for all 17 crops

01
LI
G2-5
L2-5
GM
SM
FBT
SBT
RA
PO
OA
SP
WB
RY
SB
SW
WW

Cl
0.821
0.343
0.408
0.013

-0.064
0.079
0.025
0.087
-0.048
-0.039
0.057
0275
0.140
0.022

-0.029

LI
0.312
0.443

10.0751

0.007
•0.024
-0.041
0.004

[-0.0281
-0.104
-0.070
0.165
0.033
-0.047
0.008

0210 1 0.1351

G2-5
0.921
0.152
0285
0.193
0212
0.097
0289
0.060
-0272
-0.022
-0.164
-0.052
-0.138
-0.152

L2-5
0.123
0.151
0.146
0.177
0.090
0243
0.110
-0245
0.000
-0.132
-0.055
-0.023
•0.100

CM

0.509
0.401
0.384
0.117

1 0.2781

-0.051
0.148
0.108
0.108
0.069
0.166

150521

SM
0.458
0.401

-0.128
0.351

-0.144
-0.094
-0.141
-0.181
-0.019
•0.102
-0.174

FBT
0.837
0.156
0.381
0.061
0.195
0225
0.235
0235
0.140
0206

SBT
0235
0.460
0.061
0.138
0207
0.169
0209
0.112
0.189

RA
0.345
0.412
0.401
0.513
0.538
0.448
0.462

PO
0.466
0.125
0.140
0239
0.424
0.370

0.591 102161

OA
0.597
0.459
0.565
0.796
0.663
0.543

SP
0.817
0.795
0.714
0.683
0.761

WB
0.783 RY
0.653 0.737 SB
0.577 0.725 0.7«t SW
0.798 0.165 0.742 0.717 WW

With a significance level of 0.1 (two-tailed) and a sample size of 38, a significant correlation
results as soon as r is greater than 0.22.

magnitude of the weather-induced yield variations for one group (bundle)
contains all necessary information about the prevailing weather conditions
at the farm level. Then, for the second group, the magnitude of the weather-
induced yield variations can be directly deduced from the first group.

A first glance at the correlation matrix shows that the weather-induced
yield variations of some crops are not correlated with each other. Obviously,
they obey different factual or temporal elements of the weather in each year.
Therefore, the weather-induced yield variations of two uncorrelated crops
are conceived as representative points of disjunctive sets of information
about the weather. The weather-induced yield variations of all uncorrelated
crops form the maximal, non-redundant information of the weather, as far
as it is important for the yield potential. For the purpose of this work,
groups of uncorrelated or very weakly correlated crops which cannot be
enlarged without the formation of a subgroup with significant multicorrela-
tion shall be referred to as basis or basis crops. All crops which do not
belong to the basis shall be called non-basis crops. Thus, the basis crops
represent the weather in the sense of 'instrumental variables'. The number
of basis crops ought to be as large as possible, because each basis crop
contains additional information about the weather which otherwise would
not be available.

The basis crops were found with the help of a principal component
analysis of the weather-induced yield variations and a successive rotation of
the principal components by the varimax criterion. This analysis showed
that cereals loaded on the first component, grain maize, silage maize, fodder
and sugar beet on the second component, lay farming and permanent
grassland (first cut) on the third component and lay farming and permanent
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grassland (further cuts) as well as potatoes on the fourth component. The
first four components have eigenvalues before rotating greater than one and
they explain 75% of the variance of the weather-induced yield variations of
all 17 crops, while the other 14 components are negligible because their
loadings are low and their eigenvalues before rotating are less than one.

Most of the different crops loading on one particular component are
highly correlated. The high linear dependency among these crops suggests
that there is a strong redundancy of information as far as the weather is
concerned. At first instance one might consider the crops with the highest
loading on a particular component as a criterion for the selection of the
basis crops. But it should also be kept in mind that the crops to be selected
ought to be uncorrelated and that the cultivation of these crops should be
widespread in Switzerland. The non-correlation is a prerequisite as far as
the concept of the basis crops is concerned and it facilitates the simultaneous
simulation of the basis crops, whereas the widespread cultivation of these
crops is important for the accurate specification of the weather-induced yield
distributions of the basis crops by the farmer.

