
[17:28 8/9/2011 Bioinformatics-btr452.tex] Page: 2721 2721–2729

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 19 2011, pages 2721–2729
doi:10.1093/bioinformatics/btr452

Data and text mining Advance Access publication August 9, 2011

OrganismTagger: detection, normalization and grounding of
organism entities in biomedical documents
Nona Naderi1, Thomas Kappler2, Christopher J. O. Baker3 and René Witte1,∗
1Department of Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada,
2Swiss Institute of Bioinformatics, Geneva, Switzerland and 3Department of Computer Science and Applied
Statistics, University of New Brunswick, Saint John, Canada
Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Semantic tagging of organism mentions in full-text
articles is an important part of literature mining and semantic
enrichment solutions. Tagged organism mentions also play a pivotal
role in disambiguating other entities in a text, such as proteins. A
high-precision organism tagging system must be able to detect the
numerous forms of organism mentions, including common names as
well as the traditional taxonomic groups: genus, species and strains.
In addition, such a system must resolve abbreviations and acronyms,
assign the scientific name and if possible link the detected mention
to the NCBI Taxonomy database for further semantic queries and
literature navigation.
Results: We present the OrganismTagger, a hybrid rule-
based/machine learning system to extract organism mentions
from the literature. It includes tools for automatically generating
lexical and ontological resources from a copy of the NCBI Taxonomy
database, thereby facilitating system updates by end users. Its novel
ontology-based resources can also be reused in other semantic
mining and linked data tasks. Each detected organism mention is
normalized to a canonical name through the resolution of acronyms
and abbreviations and subsequently grounded with an NCBI
Taxonomy database ID. In particular, our system combines a novel
machine-learning approach with rule-based and lexical methods for
detecting strain mentions in documents. On our manually annotated
OT corpus, the OrganismTagger achieves a precision of 95%, a
recall of 94% and a grounding accuracy of 97.5%. On the manually
annotated corpus of Linnaeus-100, the results show a precision of
99%, recall of 97% and grounding accuracy of 97.4%.
Availability: The OrganismTagger, including supporting tools,
resources, training data and manual annotations, as well as
end user and developer documentation, is freely available
under an open-source license at http://www.semanticsoftware.info/
organism-tagger.
Contact: witte@semanticsoftware.info
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1 INTRODUCTION
Text mining solutions have become an integral part of biomedical
research. An important class of entities to detect through natural
language processing (NLP) techniques are organisms. Their
detection facilitates taxonomy-aware text mining systems and
provides users with the ability to find relevant subsets of papers
based on species-specific queries. When textual mentions are further
annotated with an external database identifier, they can provide
additional benefits for disambiguation in the recognition of other
named entities such as mutations, proteins or genes (Hakenberg
et al., 2008; Hanisch et al., 2005; Wang and Matthews, 2008; Wang,
2007; Witte et al., 2007).

Primarily, organism mentions are based on established
hierarchical nomenclature conventions defined in the 18th century
(Linnaeus, 1767). However, the recognition of taxonomic groups in
texts presents a number of ongoing challenges. Specifically, there
is considerable ambiguity in the way taxonomic information is
formulated in scientific documents. Abbreviations of species names
are widespread and the use of common English names instead
of Latin names further obscures the taxonomic identity of the
organisms described in a text. The use of acronyms, which can be
both species specific and species independent, also poses challenges
for recognition tasks. Lastly, incorrect spellings have created yet
more ambiguity.

Finding organism mentions is the task of named entity (NE)
detection. Simply tagging an entity as an organism is, however,
not sufficient for more advanced text mining tasks. To account
for variability within the same document, e.g. the use of both
abbreviated and full forms, each mention of an organism must be
additionally tagged with a canonical name through normalization.
These unique names can then be used for downstream analysis tasks
like co-reference resolution. To facilitate the disambiguation of other
entities in a text, additional analysis, so-called grounding, is required
in order to create a link between a textual reference and its entry in
an external database. Combined with semantic technologies, such as
ontologies and reasoners, further knowledge discovery approaches
are made possible (Baker and Cheung, 2007).

Given the labile nature of scientific knowledge in the era of
high-throughput biology, online resources are frequently updated
and custom applications dependent on such resources must also be
readily updated to avoid latency of processed content. Consequently,
the ability to easily update the organism tagging system with
respect to external taxonomic resources becomes an additional
requirement. Further technical requirements include configurability
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for different classes of organisms, the free availability of the
system for its incorporation into custom analysis pipelines,
multicore/multiprocessor scalability, embedded or Web service
execution and integration into common desktop clients to facilitate
literature mining.

