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ABSTRACT
We present a detailed comparison of fundamental dark matter halo properties retrieved by a
substantial number of different halo finders. These codes span a wide range of techniques
including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We
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further introduce a robust (and publicly available) suite of test scenarios that allow halo
finder developers to compare the performance of their codes against those presented here. This
set includes mock haloes containing various levels and distributions of substructure at a range
of resolutions as well as a cosmological simulation of the large-scale structure of the universe.

All the halo-finding codes tested could successfully recover the spatial location of our mock
haloes. They further returned lists of particles (potentially) belonging to the object that led
to coinciding values for the maximum of the circular velocity profile and the radius where
it is reached. All the finders based in configuration space struggled to recover substructure
that was located close to the centre of the host halo, and the radial dependence of the mass
recovered varies from finder to finder. Those finders based in phase space could resolve central
substructure although they found difficulties in accurately recovering its properties. Through
a resolution study we found that most of the finders could not reliably recover substructure
containing fewer than 30–40 particles. However, also here the phase-space finders excelled by
resolving substructure down to 10–20 particles. By comparing the halo finders using a high-
resolution cosmological volume, we found that they agree remarkably well on fundamental
properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation
curve).

We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given
the arbitrariness in defining a proper halo edge.

Key words: methods: numerical – galaxies: evolution – galaxies: haloes – cosmology: mis-
cellaneous – cosmology: theory – dark matter.

1 IN T RO D U C T I O N

While recent decades have seen great progress in the understanding
and modelling of the large- and small-scale structure of the Uni-
verse by means of numerical simulations, there remains one very
fundamental question that is yet to be answered: ‘how to find a
dark matter (DM) halo?’ The comparison of any cosmological sim-
ulation to observational data relies upon reproducibly identifying
‘objects’ within the model. But how do we identify ‘DM haloes’ or
even ‘galaxies’ in such simulations? Researchers in the field have
developed a wide variety of techniques and codes to accomplish
this task. But how does the performance of these various techniques
and codes compare? While we still may argue about the proper def-
inition of an ‘object’, the various approaches should nevertheless
agree, once the same recipe for defining a (DM) halo is used.

This introduction begins by establishing why it is important to
have ‘The Halo-Finder Comparison Project’ before continuing by
laying out the groundwork for the comparison we have undertaken.
It is therefore subdivided into a first subsection where we highlight
the necessity for such a comparison and summarize the recent lit-
erature in this area. This section also includes a brief primer on
halo finders and their history. The second part introduces the de-
sign of the test cases, illustrated with some analysis. The last part
then raises the question ‘how to cross-compare haloes?’ as well as
‘what is actually a halo?’ and presents a possible answer the authors
agreed upon.

1.1 The necessity for a comparison project

Over the last 30 years, great progress has been made in the de-
velopment of simulation codes that model the distribution of dis-
sipationless DM while simultaneously following the (substantially
more complex) physics of the baryonic component that accounts
for the observable Universe. Nowadays, we have a great variety of
highly reliable, cost-effective (and sometimes publicly available)
codes designed for the simulation of cosmic structure formation

(e.g. Couchman, Thomas & Pearce 1995; Gnedin 1995; Pen 1995;
Kravtsov, Klypin & Khokhlov 1997; Bode, Ostriker & Xu 2000;
Fryxell et al. 2000; Knebe, Green & Binney 2001; Springel, Yoshida
& White 2001b; Teyssier 2002; Dubinski et al. 2004; O’Shea et al.
2004; Quilis 2004; Merz, Pen & Trac 2005; Springel 2005; Bagla
& Khandai 2009; Doumler & Knebe 2010; Springel 2010).