Considering only different sets of basis crops where the single crops are
cultivated throughout the country, the set with the lowest pairwise linear
dependency of the basis crops was selected. The appropriate test for this
selection procedure is based on Holm's principle (Holm, 1979; see also the
Appendix, part I). It refers to the simple correlation coefficient (r) and allows
a multiple valuation of the pairwise linear dependency of the basis crops.
The overall type I error is controlled by one specified significance level. The
application of this test results in the four basis crops: winter wheat, grain
maize, potatoes and lay farming (first cut). This set of basis crops is pairwise
linear-independent. The simple correlation coefficient, however, showed that
potatoes and grain maize are significantly correlated. The low correlation
between these two crops was taken into account for the simulation of the
basis crops.

To overcome the shortcoming of the simple correlation coefficient to
detect only linear relationships, the weather-induced yield variations of the
selected basis crops were plotted against each other. These plots clearly
indicated that it was possible to rule out non-linear relationships among the
basis crops. Thus, it was confirmed that the distributions of three basis crops
are not only uncorrelated, but also stochastically independent of each other
and constitute a disjunctive set of information about the weather.

2.1.3. Simulation of the basis crops. After having established the idea
about basis crops it is possible now to return to the first objective of the
ERM - the simulation of the weather-induced yield variations at the farm
level. The two sections that follow describe how the concept of the basis
crops can be used for the achievement of this objective.2 Figure 1 illustrates
a graphical summary of the two following sections and of the risk analysis
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model as well. As such it can be used as a reference for the subsequent parts
of the paper. It is important to note that the preceding sections dealt
exclusively with weather-induced yield variations based on national data,
whereas the following sections are solely concerned with the simulation of
weather-induced yield variations at farm level.

While setting up the ERM, the basis crops were selected on the grounds
of national data. The underlying concept of the basis crops is now employed
within the ERM to help fulfil the farm-level data requirement. This permits
each farmer to specify subjectively the distribution of the crop yields of each
basis crop according to his farm-specific situation. These specifications con-
tain the necessary information about the farm-specific weather conditions,
thus making it possible to switch from 'national data' to 'farm data'. To
assess the importance of the concept of the basis crops, recall the results of
the principal component analysis of the weather-induced yield variations.
Only four components have an eigenvalue greater than one and they explain
75% of the total variation of the weather-induced yield variations. This
reveals the high data redundancy of the weather-induced yield variations of
all crops. It further suggests that the farmer's specification of the weather-
induced yield variations of the basis crops covers the weather-induced yield
variations of all crops to a considerable extent.

As established earlier on, the weather-induced yield variations of three
basis crops are stochastically independent of each other. This allows the
simulation of the weather-induced yield variations of these basis crops
independently, whereas the slight correlation between potatoes and grain
maize has to be considered by an adequate transformation of the uniformly
distributed random number used for the simulation of grain maize (for
details of the so-called uniform method see the Appendix, part II, or refer
to Tenenbein and Gargano, 1979; Goetz, 1991). For the actual simulation
process the triangular distribution was preferred to other distributions on
grounds of the three following reasons: (1) it is truncated, (2) it allows
symmetric and asymmetric forms and (3) the parameters can easily be
understood and specified by farmers.3 The farmer's specification of the
triangular distributions for the basis crops makes it possible to simulate the
weather-induced yield variations farm specifically.

This study did not explicitly examine how farmers deal with the task of
encoding the probabilities, that is, specifying the parameters of the triangular
distribution. Numerous studies (e.g. Tversky and Kahneman, 1982; Hogarth,
1980; von Winterfeldt and Edwards, 1986) state that severe biases and
distortions are a frequent phenomenon in the process of the elicitation of
subjective probabilities. To clarify the discussion Smidts (1990) notes what
is meant by biases in contrast to distortions. Biases are conscious or subcon-
scious discrepancies between the subject's response and an accurate descrip-
tion of his underlying knowledge, whereas distortions are interpreted as a
systematic difference between the perceived and 'objective probability'. The
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different methods for the elicitation of the subjective probabilities are liable
to the occurrence of specific biases. The quality of the method for the
elicitation of the subjective probabilities applied in this study has not yet
been analysed profoundly (to the author's best knowledge). However, several
studies (Pingali and Carlson, 1985; Huijsman, 1986) employing the farmer's
specification of the parameters of a triangular distribution have been con-
ducted. Huijsman reports that farmers had no difficulties in specifying the
minimum or maximum value of the triangular distribution as opposed to
the specification of the modal value. Thus the ERM gives preference to the
average yield over the mode since it is suggested that the farmer is more
familiar with the former. In particular, the farmer is being asked for the
highest (h), lowest (/) and average (a) yield he expects as a result of weather
variations over ten years. The mode (m), however, was required for the
numeric simulation. The relevant formula for its calculation is as follows
(Hartung, 1987: 195)

m = 3a-h-l (2)