To address these challenges, a number of species name recognition
systems have been developed. In line with the goals of the
OrganismTagger, a recent work resolves the ambiguity of genes
and gene products with respect to model organisms (Wang
and Grover, 2008; Wang et al., 2010); In addition, a corpus
annotated with protein/gene mentions associated with species
IDs is provided. In this system, detection of species words is
simply done by list matching. This list includes the organism
names from two dictionaries—NCBI Taxonomy and the UniProt
Controlled Vocabulary of taxa. Gene mentions are then tagged
with species IDs with different methods, like heuristic rules,
supervised classification with a maximum entropy model and
parsers. TaxonGrab (Koning et al., 2006) uses a lexicon of English
words (combination of WordNet and SPECIALIST excluding the
terms from NCBI Taxonomy, the Integrated Taxonomic Information
System and the German Collection of Microorganisms and Cell
Cultures) to compare against a text. Detected sets of two or three
consecutive words that do not exist in the lexicon are further
validated with regular expressions. The performance of their system
is tested on Volume 1 of ‘The Birds of the Belgian Congo’
by James Paul Chapin with a precision of 96% and recall of
94%. FindIT (Leary et al., 2007), a Web service, tries to index
the taxonomic names using pattern-matching expressions and a
lexicon of English words, providing a confidence score for resultant
names. Rule-based, word frequency and regular expression-based
approaches manage to capture genus–species combinations with
high levels of precision and recall. In some implementations,
this is achieved without further grounding to database identifiers
(Koning et al., 2006; Sautter et al., 2006). In some cases, grounding
to database identifiers or nodes in a taxonomic tree is made;
examples are TaxonFinder (http://code.google.com/p/taxon-finder)
and uBioRSS (Leary et al., 2007). For such systems, common
names still pose problems, whereas gazetteer-based approaches are
able to handle common name issues. A number of gazetteer-based
Web services are available for entity recognition and normalization,
such as Whatizit (Rebholz-Schuhmann et al., 2008). Most recently,
the Linnaeus system (Gerner et al., 2010) has illustrated good
performance tagging species names in biomedical texts using
a gazetteer (species dictionary) combined with post-processing
techniques for disambiguation, acronym resolution and filtering.
However, all these existing approaches have difficulties recognizing
and disambiguating strain level information.

Our OrganismTagger addresses the above challenges with a
number of novel contributions: (i) provision of semantic data
models for organisms that can be re-used in other applications;
(ii) tools for automatically generating organism-specific resources
derived from the NCBI Taxonomy database; (iii) a text mining
pipeline for organism detection, normalization and grounding; (iv)
a machine learning-based classifier for strain detection; (v) flexible
system architecture for running the system embedded, stand-alone,
published as a Web service or integrated into a number of desktop
clients.

We first present an overview of the OrganismTagger in Section 2.
Section 3 describes existing taxonomy resources and Section 4

Fig. 1. An overview of the main parts of the OrganismTagger system:
document processing is performed by an NLP pipeline running in GATE
using resources automatically created from the NCBI Taxonomy database.

their integration into our system. The text mining pipeline is then
described in Section 5, followed by its evaluation in Section 6 and
conclusions in Section 7.

2 INFRASTRUCTURE FOR ORGANISM TAGGING,
NORMALIZATION AND GROUNDING

The life cycle of our OrganismTagger has two distinct parts: (i) the
generation and initialization of NLP resources (like gazetteer lists
and ontologies) from the NCBI database (described in Section 4);
and (ii) the run-time processing of documents for semantic
tagging, including normalization and grounding of detected entities
(described in Section 5).

An overview of the OrganismTagger is shown in Figure 1. Our
tagging and extraction methodology relies initially on external
resources, namely pre-existing taxonomy databases, which are
automatically translated for reuse in our platform, thereby providing
users with the ability to update their installation when the database
changes. Additionally, we created a custom-built organism ontology,
which formally describes the linguistic structure of organism entities
at different levels of the taxonomic hierarchy.

The run-time processing pipeline, implemented based on the
General Architecture for Text Engineering (GATE) (Cunningham
et al., 2011), consists of modules for: strain-specific text
tokenization, a gazetteer for matching names or name fragments
to the NCBI reference taxonomy, machine learning-based
strain classification, grammar-based organism entity detection,
normalization of abbreviations and other forms to their scientific
names and a grounding step for assigning detected organisms an
NCBI Taxonomy database identifier.

3 REUSE OF PRIMARY TAXONOMY RESOURCES
We use the Taxonomy database (Federhen, 2003) from NCBI (NCBI
Taxonomy Homepage, http://www.ncbi.nlm.nih.gov/Taxonomy/) to
initialize our gazetteering lists and ontologies. The Taxonomy
database is ‘a curated set of names and classifications for all of the
organisms that are represented in GenBank’ [see (Federhen, 2003)
for a detailed description]. For the experiments described in this
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Table 1. Excerpt from the NCBI Taxonomy entry for Escherichia coli
(id 562, rank species). Name entries for one organism (name_txt) include
multiple synonyms, as well as common misspellings (name_class).

name_txt name_class

‘Bacterium coli commune’ Escherich 1885 synonym
‘Bacterium coli’ (Migula 1895) Lehmann and

Neumann 1896
synonym

Bacillus coli synonym
Escherchia coli misspelling
Escherichia coli scientific name
Escherichia coli (Migula 1895) Castellani and

Chalmers 1919
synonym

Escherichia coli retron Ec107 includes
bacterium 10a includes
bacterium E3 synonym

article, we used the Taxonomy database from 2011-06-21, which
contains 783 145 classified taxa, with 1 105 007 different names in
total.

