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ABSTRACT

An element a of norm one in a JB*-triple A is said to be smooth if there exists a unique element x
in the unit ball A* of the dual A* of A at which a attains its norm, and is said to be Frechet-smooth if, in
addition, any sequence (xn) of elements in A* for which (xn(a)) converges to one necessarily converges in
norm to x. The sequence (a2n+1) of odd powers of a converges in the weak*-topology to a tripotent u(a)
in the JBW*-envelope A** of A. It is shown that a is smooth if and only if u(a) is a minimal tripotent in
A** and a is Frechet-smooth if and only if, in addition, u{a) lies in A.

1. Introduction

Over several years, the authors have studied the facial structure of the unit balls
in a Banach space and its dual [5, 6, 7, 8, 9, 10]. This note is concerned with two
smoothness properties of the unit ball in a complex Banach space. In a recent paper
[19], Taylor and Werner studied these properties for the unit ball of a C*-algebra and
were able to give several algebraic conditions which were equivalent to smoothness.
The purpose of this paper is to consider the same properties for the unit ball in a JB*-
triple. The main result shows that both smoothness conditions are equivalent to
algebraic conditions which, necessarily, are expressed in terms of the triple product.
This leads to further equivalent new conditions for the case of a C*-algebra.

2. Preliminaries

Let V be a complex vector space, and let C be a convex subset of V. A convex
subset E of C is said to be a face of C provided that, if tal + (\ —t)a2 is an element
of E, where ay and a2 lie in C and 0 < / < 1, then ax and a2 lie in E. A face E of C is
said to be proper if it differs from C. An element a in C for which {a} is a face is said
to be an extreme point of C. Let T be a locally convex Hausdorff topology on V, and
let C be r-closed. Let ^;(C) denote the set of r-closed faces of C. Both 0 and C are
elements of «^(C), and the intersection of an arbitrary family of elements of &\{C)
again lies in &\(C). Hence, with respect to ordering by set inclusion, &\{C) forms a
complete lattice. A subset E of C is said to be a z-exposed face of C if there exists a
r-continuous linear functional / o n Fand a real number t such that, for all elements
a in C\E, Ref{a) < t and, for all elements a in E, Re/(a) = /. Let $X(C) denote the set
of r-exposed faces of C. Clearly, SX{C) is contained in i^(C), and the intersection of
a finite number of elements of SX{C) again lies in $X(C). The intersection of an
arbitrary family of elements of $Z(C) is said to be a r-semi-exposedface of C. Let «^(C)
denote the set of i-semi-exposed faces of C Clearly, < .̂(C) is contained in £fr(C), and
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the intersection of an arbitrary family of elements of «^(C) again lies in «^(C). Hence,
with respect to ordering by set inclusion, 5^(C) forms a complete lattice and the
infimum of a family of elements of 5^(C) coincides with its infimum when taken in

When V is a complex Banach space with dual space V*, the abbreviations n and
w* will be used for the norm topology of V and the weak*-topology of V*. For each
subset E of the unit ball Vx in V and F of the unit ball V* in V*, let the subsets E'
and F, be defined by

E' = {xe V*: x(a) = 1 for all aeE}, F, = {ae Vx: x(a) = 1 for all xeF}.

Notice that E lies in &>n(Vx) if and only if {E'), = E, F lies in «9^(F*) if and only if
(F,)' = F, and the mappings E-+E' and F-> F, are anti-order isomorphisms between
Sfn{Vx) and ^(Vx) and are inverses of each other. The reader is referred to [8] for
details.

An element a in Vx is said to be smooth if {a}' coincides with {x} for some x in V*.
It follows that the extreme point x of V* is weak*-exposed. A smooth point a is said
to be Fre'chet-smooth if, for each sequence (xn) in V* such that the sequence (xn(a))
converges to one, it follows that (jcn) converges in norm to x. For the equivalence of
these definitions with the conventional ones, the reader is referred to [18] and [19].

LEMMA 2.1. Let V be a complex Banach space, let W be a closed subspace of V,
and let a be an element of norm one in W. If a is smooth in V, then a is smooth in W,
and if a is Fre'chet-smooth in V, then a is Fre'chet-smooth in W.

Proof. Suppose that the element a in W of norm one is smooth in V. Then there
exists a unique element JC of norm one in V* such that x{a) = 1. The restriction x0 of
x to W has the property that xo(a) = 1, and is therefore of norm one. Let y be an
element of W* of norm one such that y{a) = 1. Then, by the Hahn-Banach theorem,
y can be extended to an element z of V* of norm one. Since a is smooth, z and x
coincide, and therefore y is the restriction of x to W. It follows that a is smooth in
W. Now suppose that a is Frechet-smooth in V, and suppose that (yn) is a sequence
of elements of W\ such that (yn(

a)) converges to one. By the Hahn-Banach theorem,
there is a sequence (:cn) in V* such that yn is the restriction of xn to W. The sequence
(xn(a)) converges to one and, by the Frechet-smoothness of a in V, it follows that (xn)
converges in norm to x. However,

and therefore (yn) converges in norm to x0 as required.

The following result is well known, but a proof will be given for completeness.

LEMMA 2.2. Let Qbe a locally compact Hausdorjf space, and let C0(Q) denote the
complex Banach space of continuous complex-valued functions on Q. vanishing at
infinity, endowed with the supremum norm. Let a be a positive element ofC0(Q) of norm
one. Then a is smooth if and only if there exists a unique element co0 in Q such that
a(co0) = 1, and a is Fre'chet-smooth if and only if, in addition, co0 is an isolated point.