To obtain the yield variations of the basis crops induced by the weather,
the average yield was subtracted from the three parameter values of the
triangular distribution for each basis crop. These values of the triangular
distribution, 'centred' upon zero, were then used for the simulation. When
the farmer specifies the parameters of the triangular distribution he will
probably make use of his knowledge of former harvests at his farm. It may
well be that his subjective information about former crop yield data for
particular crops is systematically different from the objective correct crop
yield data. Hence his subjective specification will be systematically distorted.
This source of systematic distortion, however, is eliminated since it is the
range between the parameters and not their magnitudes that now matters.
Yet, unsystematic distortions still remain (see also section 2.1.5).

In some regions of Switzerland silage maize is often cultivated instead of
grain maize, making it impossible for the farmers in these regions to specify
the parameters of the triangular distribution of grain maize. In this case the
ERM allows the farmer to choose silage maize as a basis crop and to specify
the corresponding parameters of the triangular distribution of silage maize.
Farmers having problems specifying the parameters of the triangular distri-
bution for lay farming (first cut) or for silage maize are able to call for
support within the ERM. The programme supplies the user with the volu-
metric weights of various bale types and with information about the space
which a dt. of hay or silage maize requires for its storing, depending on its
dry-matter content. In order to enable the ERM to adjust the farmer's
specification of the triangular distribution of lay farming to lay farming with
four cuts, the programme additionally requests the farmer to state the
number of times he cuts his grass per year.

The simulation of the weather-induced yields of the basis crops (sample
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size= 100) was done with the inverse of the respective triangular density
distribution function F{X)~l (Monte Carlo Simulation).

(3)

m-l

X =
I + JX'ih-lXm-l), X' <

h - J\-X'{h-l)(h-m), X' >

h-l

m-l
h-l

(4)

where A" is a uniformly distributed random number in the interval [0, 1],
and X the simulated value of the weather-induced yield variation.

2.1.4. Calculation of the non-basis crops. The question that arises now is
how to simulate or calculate the weather-induced yield variations of the
remaining non-basis crops at the farm level. It is certainly not possible to
use the previously estimated correlation matrix (Table 2), since it implies the
non-acceptable assumption of a multivariate normal distribution of the
weather-induced yield variations (refer to section 1). For the calculation of
the weather-induced yield variations of the non-basis crops (snon.basis) it is
of great help to recall: first, that the weather-induced yield variations of
the basis crops (sbasis) are independent of each other; and second, that the
weather-induced yield variations of the non-basis crops correlate with the
weather-induced yield variations of the basis crops and with each other.
One can thus conclude that the weather-induced yield variations of the basis
crops are explanatory for the corresponding weather-induced yield variations
of the non-basis crops:

Einon-basi,=f(£basis) + Vi (5)

The index i stands for one particular non-basis crop and runs from 1 to 13.
Once the weather-induced yield variations of a non-basis crop are explained
by those of one or several basis crops, the particular weather-induced yield
variations of this crop can also be used to explain those of the remaining
non-basis crops.

The above-described sequence of explanation of the weather-induced yield
variations of the non-basis crops can be used to derive a recursive simulta-
neous equation system. Further proving the condition, Corr^,; u i+1) = 0
makes it admissible to estimate the equation system by the OLS regression
technique (Koutsoyiannis, 1979). Two simultaneous equation systems were
estimated, one with grain maize and the other with silage maize belonging
to the basis. For a clear understanding of the crop yield simulation model
it is relevant to mention that the parameters of the recursive simultaneous
equation system were estimated with national data. The simulated weather-
induced yield variations of the basis crops serve as an input for the recursive
simultaneous equation system and thus allow the calculation of the weather-
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induced yield variations of the non-basis crops, where the residuals vt of
equation 5 had to be simulated. Assuming normally distributed residuals,
the mean and standard deviations were calculated and used for the simula-
tion which was done within the ±3a limits. A truncated distribution was
chosen for two reasons: firstly, because the residuals cannot be infinitely
small or large, and secondly because this modelling is in line with the
modelling of the basis crops.