The database follows the systematic classification of organisms
introduced by Carl Linnaeus (Linnaeus, 1767), where the names of
organisms are derived from taxonomic units in the classification tree.
In the NCBI database, every species and taxonomic unit has exactly
one entry with a name classified as scientific name, as well as other
possible variants. The scientific name is the ‘correct’canonical name,
whereas others can be synonyms, common misspellings or retired
names if the organism has been reclassified. Table 1 shows part of an
entry, constrained to the most important columns, for the organism
Escherichia coli (E. coli). In this example, there are five synonyms
and one common misspelling shown in addition to the scientific
name. Taxonomic units, e.g. genus and species, used in biomedical
naming conventions for organisms occur in biomedical texts, along
with a more precise strain level identification. All entries containing
a rank attribute as ‘species’, ‘species group’ and ‘subspecies’ are
derived from the rank field of the taxonomy database.

In the NCBI Taxonomy database, unranked nodes are allowed
at any point in the classification and not all the taxa are assigned
the Linnaean ranks (The NCBI Handbook, http://www.ncbi.nlm.
nih.gov/bookshelf/br.fcgi?book=handbook&part=ch4). To provide
better accuracy, we decided to exclude mentions of type ‘no rank’
(comprising 10% of the Taxonomy database entries).

4 TAXONOMY RESOURCE MANAGEMENT
We now describe the lexical and ontological resources used by our system in
detail. As motivated above, we allow our end users to update or customize
their installation; the generated resources are then accessed for run-time
processing (described in the following section).

4.1 Organism ontology
In order to provide an explicit description of the linguistic structure
of organism entities and their relations, we developed, specifically for
the OrganismTagger, a formal ontology in OWL-DL format (W3C
Recommendation, OWL Web Ontology Language Overview, http://www.
w3.org/TR/owl-features/). It is used both as a knowledge base during
processing and for validating detected entities (Fig. 2). Where a document

Fig. 2. OWL ontology for organisms: taxonomic units are encoded as OWL
classes that can be automatically populated from the NCBI Taxonomy
database and then used for automatic semantic annotation of documents.

token is matched by several ontology tokens from classes in a hierarchical
relationship, the most specific class is assigned. Thus, the recorded
information is as specific as possible while the class entailment ensures that
the token is also associated with the more general classes that it could be
classified to. To gain additional expressiveness for plausibility checking,
cardinality restrictions have been placed on the relations. For example, an
organism can have only one genus or one species.

4.2 NCBI-database mapping
To provide maintainability and updateability for end users, all gazetteer lists
and ontologies required by the system are generated automatically from
a download of the NCBI database (ftp://ftp.ncbi.nih.gov/pub/taxonomy/
taxdump.tar.gz). A Python program was developed for this purpose, which
reads the downloaded files and inserts their contents into a MySQL database
(http://www.mysql.com), preserving the structure of the NCBI taxonomy
by directly mapping each file to a database table and its columns to SQL
columns in that table.

4.3 Gazetteer list generation
For organism tagging, we use the developed OWL ontology, which encodes
the relationships between organism parts (taxa) as shown in Figure 2. In
order to support named entity detection of organisms, the ontology must
contain the taxonomical names so that they can be matched against words in
a text using an onto-gazetteer NLP component. This information is extracted
from the MySQL database with a number of Python scripts, including the
names themselves and information like the hierarchical structure of taxa and
organisms. Organism abbreviations, like P. fluorecens shown in Figure 3,
do not appear in the NCBI Taxonomy database, so a list of abbreviated
organisms is automatically generated from the database by adding entries
with the first letter of the genus part followed by a period. Together with the
taxonomical information, we store additional metadata, like the originating
database and the ‘scientific name’, for each ontology instance. This becomes
important when delivering provenance information to scientists working with
the populated ontology.

Some organism names do not follow the binomial nomenclature rules,
which is the genus followed by species. To handle these cases, a simple
RDF schema (http://www.w3.org/RDF/) was developed that is limited to
just one subclass hierarchy and associates the full name of the organism
with the class Organism. The format of a triple is C1 rdfs:subClassOf C2,
where rdfs:subClassOf is an instance of rdf:Property and states
that C1, the entity, is an instance of rdfs:Class and a subclass of C2,
an instance of rdfs:Class that is ‘Organism’. The rdfs:domain and
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Fig. 3. An organism annotation generated by our system, showing
normalization and grounding of the textual entity P. fluorescens subsp.
cellulosa to Pseudomonas fluorescens subsp. cellulosa with the NCBI
database ID ‘155077’ and the taxa level NCBI database ID ‘294’.

rdfs:range of rdfs:subClassOf are rdfs:Class. For example,
the organism Ash River virus (NCBI ID 466216) is encoded in RDF as:

<rdf:Description rdf :about="&porg;Ash%20River%20virus">
<rdfs: label>Ash River virus</rdfs: label>
<rdfs:subClassOf rdf:resource="&porg;Organism"/>
<rdf:type rdf :resource="http://www.w3.org/2002/07/owl#Class"/>

</rdf :Description>

Finally, we provide for basic acronym detection by generating a gazetteer
list of all acronyms recorded in the NCBI database. To reduce false positives,
we further filter this list by removing known gene or protein names as
recorded in the UniProtKB (http://ca.expasy.org/sprot/) (∼2.6% of acronyms
are removed in this step). More detail on acronym processing is provided in
Section 5.4.