However, producing the (raw) simulation data is only the first step
in the process; the model requires reduction before it can be com-
pared to the observed Universe we inhabit. This necessitates access
to analysis tools to map the data onto ‘real’ objects; traditionally,
this has been accomplished via the use of ‘halo finders’. Conven-
tional halo finders search the (dark) matter density field within the
simulations generated by the aforementioned codes to find locally
overdense gravitationally bound systems, which are then tagged as
(dark) matter haloes. Such tools have led to critical insights into our
understanding of the origin and evolution of cosmic structure. To
take advantage of sophisticated simulation codes and to optimize
their predictive power, one obviously needs equally sophisticated
halo finders! Therefore, this field has also seen great development
in recent years (e.g. Gelb & Bertschinger 1994; Klypin & Holtzman
1997; Eisenstein & Hut 1998; Bullock et al. 2001; Springel et al.
2001a; Stadel 2001; Aubert et al. 2004; Gill et al. 2004; Neyrinck
et al. 2005; Weller et al. 2005; Diemand et al. 2006; Kim & Park
2006; Gardner et al. 2007a,b; Shaw et al. 2007; Habib et al. 2009;
Knollmann & Knebe 2009; Maciejewski et al. 2009; Ascasibar,
in preparation; Behroozi, in preparation; Planelles & Quilis 2010;
Rasera et al. 2010; Skory et al. 2010; Sutter & Ricker 2010; Falck
et al., in preparation; see also Fig. 1, noting that for some halo find-
ers no code paper exists yet). However, so far, comparison projects
have tended to focus on the simulation codes themselves rather than
the analysis tools.

The increasing demand and supply for halo finders is schemati-
cally presented in Fig. 1 where we show the (cumulative) number
of codes as a function of time, binned in 10-yr intervals since 1970.
We can clearly see the increasing pace of development in the past
decade, reflecting the necessity for sophisticated codes: in the last
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Figure 1. Schematic presentation of the (cumulative) number of halo finders
as a function of time, binned in 10-yr intervals since 1970. The codes
participating in this comparison project have been highlighted in bold font.

10 years, the number of existing halo-finding codes has practically
tripled. While for a long time the spherical-overdensity (SO) method
first mentioned by Press & Schechter (1974) as well as the friend-of-
friends (FOF) algorithm introduced by Davis et al. (1985) remained
the standard techniques, the situation changed in the 1990s when
new methods were developed (Gelb 1992; Lacey & Cole 1994; van
Kampen 1995; Pfitzner & Salmon 1996; Klypin & Holtzman 1997;
Eisenstein & Hut 1998; Gottlöber, Klypin & Kravtsov 1999).

While the first generation of halo finders primarily focused on
identifying isolated field haloes, the situation dramatically changed,
once it became clear that there was no such thing as ‘overmerging’,
that is, the premature destruction of haloes orbiting inside larger
host haloes (Klypin et al. 1999) was a numerical artefact rather
than a real physical process. Now codes faced the challenge of
finding both haloes embedded within the (more or less uniform)
background density of the Universe and subhaloes orbiting within
a density gradient of a larger host halo. The past decade has seen a
substantial number of codes and techniques introduced in an attempt
to cope with this problem (Bullock et al. 2001; Springel et al. 2001a;
Stadel 2001; Aubert et al. 2004; Gill et al. 2004; Neyrinck et al.
2005; Weller et al. 2005; Diemand et al. 2006; Kim & Park 2006;
Gardner et al. 2007a,b; Shaw et al. 2007; Knollmann & Knebe 2009;
Maciejewski et al. 2009; Planelles & Quilis 2010). Along with the
need to identify subhaloes, simulations became much larger during
this period and this led to a drive towards parallel analysis tools.
The simulation data had become too large to be analysed on single
CPU architectures and hence halo finders had to be developed to
cope with this situation, too.

Nevertheless, the first two halo finders mentioned in the literature,
that is, the SO method (Press & Schechter 1974) and the FOF
algorithm (Davis et al. 1985) remain the foundation of nearly every
code: they often involve at least one phase where either particles are
linked together or (spherical) shells are grown to collect particles.

While we do not wish to invent stereotypes or a classification scheme
for halo finders, there are unarguably two distinct groups of codes:

(i) density peak locator (+ particle collection); and
(ii) particle collector.

The density peak locators – such as the classical SO method –
aim at identifying by whatever means peaks in the matter density
field. About these centres, (spherical) shells are grown out to the
point where the density profile drops below a certain pre-defined
value normally derived from a spherical top-hat collapse. Most of
the methods utilizing this approach merely differ in the way they
locate density peaks. The particle collector codes – above all the
FOF method – connect and link particles together that are close to
each other (either in a 3D configuration or in 6D phase space). They
afterwards determine the centre of this mass aggregation.