2.1.5. Validation of the crop yield simulation model. Finally, the quality of
the simulation model was examined with the help of statistical tests. A first
test compared the correlation matrix calculated from the observed weather-
induced yield variations of all crops (1949-1986) with a correlation matrix
calculated from simulated weather-induced yield variations (Fischer's Z-
Transformation, Gauss-Sample Test; Hartung, 1987: 548). Since this test
only compares two corresponding correlation coefficients of the respective
correlation matrices, it does not take into consideration the multivariate
aspect of the comparison. To take care of this shortcoming, a particular test
based on the maximum root criterion of S. N. Roy (1957) has been conducted
(Krishnaiah et al., 1980; see also the Appendix, part III). Two further tests
evaluated the conformity between the marginal distribution of the observed
weather-induced yield variations of each crop with a marginal distribution
of simulated weather-induced yield variations (Mann-Whitney Test [Har-
tung, 1987: 513]; Chi-Square Homogeneity Test for loglinear r x s-tables,
[Hartung, 1987: 433]). Whereas the Mann-Whitney Test evaluates primarily
the location of the distribution, the Chi-Square Homogeneity Test focusses
on the form of the distribution. Recognizing the imperfection of the model,
a sensitivity analysis of the simulation model in respect to the farmer's
specification of the crop yield estimates was carried out. The input data for
the basis crop was systematically varied from the originally observed data
in the statistical tests in order to make an assessment of the previously so-
called unsystematic distortions of the parameters of the subjectively specified
triangular distributions and their effect on the results of the simulation
model.4 In view of space constraint, only a condensed presentation of the
results of the statistical tests will follow (for a detailed presentation see
Goetz, 1991). The 200 Gauss-Sample Tests5 that were conducted showed
that it is not possible to reject the hypothesis (Ho) that the correlation
matrix calculated from the observed weather-induced yield variations is
equivalent to a correlation matrix calculated from simulated weather-
induced yield variations. The test based on the maximum root criterion of
S. N. Roy supported these previous results. None of the results obtained
allowed the rejection of the hypothesis (HQ) that the 'observed covariance
matrix' and a 'simulated covariance matrix' are equivalent. The same results
with respect to the hypothesis (Ho) (the marginal distribution of the observed
weather-induced yield variations of one crop is equivalent to a marginal
distribution of the simulated weather-induced yield variations of this crop)
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hold completely for the 1122 conducted Mann-Whitney Tests.6 105 out of
1122 conducted Chi-Square Homogeneity Tests could not support the
hypothesis (Ho) which is equivalent to the tf0-hypothesis of the Mann-
Whitney Test. This occurred particularly in the case of spelt where the Ho-
hypothesis was rejected 47 times. Overall it was possible to accept the
simulation model on grounds of statistical tests. Yet, the results indicated
that the variation of the input data for the basis crops did not have a
'significant' influence on the 'quality' of the performance of the simulation
model.

By now it is time to return to the question of the utilisation of national
data as opposed to cantonal or farm-level data. On the one hand, broadly
aggregated data inevitably means a loss of information due to aggregation.
Use of cantonal data, on the other hand, implies a high redundancy of the
data caused by the topographic similarity and the close range of particular
cantons. Hattenschwiler (1984: appendix III-2) examined the question of
national versus cantonal data in detail and found that the loss of information
through the use of national data was quite minimal. He showed in particular
that the non-linear stochastic dependencies between the weather-induced
yield variations for each crop, the corresponding correlation matrix (linear
stochastic dependencies) and the simultaneous equation system for the calcu-
lation of the non-basis crops for both data sets - national and cantonal -
do not differ significantly from each other. This leads to the hypothesis that
the interdependencies of the weather-induced yield variations do not vary
significantly within Switzerland (space invariance). This is not intended to
say that weather-induced yield variations at farm level do not vary within
Switzerland, but that their interdependencies are fairly stable.

Weather-induced yield variations based on cantonal data, however, are
still not representative for weather-induced yield variations at farm level. In
moving from aggregate data (national or cantonal) to farm-level data, two
concepts are employed. First is the concept of the basis crops where the
farmer's specification of the triangular distribution of the basis crops covers
the weather-induced yield variations of all crops to a substantial extent. The
second concept entails utilising the hypothesis of space invariance between
the weather-induced yield variations of the basis crops and the non-basis
crops. This allows the calculation of the weather-induced yield variations of
the non-basis crops at the farm level with the help of the basis crops.