4.4 Training of the strain classifier
Not all strains that appear in the literature exist in the NCBI Taxonomy
database and can be found through gazetteering. To be able to detect the
remaining strains, we employ a machine learning approach using a binary
classifier. Here, strain candidates are detected through a custom tokenization
step and the classifier decides whether a candidate strain is actually a strain.
To train our classifier, we extract several features for each strain candidate:
(i) the ontology class features of the two taxonomic units preceding the strain
candidate (genus or species); (ii) the string of the strain candidate itself; and
(iii) the string of the immediately following strain candidate (if any).

Our classifier is based on a Support Vector Machine (SVM) model, for it is
widely used in text classification tasks with unbalanced training and proved
to perform better than other classifiers we also tested, including Naive Bayes
and K Nearest Neighbor (KNN). Hence, in this article, we only report results
for the SVM classifier. The SVM used is the implementation included with
GATE (Li et al., 2005).

For training the classifier, we manually annotated document collections
with the aforementioned features and assigned each strain candidate the
correct binary feature (true/false). The training set consists of 2643 instances,

of which 1046 instances are strains and 1597 are negative instances. The
training data are also available in our distribution.

5 RUN-TIME PROCESSING
When all the resources described above have been generated from the NCBI
database,1 the OrganismTagger is ready for annotating documents. This is
done through a pipeline of individual processing steps, where each step adds
further information to a document in the form of annotations, which are then
used by the following component (Fig. 1).

5.1 Implementation
The implementation is based on the General Architecture for Text
Engineering (GATE) (Bontcheva et al., 2004; Cunningham et al., 2011).
GATE is a component-based architecture implemented in Java, where
individual processing steps are performed by processing resources (PRs)
that are then combined into a complete analysis pipeline.

By basing our implementation on GATE, our components can be easily
embedded into more complex analysis pipelines and the results can be
exported in various formats (XML, OWL, etc.) or accessed through a Web
service. Detailed instructions on how to setup our components within an
analysis pipeline are provided with the online documentation.

5.2 Preprocessing
First, documents are undergoing generic pre-processing steps including
tokenization and sentence splitting, using the standard NLP components
included in the GATE distribution.

5.3 Tokenization for strains
Since strains usually appear as character combinations, for instance, mixed
upper and lower case or including digits, we developed a strain tokenizer to
annotate all tokens that do not look like a normal word as a possible strain.
For example, ‘C-125’, a strain of Bacillus halodurans can be annotated by
the strain tokenizer as a possible strain.

However, these possible strain words are not always strains and could
be other abbreviations or address parts. For example, in Streptomyces
thermoviolaceus Xyn1, ‘Xyn1’ is a protein abbreviation and not a strain.
Thus, this tokenizer alone is not sufficient for determining strains. Further
analysis is performed in a later step, where the trained Strain Classifier
(Section 4.4) analyses the possible strains and makes the final decision
whether a given possible strain is actually a strain.

5.4 Ontology-aware gazetteering
Each token in the text is now matched against the generated gazetteer lists
(Section 4.3). Using an ontology-aware gazetteer, we incorporate mappings
between the lists and ontology classes and assign the proper class in case
of a term match. For example, the gazetteer will annotate the text segment
Escherichia coli with two Lookup annotations, having their class feature
set to ‘Genus’ for Escherichia and ‘Species’ for coli.

Text segments matching the acronyms are associated with Lookup
annotations whose ‘class’ and ‘majorType’ features are set to ‘Organism’
and ‘acronym’, respectively.

RDF gazetteering, which is used for the organisms not following the
binomial nomenclature rules, is performed in a second step. This gazetteer
creates annotations with the type Lookup and two features; ‘inst’, which
contains the URI of the ontology instance, and ‘class’, which contains the
URI of the ontology class that instance belongs to.

Note that these Lookup annotations do not yet represent a semantic
organism annotation; they still need to be validated with specific grammar
rules, described below.

1This only needs to be done when the resources are updated.
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5.5 Strain classification
Only a subset of all strains can be detected through gazetteering and rules.
For detecting the remaining strains, we employ the trained machine learning
model described in Section 4.4.

The classifier analyses the generated possible strains (Section 5.3) using
the features described in Section 4.4. It then assigns a binary feature to every
strain candidate, set to True if a strain was detected, otherwise the feature is
set to False.

For example, the possible strain ‘endo-1,4-b’ in Trichoderma reesei endo-
1,4-b is detected as a false instance by our strain classifier and ‘JM101’
in E.coli JM101 is found as a true instance. All possible strains with the
feature value of ‘True’ detected by the classifier are then further processed
and annotated as a Strain entity. Additional grammar rules in later steps can
then consider these strains for inclusion in an organism entity.

5.6 Organism entity detection
In this step, we can now combine and verify the individual Token,
Lookup and Strain annotations in order to create semantic Organism
annotations. This is achieved through grammar rules written in the JAPE
language (Cunningham et al., 2000), which are compiled into finite-
state transducers. For example, the organism notation [genus species
strain?] can be encoded in JAPE as:

Rule: OrganismRule1
(

({ Genus}):gen
({ Species}):spec
(({ Strain }): str )?

): org1 −−> (... right hand side of the rule ...)

Five of these hand-written grammar rules are used within our system to
detect organism entities. The result of this stage is a set of named organism
entities, which are, however, not yet normalized or grounded.