Proof. The dual of C0(Q) may be identified with the space M(Q) of complex
regular Borel measures of finite total variation on Q. Let a be a positive smooth point
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in the unit ball in C0(Q). There exists a point co0 in Q such that a(co0) = 1. Since a is
smooth, it follows that the unit point measure Sm is the unique element of M(Q) such
that<5Wo(0)=l.

Suppose that a is Frechet-smooth and co0 is not isolated. Then, for each positive
integer n, the open set {co: \a(co) — \\ < \/n) contains a point con not equal to coQ. The
sequence (dw ) of unit point measures is such that the sequence (Sm (a)) converges to
one. However, for each n there exists a positive element b of C0(Q) such that
8m (b) = 1 and da (b) = 0. Hence (3a ) does not converge in norm to 5m . This yields
a contradiction.

Recall that a complex vector space A equipped with a triple product
(a,b,c) ->{abc} from Ax Ax A to A which is symmetric and linear in the first and
third variables, conjugate linear in the second variable and satisfies the identity

[D(a, b), D(c, d)] = D({a b c), d) - D(c, {da b}),

where [, ] denotes the commutator and D is the mapping from Ax A to A defined by

D(a,b)c = {abc},

is said to be a Jordan*-triple. When A is also a Banach space such that D is continuous
from Ax A to the Banach space B(A) of bounded linear operators on A, and, for each
element a in A, D(a,a) is hermitian with non-negative spectrum and satisfies

\\D{a,a)\\ = \\a\\\

then A is said to be a JB*-triple. A JB*-triple which is the dual of a Banach space is
said to be a JBW*-triple.

Examples of JB*-triples are C*-algebras, and examples of JBW*-triples are
W*-algebras. The second dual A** of a JB*-triple A possesses a triple product with
respect to which it is a JBW*-triple, the canonical mapping from A into A** being an
isomorphism. For details, the reader is referred to [1, 2, 3, 4, 11, 12, 13, 14, 15, 16,
17, 20].

An element u in a JBW*-triple A is said to be a tripotent if {u u u) is equal to u. The
set of tripotents in A is denoted by <%(A). A pair u, v of elements of <%(A) is said to
be orthogonal if {v v u} = 0. For two elements u and v of %(A), write u ^ v if {u v u) = u
or, equivalently, if v - u is a tripotent orthogonal to u. This defines a partial ordering
on %(A) with respect to which %{A) with a greatest element adjoined forms a
complete lattice denoted by %{A)~. When A is a W*-algebra, the set of tripotents in
A coincides with the set of partial isometries in A.

The proof of the following result can be found in [8].

LEMMA 2.3. Let A be a JBW*-triple with predual A+ and let °U{AJ be the complete
lattice of tripotents in A with a largest element adjoined.

(i) Every norm-closed face of the unit ball Atl in A+ is norm-exposed and of the
form {u}, for some u in °U{Af.

(ii) Every weak*-closed face of the unit ball Al in A is weak*-semi-exposed and of
the form ({«},)' for some u in <%{A)~.

(iii) The map u\-*{u}, is an order isomorphism from the complete lattice °U(A)~ onto
the complete lattice ^(A^), and the map MI—• ({«},)' is an anti-order isomorphism
from %{A)" onto the complete lattice ^(AJ.
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For each element a in a JBW*-triple A, the odd powers a2n+l are defined
inductively by

a1 = a, a2n+1 = {aa2n~1a}.

The proof of the following lemma can be found in [8].

LEMMA 2.4. Let a be an element of norm one in a JBW*-triple A. Then the
sequence (a2n+1) converges in the weak*-topology to a tripotent u(a) such that the norm-
closed faces {a}, and {u(a)}, of the unit ball A^ of the predual A+ of A coincide.

3. Main results

The main result of the paper can now be given using those above. Let A be
a JB*-triple that will be regarded as being canonically embedded in its JBW*-
envelope A**.

THEOREM 3.1. Let A be a JB*-triple, and let a be an element of norm one in A.
(i) The point a is smooth if and only ifu(a) is a minimal non-zero element of the

complete lattice <%(A**)~.
(ii) The point a is Frechet-smooth if and only ifu(a) is a minimal non-zero element

of the complete lattice ^1{A**)" and is contained in A.

Proof. Suppose that a is smooth, in which case {a}' consists of the set [x], for
some extreme point JC of A*. By [11, Proposition 4] and Lemma 2.4, it follows that
u(a) is a minimal non-zero element of °U(A**y. Conversely, if u{a) is non-zero and
minimal, again using [11, Proposition 4], there exists a unique extreme point x of A*
such that

{a}' = {u(a)}, = {x}
and a is smooth.

Let C(a) be the JB*-subtriple of A generated by the odd powers of a. By [14,
Lemma 1.14], C(a) is isomorphic to the commutative C*-algebra C0(Q) of continuous
functions on a locally compact Hausdorff space Q which vanish at infinity, and
under this isomorphism a is mapped into a positive element. That a is Frechet-smooth
if and only if u(a) is contained in A follows immediately from Lemmas 2.1 and 2.2.

When A is a C*-algebra, the partial isometry u{a) corresponding to an element a
in A of norm one is the weak*-limit of the sequence (a2n+1), where

a1 = a, a2n+1 = aa*(a2n~l).

Theorem 3.1 leads to the following result for C*-algebras.

COROLLARY 3.2. Let a be an element of norm one in the C*-algebra A.
(i) The point a is smooth if and only if the partial isometry u(a) is such that

u(a)u(a)*A**u(a)*u(a) = Cu(a).

(ii) The point a is Frechet-smooth if and only if a is smooth and u(a) is contained
in A.

For several equivalent conditions in the case of a C*-algebra, the reader is referred
to [19].
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