3. Application of the crop yield simulation and risk analysis model

The simulation of the weather-induced yield variations itself is not of much
help to the farmer. The information of the simulation model needs to be
condensed in order to make it possible to compare the effects of different
crop-rotation plans on the farm net returns (risk analysis). In this section,
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The tick marks on the x-axis represent the magnitude of the farm net
returns. The tick marks on the y-axis represent the relative frequency
of each class. The graph also provides information about the mean
;ind the standard deviation of this distribution.

Figure 2. Histogram of the farm net returns for the initial crop-rotation plan of the analysed farm

the features of the risk analysis model as well as the results of a risk analysis
that was carried out for a particular farm are presented. This farm is
specialised in crop production with 30 hectares of cultivated land and a
labour force of 2.5 men. The corresponding linear programming model is
composed of 23 variables and 21 restrictions.

The simulated weather-induced crop yield variations of this particular
farm were produced with usual values for the parameters of the triangular
distribution of the basis crops. The simulated yield variations together with
the farmer's specification of a crop-rotation plan (LP-solution or actual
crop-rotation plan), the average yields, the prices, the costs, etc. (crop net
return components), allow the computation of the weather-induced distribu-
tion of the farm net returns for a particular crop-rotation plan. Figure 2
illustrates the distribution of the farm net returns for the optimal solution
of the linear programming model of this farm.7 Users of the ERM who
intend reducing the risk8 associated with particular crop-rotation plans have
two options open to them. These include the MOTAD-model9 (Hazell and
Norton, 1986) and the heuristic approach.

If a MOTAD-model is chosen, a representative sample of the 'simulated
data' adequate to the distribution of the farm net returns is drawn. This
sample based on 20% of the 'simulated data' makes up the expected value of
(a) the net return of each cash crop,
(b) the yield of each forage crop,
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and 20 deviations of
(c) the net return of each cash crop from the corresponding expected value,
(d) the yield of each forage crop from the corresponding expected value.

With this information, the sample could then be passed on to a linear
programming model to add 'restrictions' in the sense of MOTAD. The user
also has the option of including the forage crops in the risk analysis. If he
decides to include it, he needs to monetarise the deviations of the yields of
each forage crop, and add this information to the linear programming model
in the form of restrictions in line with the 'penalty cost aproach' (Hanf and
Mueller, 1979). It is important to note that the ERM supplies the necessary
data to convert an ordinary linear programming model (maximisation of
the expected farm returns) into a MOTAD-model, but the risk analysis
model of the ERM does not include any linear programming technique. The
data for a MOTAD-model produced by the ERM has to be added to an
ordinary linear programming model by the user. The ERM can then be
used to produce a distribution of the farm net returns based on a crop-
rotation plan that results from the optimisation of a MOTAD-model.

The choice of a MOTAD-model implies the specification of a risk-aversion
parameter Q. In this study the risk-aversion parameter is used to produce
risk-efficient crop-rotation plans. By varying the risk-aversion parameter for
example from 0 to 2.5, different crop-rotation plans can be obtained through
the optimisation of the MOTAD-model. The values of the risk-aversion
parameter represent initially a risk-neutral farmer who becomes more and
more risk-averse as the risk-aversion parameter increases. The corresponding
distributions of the farm net returns can then be calculated with the help of
the ERM. Whenever the user calculates this distribution again he only needs
to alter the specification for the hectares planted with a specific crop. All
other information is handled by the programme.

Figure 3 presents the results of a risk analysis for the analysed farm. A
comparison of Figures 2 and 3 reveals that the expected value of the farm
net returns (x) decreased from 145,725 SFrs. to 138,086 SFrs. and the stan-
dard deviation of the farm net returns (s) from 14,453 SFrs. to 10,040 SFrs.10

The coefficient of variation (s/x) dropped from 0.1 to 0.07. The activities of
the arable farm sector altered substantially for the farm, suggesting its
response to weather-induced yield variations. A further reduction of the risk
measured as the standard deviation of the farm net returns was, however,
not feasible - the crop-rotation plan remained unchanged (see Table 3).

The ERM offers its users the possibility of applying graphical presentations
to contrast these different crop-rotation plans with respect to the tails of the
distribution of the farm net returns - the lower and upper quintils. Figure 4
is used to provide an example of such a graphical comparison of the risk
analysis of the analysed farm.11

Quite evident from the diagram are:
(a) the minimum requirement and aspiration levels prespecified by the user
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Figure 3.