5.7 Entity normalization and grounding
Detected entities now undergo a normalization and grounding step. First,
we ensure that only valid organism names are extracted from texts. For
example, we can reject a genus/species combination that might look like a
valid name to a simple organism tagger, yet is not supported by the NCBI
database. Second, by resolving abbreviations and acronyms, we can assign
each detected organism a normalized name, which can subsequently be
grounded to the taxonomy database by adding its database identifier.

5.7.1 Normalization. This step determines a canonical name for each
organism entity by (i) resolving abbreviations and (ii) adding the scientific
name as defined in the NCBI taxonomy database. This scientific name can
be obtained through a simple lookup based on the lists generated above. In
case of abbreviations, however, finding the canonical name usually involves
an additional disambiguation step.

For example, if we encounter E.coli in a text, it is first recognized as
an organism from the pattern ‘species preceded by abbreviation’. Our NLP
component can now query the internal lists for a genus instance with a
name matching E* and a species named coli, and filter the results for
valid genus–species combinations denoting an existing organism. Ideally,
this would yield the single combination of genus Escherichia and species
coli, forming the correct organism name. However, the above query returns
in fact four entries. Two can be discarded because their names are classified
by NCBI as misspellings of Escherichia coli, as shown by the identical
tax_id (cf. Table 1). Yet the two remaining combinations, with the names
Escherichia coli and Entamoeba coli, are both classified as ‘scientific name’.
A disambiguation step now has to determine which one is the correct
normalized form for Escherichia coli. Here, we apply a search heuristic
based on the closest non-abbreviated form appearing in the document that
matches the genus (Witte et al., 2007). This heuristic relies on the convention
that each abbreviated form is usually introduced by the full form at least once
within a text.

In case the non-abbreviated form does not appear in the document, a
second normalization heuristic retrieves all genus mentions that match the
abbreviated form. These are considered as candidates and the heuristic
attempts to find a matching organism. For example, in pmc1891629, none
of the abbreviated forms of C.vishnui, C.annulusa or C.pipiens appear with
their full form, but “Culex” does appear separately and we can successfully
resolve the abbreviations using this genus.

If the abbreviated organism still cannot be resolved, all possible matching
entries are returned and added as annotations. Although less precise, this list
is still valuable for the disambiguation of other entities in a text, like proteins
(Witte et al., 2007).

Detected acronyms are also normalized to their scientific name as defined
in the NCBI taxonomy database, for example, FMDV is normalized to foot-
and-mouth disease virus.

5.7.2 Grounding. Once the normalized name has been determined, we
can uniquely ground it in the NCBI database by adding the corresponding
ID. Since the database record can now be unambiguously looked up, the
entity is grounded with respect to an external source. The end result of this
step is a semantic annotation of the named entities as they appear in a text,
which includes the detected information from normalization and grounding,
as shown in Figure 3.

Some organisms with strains or subspecies are associated with several
different NCBI IDs in the taxonomy database. For these organisms, both IDs
for the full name of the organism with strain (or subspecies) and also for the
organism without the strain (or subspecies) are provided by our tagger. For
example, as shown in Figure 3, Pseudomonas fluorescens subsp. cellulosa is
annotated with two NCBI Taxonomy IDs (294, 155077), and two scientific
names (Pseudomonas fluorescens, Cellvibrio japonicus), one for the taxa
level that is Pseudomonas fluorescens and the other with the subspecies
cellulosa. This provides a user of our tagger with the most comprehensive
information for further processing.

Some common names also cause ambiguity (e.g. mice, rats), which need
to be disambiguated and grounded. For example, Mice can refer to Mus with
NCBI Taxonomy ID ‘10088’ as ‘genus’, Mus sp. with NCBI Taxonomy ID
‘10095’ as ‘species’ and Mus musculus with NCBI Taxonomy ID ‘10090’ as
‘species’. We normalize mice based on the document context. When there
are mentions of mouse, transgenic mice or nude mice, it is grounded to
the NCBI Taxonomy ID ‘10090’. When it appears alone, we report both
NCBI Taxonomy IDs ‘10090’ and ‘10095’, discarding the NCBI Taxonomy
ID ‘10088’, as we do not report IDs for genus parts. Rats can be also
grounded to Rattus sp. with NCBI Taxonomy ID ‘10118’ as ‘species’, Rattus
with NCBI Taxonomy ID ‘10114’ as ‘genus’ and Rattus norvegicus with
NCBI Taxonomy ID ‘10116’ as ‘species’. If there are any mentions of
rat, laboratory rat or Sprague-Dawley rat, rats is grounded to the NCBI
Taxonomy ID 10116. Otherwise, two NCBI Taxonomy IDs, ‘10118, 10116’,
are reported and ‘10114’ is rejected.

6 EVALUATION
In this section, we provide a detailed performance evaluation of our
system. We first discuss the manually annotated corpora (gold standard) in
Section 6.1, followed by the metrics used for evaluation in Section 6.2, the
results in Section 6.3, a comparison with other systems in Section 6.4 and
an analysis of strain recognition in Section 6.5.

6.1 Corpora
Two manually annotated corpora, containing full-text articles, are used for
evaluation: (i) a corpus of 41 documents on protein engineering and fungi (in
the following named OT corpus) and (ii) a corpus of open access biomedical
documents from the PMC (here named Linnaeus-100).