The tick marks on the x-axis represent the magnitude of the farm net
returns. The tick marks on the y-axis represent the relative frequency
of each class.

Histogram of the farm net returns for the crop-rotation plan resulting from the
MOTAD-model for the analysed farm (Q = 2.5)

and
(b) the farm net returns forming the lower and upper quintils.
The output of Figures 2, 3 and 4 should enable the farmer to decide on one
specific crop-rotation plan that matches his attitude towards risk. Figures 2
and 3 give him information about the expected value, the standard deviation
and the distribution of the farm net returns, whereas Figure 4 supplies him
with the particular interesting information of the lower and upper quintil.

Table 3. Changes of the crop-rotation plan

Risk-aversion
parameter

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

PO

6.25
6.25
6.25
6.25
3.85
3.85
3.85
3.85
3.85
3.85
3.85

RA

2.0
2.0
2.0
2.0
0.15
0.0
0.0
0.0
0.0
0.0
0.0

GM

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

WW

0.0
0.0
0.0
1.28
0.15
0.15
0.15
0.15
0.15
0.15
0.15

SW

3.75
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

WB

2.0
5.75
5.75
4.47

10.0
10.0
10.0
10.0
10.0
10.0
10.0

SBT

2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4
2.4

L1/L2-5

3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6

GI/G2-5

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0



Land allocation under yield variations 215
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parameter

risk parameters for the different farm plans

The personal aspiration-levels for the farm net returns are:
— - 110000.00 145000.00

The farm net returns will in a maximum of two
out of ten years fall below this value
The farm net returns will in a maximum of two
out of ten vears exceed this value

The tick marks on the x-axis represent the magnitude of the risk-aversion parame-
ter. The tick marks on the y-axis represent the farm net returns

Figure 4. Comparison of the different crop-rotation plans with respect to their lower and upper
quintil of the farm net returns and to the user s minimum requirement and aspiration
levels

While deciding on one particular crop-rotation plan it is necessary to con-
sider all three diagrams together to get all the information available from
the ERM. To look only at the upper and lower quintil of the farm net
returns for instance could easily be misleading for the choice of a risk-
efficient crop-rotation plan.

In case a heuristic approach is opted for, the user reduces the risk associ-
ated with an initial crop-rotation plan heuristically by altering the initial
crop-rotation plan. While Figures 2 and 3 remain the same, the risk-aversion
parameter in Figure 4 would be replaced by the successive numbers of the
different crop-rotation plans that the user created. Thus, the graphics allow
the user to assess the effects of the alterations of the crop-rotation plan on
the distribution of the farm net returns and to decide which crop-rotation
plan is most suitable for him.

4. Summary and conclusions

This paper has examined the current approaches for solving the problem of
allocating land on a single farm to a mix of crops under uncertainty, where
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the weather-induced yield variations were interpreted as the major source
of uncertainty for the farmer in Switzerland. The proposed model for solving
this problem does not, as opposed to previous models, employ a utility
function and one particular decision rule (optionally), nor does it rely on
recorded crop yield data related to the past as an input from the user.
Instead, the model provides each individual user with several options. This
opens up the possibility of adopting the model to the user's needs and thus
strengthens its empirical utilisation. The detailed specification of the crop
yield simulation and risk-analysis model (ERM) have made it possible to
build a PC-based programme that can easily be operated by farmers or
extension personnel.

The ERM and a MOTAD-model were used in 'farm planning' of an arable
farm to illustrate the empirical use of the ERM. With an increase of the
risk-aversion parameter of the MOTAD-model, the original crop-rotation
plan changed substantially. The ERM showed that the changes in the crop-
rotation plan led to a decrease in the expected value and the associated risk
in terms of the standard deviation of the farm net returns. It is possible for
the farmer to reduce the standard deviation of the farm net returns by 30%;
on the other hand, he has to put up with a 5% decrease in the expected value.

Since the ERM does not require recorded crop yield data it is readily
applicable. It has been designed to help extension officers in their efforts to
produce qualified decision support for farmers. This paper gives an example
of the application focussing on one particular problem. In practice the ERM
may also be useful to simulate the distribution of the farm net returns for a
given crop-rotation plan in order to determine cash flow planning. Another
possible area of application is in production analysis. Given a deterministic
production function the utilisation of the ERM may improve the closeness
of the analysis to reality by supplying the simulated weather-induced yield
variations. For the same reason, the ERM may be useful in national sector
modelling, provided the sector model is based on farm sample models
(Hanf, 1989).