6.1.1 Corpus preparation and manual annotation. Documents were
converted from their original format [e.g. (X)HTML, PDF] into XML format.
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Table 2. The different versions of the Linnaeus corpora used for evaluating
the OrganismTagger

Corpus L-100A L-100B L-100C L-100D

Tax-Names ✓ ✓ ✓ ✓

Non-Tax-Names ✓

CommonNames ✓ ✓

Acronyms ✓ ✓ ✓

AuthorDefinedAbbreviations ✓

IncorrectNameUsage ✓

AddedMissingStrains ✓ ✓ ✓

AddedMissingOrganisms ✓ ✓ ✓

Different entity types are included in different versions to provide for a detailed
performance analysis.

The reference sections often contain organism names, but are not processed
by all external systems. Considering them would lead to inconsistencies when
performing cross-system evaluations. Hence, we decided to target only the
abstract and main parts of each document and removed the reference sections.

For the OT corpus, manual annotation was performed by us, using an XML
annotation schema, in the GATE Developer GUI environment (Cunningham
et al., 2011). The annotations are saved, together with the original
content, in the XML file using stand-off markup similar to the Tipster
standard (Grishman, 1997). The markup schema allows for annotating
the organism names (document names), scientific names, individual taxa
(genus, species, strain) and the NCBI ID. Organisms with no existing NCBI
taxonomy ID are annotated, but no IDs are assigned to them, hence indicating
a valid organism entity that cannot be grounded to the taxonomy database.
While we currently cannot distribute the original documents with their added
annotations due to copyright restrictions, we provide our manual annotations
in a separate file in tab-delimited format, similar to other publicly available
gold standards.

The Linnaeus-100 corpus has been annotated by Gerner et al. (2010) and is
also freely available online. However, for the detailed evaluation performed
here, we needed to map their tab-delimited annotations to the full text in order
to compare the resulting annotations. For this, we obtained the documents
from the authors of the Linnaeus system and converted them into the same
stand-off markup as our corpus. In their original annotations, organisms that
do not appear in the taxonomy database received an NCBI ID of ‘0’. To keep
the data consistent for this evaluation, these NCBI IDs were removed and
no IDs are assigned to these organisms, since an ID in our system indicates
successful grounding to an existing NCBI entry.

6.1.2 Corpus variations. To be able to analyze the system performance
depending on the type of the organism mention (full form, common name,
abbreviation, etc.), we prepared different versions of both the OT and the
Linnaeus corpus. The Linnaeus corpus is already distributed with two sets of
tags: one set includes only the NCBI and non-NCBI taxonomy names tags
and the other set additionally includes non taxonomy names like ‘participant’,
‘children’ and ‘patient’ (L-100-A in Table 2).

An analysis of the original version of the Linnaeus evaluation data
revealed that 45% of strain mentions were missing. This suggests that the
performance of our system can be better reflected by our proposed revised
data, where we added the missing mentions. Moreover, we corrected some
erroneous or missing annotations in the Linnaeus-100 corpus: for example, in
the documents: pmcA147033 and pmcA2365090, the organisms transgenic
mice and Escherichia coli strain BL21 were not manually annotated. We
added these mentions as they would otherwise be flagged as false positives
in the evaluation. All these changes are documented in the same format as
the original Linnaeus-100 corpus and distributed with the OrganismTagger
system.

Table 3. Statistics on the corpora used in evaluating the OrganismTagger

Corpus No. of
documents

No. of
sentences

No. of
tokens

No. of
organisms

OT-A 41 9863 258 800 1879
OT-B 41 9863 258 800 1640
L-100-A 100 19 491 533 181 4259
L-100-B 100 19 491 533 181 2771
L-100-C 100 19 491 533 181 1277
L-100-D 100 19 491 533 181 1208

Number of documents, sentences, tokens and organisms in each corpus.

Table 4. Species tags in Linnaeus-100 & OT corpora

Category L-100-B (%) OT-A (%)

Species 92 96.8
Species group 2.0 0
No rank 2.6 2.6
Plural 2.7 0.3
Ambiguous abbreviations 0.7 0.3

L-100-A: the original version with all the tags including non-taxonomy
names like ‘children’, common names like ‘human’, ‘rat’ and ‘sheep’,
acronyms, author-defined abbreviations like M.tb for Mycobacterium
tuberculosis (56 mentions) and incorrect name usage. The missing strain
tags are not added. This corpus contains a total of 4259 annotations, of which
1557 mentions refer to non-taxonomy names, misnomers such as pileated for
pileated woodpecker and shandileer for Leonotis nepetifolia and incorrect
name usage, e.g. rodent and hamster. Some 66 mentions of organisms are
missing from the manual annotations.

L-100-B: all the NCBI and non-NCBI taxonomy names, common names and
acronyms. The missing strain annotations are added (39 mentions). Author-
defined abbreviations, incorrectly used names and non-taxonomy names are
all removed.

L-100-C: all the NCBI and non-NCBI taxonomy names and acronyms.
The missing strain annotations are added. Author-defined abbreviations,
incorrectly used names and non taxonomy names are all removed.

L-100-D: NCBI and non-NCBI taxonomy names, filtering out the
non taxonomy names (1408 mentions), common names, acronyms and
incorrectly used names (1661 mentions). Eventually, this modified corpus
consists of 1208 mentions of organisms.

OT-A/B: version OT-A of our corpus contains NCBI and non-NCBI
taxonomy names, common names and acronyms, whereas OT-B has the
common names removed.

Overall statistics on the corpora are shown in Table 3, and the distribution
of different organism types by corpus is shown in Table 4.

6.2 Evaluation metrics
We use the standard metrics precision, recall and F-measure, as well as
accuracy, to evaluate the performance of our system (Witte and Baker, 2007).
Here, the number of correctly identified items as a percentage of the total
number of correct items is defined as recall (R). Conversely, the number of
correctly identified items as a percentage of the number of items identified
is specified as precision (P). The F-measure (F) is used as a weighted
(geometric) average of precision and recall.
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Table 5. Comparative evaluation of the OrganismTagger and Linnaeus systems on the different corpora

OT-A OT-B L-100-A L-100-B L-100-C L-100-D

S (%) L (%) S (%) L (%) S (%) L (%) S (%) L (%) S (%) L (%) S (%) L (%)

OrganismTagger

Detected entities P 94 99 94 99 92 95 96 97 96 97 97 98

R 95 99 94 99 61 63 98 99 97 98 98 98
F 94 99 94 94 99 76 97 98 97 98 97 98

Normalized P 95 99 95 100 93 96 97 97 98 99 99 100
R 94 98 93 98 61 63 98 98 96 97 97 98
F 94 98 94 99 74 76 97 98 97 98 98 99

Grounded A 97.5 99.3 96.7 97.7 97.5 97.4

Linnaeus

Normalized P 71 83 66 78 97 98 96 98 94 98 96 100
R 81 94 78 93 93 94 90 92 83 87 83 86
F 76 88 72 85 95 96 93 95 89 92 89 92

Grounded 94 95.2 96.5 94.7 94.35 95.0

For the OrganismTagger, we show the performance of the named entity recognition (Detected Entities), assigning a canonical name (Normalization) and adding the ID for the NCBI
Taxonomy database (Grounding). Data are represented as percentage.

The performance results are computed according to different criteria:
Strict (S) and Lenient (L). In ‘Strict’, we measure all partially correct
responses as incorrect: e.g. cases where the strains or subspecies are not found
or only partially found are considered incorrect. In ‘Lenient’, all partially
correct responses are measured as correct.

The accuracy (A) for the correctly retrieved NCBI IDs is separately
calculated based on the number of correctly identified NCBI IDs over
the number of correctly normalized organisms. If an abbreviated form
of an organism mention could not be uniquely resolved in a document,
the OrganismTagger retrieves all the possible matching organisms. In this
evaluation, these cases are all reported as false positives, even if the result
does include the correct NCBI taxonomy ID.

6.3 Results
The performance of the OrganismTagger (v.1.1) is evaluated in three different
steps (Table 5): first, the mentions of the organisms are evaluated against the
gold standard without taking the NCBI IDs into consideration (‘Detected
Entities’ in Table 5). In this step, the focus is on the entity recognition
performance of the OrganismTagger.

The performance is further evaluated based on the normalized mentions of
the organisms, ‘Normalized’. If the organism is not successfully normalized,
it is removed from the list of retrieved organisms.

And finally, the computed NCBI IDs are compared against the manual
annotations, specified as ‘Grounded’.

Linnaeus (Gerner et al., 2010), a species name identification system, uses
deterministic finite-state automatons (DFA) to capture species mentions and
then assign them their NCBI taxonomy IDs. However, when the full form
appears but no NCBI IDs exist for the species, all the abbreviated forms of
this species are associated with other possible NCBI IDs. To compare our
results with the results of the Linnaeus system (v.1.5), we applied it in the
same way as the OrganismTagger on the manually annotated corpora. The
results for the Linnaeus system are also shown in Table 5.

6.4 Discussion
False negatives of the OrganismTagger in the Linnaeus-100 corpora are
mainly due to misspellings. Some acronyms resembling gene and protein

names are filtered for minimizing error propagation. These acronym
mentions are ignored by the OrganismTagger. Also, we do not cover the
occurrence of species ranked as ‘no rank’ in the Taxonomy database, e.g.
Salmonella typhimurium. The Linnaeus system uses additional synonyms to
capture terms like ‘patient’ and ‘children’. This is reflected by the recall
section of the L-100-A corpus. For better comparison of the Linnaeus
performance with that of our system, these additional synonyms of the
Linnaeus system are ignored in the L-100-B, L-100-C and L-100-D corpora.
False positive mentions in the Linnaeus-100 corpora arise from common
names like small white for Pieris rapae, NCBI ID: 64459 and white
underwing for Catocala relicta, NCBI ID: 423327. Some acronyms, namely
PAR and ATV, captured by the OrganismTagger refer to non-organism
mentions. We expect that in some cases, problematic acronyms can be
filtered out by more accurate protein and gene name lists. However,
the elimination of all false positives will negatively impact on recall.
False negatives of the Linnaeus system are due to its inability to handle
ligatures and the limited strain recognition, which is analyzed in more
detail below. Moreover, some organisms are renamed and the old names
usually appear following the new names in parentheses, like in Emericella
(Aspergillus) nidulans; these cases are also ignored by the Linnaeus
system.