The crop yield simulation model was statistically validated and found to
be robust in respect to changes in the farmers' specification of the yields for
the basis crops. The ERM was applied to a particular problem to demon-
strate its use under a practical setting. It is presently not possible to assess
the ERM as regards its acceptance and usefulness by farmers and extension
personnel since it has just been released. An evaluation of the ERM at a
later point in time, considering these aspects, should also include an examina-
tion of the underlying hypothesis of the invariance with respect to space
between the weather-induced yield variations. This hypothesis resulted from
a statistical analysis of the observed weather-induced yield variations. Thus
it is not possible to validate this hypothesis statistically with the present and
already utilised data. A statistical validation of this hypothesis as such has
to be deferred to a later point in time when enough new data are available.
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Appendix

(I)
Holm's multiple test of pairwise linear independency of p samples with the length (n) is based
on the simple correlation coefficient. For all pairs of the samples the simple correlation
coefficient (rik), 1 < i < fc < p, is calculated and the p(p — l)/2 test statistic

(6)

is sorted in an ascending order.

Ri,k, ^ Ri2k2 ^ Ki3k3 ^ • " S:Rip(P-1)/2*p(p-l)/2 W

Then successively for m = 1 ••• p{p — l)/2 the following inequality is verified:

Rimkm < t n -2 ; l - a / (p (p - l )+2-2m) (8)

As soon as this inequality holds for one m the first time the true correlation coefficients
Pi,*, •" Pim-i*»,-i a r e significantly different from zero at the significance level a, all remaining
correlation coefficients are not significantly different from zero.

(II)
The random number V within the interval [0, 1] is used for the simulation of potatoes. In
order to simulate grain maize with a specific correlation coefficient with respect to potatoes,
the following transformations of V and V were done:

1. It is assumed that there are two independent uniformly distributed random numbers U'
and V within the interval [0, 1],

2. U = U' and V=cU' + (1 - c)V for a fixed value of c. Bivariate distributions with corre-
sponding correlation coefficients can be produced by specifying c.

3. X' = U

V = V2 /26(1 - b) (O^K^fc) (9)

= 2V~b/2(l-b) (b<V^l-b) (10)

= l - ( l -K) 2 /2fe( l - fc) ( l - fo<K<M) (11)

where b = min(c, 1 — c)

4. X = Fr'(A")and y = Ff ' (y ' )

F f ' ( ) represents the inverse distribution function of both crops, where X and Y stand for
the respective weather-induced yield variations of potatoes and grain maize.

(Ill)
Ci and C2 are sample covariance matrices of two p-variate normal samples of size n; in the
usual unbiased form. Then the matrix F = C, C J ' is said to have the multivariate F-distribution.
/:, <?.2< ••• <).p denote the characteristic roots of F; these are positive and distinct with
probability 1. Roy's test for Ho: Ct = C2 is based on the fact that Ct = C2 exactly if the largest
and the smallest characteristic roots of C, CJ ' are both unity, and the Ho hypothesis is rejected
if /., is smaller than some critical value c,, or /.„ is larger than some critical value cp (Pillai
and Flury, 1985). The former reference supplies statistical tables for this test.



218 R.U. Goetz

Notes

1. Ertragssimulations- und Risikoanalysemodell (crop yield simulation and risk analysis
model); this programme runs on personal computers (PC) based on DOS and can be
obtained from the author for SFrs. 49,-.

2. It would certainly be possible to use the first four principal components for the simulation
of the weather-induced yield variations at farm level. However, these four linear-indepen-
dent components cannot be utilized since the principal component analysis is based on
national data. To produce farm-level data for the simulation process the farmer's subjective
specification of the weather-induced yield distribution for all crops loading on the first four
components is needed. Yet, it is suggested that this approach would be very tedious under
practical conditions, and above all only very few farmers will be able to specify completely
the weather-induced yield distribution for all crops loading on the first four components.
An incisive reduction of the numbers of crops where the farmer has to specify the weather-
induced yield distribution seems to be inevitable. These considerations prop up the concept
of the basis crops as a theoretically appropriate and very practical approach for producing
farm-level data.

3. Since the study considered only the triangular distribution it is not in a position to report
on the performance of other distributions.