While many abbreviated organisms can be resolved to their non-
abbreviated form after locating the full form in the document, a few
still remain ambiguous. Using our additional heuristic, some of these
ambiguous organisms can be resolved to their non-abbreviated format. In
particular, L-100-D contains 69 abbreviated organism mentions without the
corresponding full form and OT-B contains 27 mentions. After applying the
second normalization heuristic, the OrganismTagger successfully resolved
50 and 21 in L-100-D and OT-B, respectively.

We also performed comparisons with other systems, but do not report
them in detail here as their performance is generally below that of the
Linnaeus system. Using a combination of a lexicon with non-taxonomic
words and rules, TaxonGrab (Koning et al., 2006) finds the longest match
without grounding the entity. NaCTeM Species Word Detector and NaCTeM
Species Disambiguator (Wang and Grover, 2008; Wang et al., 2010)
mostly annotate the species level. For example, Pseudomonas fluorescens
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Table 6. OrganismTagger versus Linnaeus system in the strain recognition task

Corpus No. of strains Strains in NCBI OrganismTagger Linnaeus

Gazetteer Rule ML Total Total
No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

OT-A 307 72 (23.4) 33 (10.7) 58 (18.8) 158 (51.4) 249 (81.1) 62 (20.1)
L-100-D 85 42 (49.4) 37 (43.5) 19 (22.3) 24 (28.2) 80 (94.0) 32 (37.6)

Number of strains appearing in the evaluation corpora, strains recorded in the NCBI Taxonomy database, strain recognition by method (gazettering, rules, ML), and overall strain
recognition performance (Total columns).

subsp. cellulosa is grounded with the NCBI Taxonomy ID ‘294’ and Bacillus
sp. strain C-125 is grounded with the NCBI Taxonomy ID ‘1409’. The strain
level of the organism mentions is usually ignored by the aforementioned
taggers.

6.5 Strain recognition analysis

Strains are challenging to detect, because they do not follow any systematic
naming convention. Moreover, not all strains are recorded in the NCBI
taxonomy database, which impedes gazetteering-based approaches.

We further analyzed the organism mentions that include strains. Table 6
shows the number of strains appearing in the evaluation corpora: only about
24%–49% of these strains are recorded in the NCBI Taxonomy database. The
table also shows how many of these strains have been correctly recognized
(81.1%–94% for the OrganismTagger versus 20.1%–37.6% for the Linnaeus
system). For our system, we also analyzed which method contributed to the
strain recognition (gazetteering, rule-based or machine learning). If a strain
was recognized both through machine learning and another method, we only
counted it once for gazetteering or rule based, as we were interested in the
number of strains that cannot be captured with either of these two approaches.

Overall, mentions of strains are usually ignored by other existing systems
or limited to strains that exist in the NCBI Taxonomy database or can be
captured by rules. In contrast, the OrganismTagger was explicitly designed
to capture strains, and if possible, provide the NCBI database IDs both for
the taxa level and the three-part taxonomic designation. In these cases, the
Linnaeus system takes the approach of choosing only the longest match, for
example, Pseudomonas fluorescens subsp. cellulosa is grounded with the
NCBI Taxonomy ID ‘155077’.

7 CONCLUSION
In this article, we described the OrganismTagger system for
semantically annotating organism mentions in documents.

First, we emphasized the importance of system updateability
with respect to external resources. Our approach is to provide tools
that allow users to automatically transform the well-known NCBI
Taxonomy database into data structures suitable for text mining
tasks.

Second, we provide ontologies for the lexical description of
organism mentions using the standardized OWL and RDF formats,
which can also be reused in other semantic systems.

Third, we have implemented a comprehensive, open-source
text mining system for detecting organism mentions, including
normalization and grounding. In particular, it includes a novel strain
recognition part, which is capable of annotating strains that do not
appear in the taxonomy database.

Fourth, we evaluated the system on multiple corpora. In this
process, we reproduced the results reported for the Linnaeus
system and created additional manual annotations for the biomedical

literature. We provided detailed evaluations that break down
the challenges in detecting organism mentions and demonstrated
significant improvements in strain recognition and normalization.

Our evaluation shows a number of directions for future
improvements. Finding the remaining missing entities is challenging
due to their diverse nature: in some cases, misspellings, either
introduced by the authors or through format conversions,
prevent organism recognition. This could be partially addressed
by introducing automatic spelling corrections. Author-defined
abbreviations and acronyms are another source of false negatives;
this can be partially addressed by integrating a database like Allie
(http://allie.dbcls.jp/). Further improvements in this area require
the development of new co-reference resolution strategies, which
is also important for many other entity types, such as proteins or
mutations. The detection of common names introduces a number
of ambiguities, in particular for the normalization and grounding
tasks. We believe this will ultimately need to be addressed by the
end user, by tailoring the system’s configuration to their specific
subdomain and application scenario. Strain recognition is one of the
most challenging parts of organism detection, as strain designations
do not follow any naming conventions. While our approach already
demonstrates higher performance than existing systems, additional
improvements in recall, without sacrificing precision, will be a
continuing challenge.
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