4. A more profound sensitivity analysis of the farmer's specification of the parameter of the
triangular distributions would be based on the assumption of a specific distribution of the
error term (misspecification). Let the error term be additive and normally distributed with
an expected value of zero and a standard deviation <rr; [iV(0, <7,)]. Thus, equation 4 can be
written as:

) - / - JV(O, <7, ))(m + N(0, <r2) - / - N(0, CT, )),

m + N(0,ai)-l-N{0,ai)

h + N(0, <r3) - y i - X'(h + N(0, CT3) - / - JV(O, IT, )){h + N(0, <r3) - m - N(0,

., „ , m + Ar(0<r)-/-Af(0

(12)

This equation allows one to simulate the basis crops as a function of the three parameters
(/, m, h), the uniformly distributed random number X' and the parameter a,. In order to evaluate
the effects of a misspecification, the parameter <J, must be analysed. Therefore, a norm in the Sf1

needs to be defined. A transformed euclidean distance is proposed here.

\a\\, = s/l'
2a\ + m-1a\ + h'2a\ (13)

Please note that if /, m, h were set to 1 the normal euclidean distance would result.
This procedure makes it possible to determine all CT, attributed to a particular level of misspeci-

fication [la II,. For instance let Hall, = 0.1; then all points on the surface of a sphere will satisfy
equation (13). The level of misspecification, e.g. jit7||, = 0.1, can be interpreted in terms of the
coefficient of variation. A sample size n, with permissible triples of (u,, a2, <r3), can be used for
the simulation of the basis crops [equation (12)]. These values serve as an input for the simulta-
neous equation system. Subsequently the distribution of the farm net returns can be calculated.
The obtained distribution should be compared statistically with the distribution of the farm net
returns with no error terms to evaluate the effects of a misspecification.

Although this kind of sensitivity analysis permits one to assess the simulation model quite
well, it is suggested here that it would not benefit directly the user of the ERM. This is in part so
because the farmer specifies the parameter of the triangular distribution to the best of his
knowledge and therefore is not able to judge whether he misspecified and to what extent.



Land allocation under yield variations 219

Without any information about his possible misspecification he cannot make use of a sensitivity
analysis that quantifies the effects of his misspecification on the distribution of the farm net
returns. Moreover, the determination of the size of the misspecification is too complex under a
practical setting. Considering these facts and given the scope of this particular study, the author
did not attempt to quantify the effects of a misspecification of the parameters on the distribution
of the farm net returns. It was rather statistically tested whether the simulated distributions of
all crops considered in this study under the assumption of correctly and incorrectly specified
input data are equivalent to the observed distributions. In other words the 'quality' of the
simulation model in cases of misspecified parameters was evaluated and not its quantitative
effects.

5. The input data for the crop yield simulation model was varied 50 times, each with grain
maize and with silage maize as a basis crop. Thus, 100 correlation matrices stem from these
calculations. Furthermore, the model was tested with a sample size of 300 as well, which
resulted in another 100 correlation matrices.

6. Since the results of the Gauss Sample Tests showed no 'significant' differences between the
crop yield simulation models with the different sample sizes, the subsequent Roy, Mann-
Whitney and Chi-Square Homogeneity Tests were only conducted with the simulated
yields of one sample size. To further limit the data being processed, only 33 variations of
the input data for both of the crop yield simulation models (grain and silage maize) were
considered for the last two tests.

[(17 (crops)*33 (variations)*2 (type of model) = 1122 tests].

7. To give the reader a realistic introduction to the ERM the actual output of the programme
has been chosen for Figures 2, 3 and 4.

8. The term risk refers to the shape of the distribution of the farm net returns.
9. MOTAD stands for Minimum of Total Absolute Deviation.

10. The reader has probably noticed that the ranges of the bars and the overall range on the
x-axis are different in Figures 2 and 3. When the ERM was programmed it was decided to
scale the graphics flexibly, i.e. according to the data being processed. Otherwise with fixed
ranges of the bars and fixed boundaries on the x-axis, it may well happen after a change of
the crop-rotation plan, that data will not be presented because they go beyond the bound-
aries, or the histrogram will not be very meaningful since most of the data may be concen-
trated in one or two bars. It is recommended that a new version of the ERM should be
interactive, so that the user can scale the graphics to his needs. At present the user of the
ERM could also employ an ordinary statistical package to produce these graphics accord-
ing to his needs by making use of the files that the ERM puts onto the disk of his
personal computer.

11. As one of the reviewers pointed out, a high-low graphic would probably be easier to grasp
for the user of the ERM.
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