After the initial selection has been made, most methods apply a
pruning phase where gravitationally unbound particles are removed
from the object. While this unbinding procedure is not essential for
isolated field haloes, it is vital for subhaloes in order to properly
alleviate the contamination by host halo particles. Furthermore, for
subhaloes, it appears essential to define the first guess for bound
particles upon a stable and reproducible criterion for the subhalo
edge. One cannot extend the (spherical) shells out to the point where
the density drops below some pre-selected multiple of the universal
background density as this level will not be reached anymore; one
needs to ‘truncate’ the object beforehand, usually at the point where
the density rises again due to the fact that the subhalo is embedded
within a host. Similarly, particle-collecting codes which use simple
‘proximity’ as a criterion for grouping particles need to adjust their
yardsticks. However, the situation may be a bit more straightforward
for 6D phase-space finders as we expect the velocity distributions
of the host and the subhalo to be different.

Driven by the explosion of high-quality observational data, sim-
ulations of cosmological structure formation have moved to in-
creasingly high mass and force resolution. The simulation codes
and techniques have been continuously refined over the past few
decades, providing us with methods that are akin yet different: they
all have to solve the collisionless Boltzmann equation simultane-
ously with Poisson’s equation and the equations that govern gas
physics. In order to verify their credibility, the past few years have
seen substantial efforts to intercompare the results stemming from
these different techniques (cf. Frenk et al. 1999; Knebe et al. 2000;
O’Shea et al. 2005; Agertz et al. 2007; Heitmann et al. 2008; Tasker
et al. 2008). However, to date, the literature lacks a quantitative
comparison of the various halo-finding techniques. While some ef-
forts have been directed towards this goal (e.g. Lacey & Cole 1994;
White 2002; Gill et al. 2004; Cohn & White 2008; Knollmann &
Knebe 2009; Lukić et al. 2009; Maciejewski et al. 2009; Tweed
et al. 2009), these studies primarily scratched the surface and no
one has yet presented a conclusive intercomparison based upon a
well-defined test suite. In addition, we would like to stress again
that the analysis of massive state-of-the-art simulations is a non-
trivial task, especially when it comes to the detailed substructure of
the haloes. Furthermore, various definitions of the extent of a halo
exist within the literature, making comparisons of the results from
different groups far from straightforward (cf. White 2001; Lukić
et al. 2009).

We though acknowledge that there is a body of the literature
available that has compared halo-finder methods to theoretical pre-
dictions (e.g. Press & Schechter 1974; Lacey & Cole 1994; Sheth
& Tormen 1999; Jenkins et al. 2001; Robertson et al. 2009; Courtin
et al. 2011). While this is important work, it nevertheless rather
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often leads to halo finders being tuned to match theoretical expec-
tations than testing the validity of the code in the first place; the
theories have sometimes been used to answer ‘what halo definition
is required to match theoretical expectations?’ This may therefore
mask important differences between a simple linear theory and the
full non-linear growth of the structure in the Universe. In this pa-
per, we focus instead on directly comparing different codes for halo
finding and leave theoretical expectations aside.

In summary, there is no clear definition of ‘what is a (dark) mat-
ter halo?’ never mind ‘what is a subhalo?’ Workers in the field of
simulation analysis tend to utilize their own definitions and codes
to study the properties of haloes in cosmological simulations. This
paper aims at rectifying this situation by presenting the first-ever
coherent halo-finder comparison involving a substantial number of
codes as well as providing the community with a well-defined set
of test cases. However, we would like to caution the reader that
the prime objective of this comparison is codes and not algorithms.
Therefore, while certain codes may be based upon the same algo-
rithm, they still may yield (marginally) different results due to the
individual realization of that algorithm.

1.2 The workshop

During the last week of 2010 May, we held the workshop ‘Haloes
going MAD’ in Miraflores de la Sierra close to Madrid, dedicated
to the issues surrounding identifying haloes in cosmological simu-
lations. Amongst other participants, 15 halo-finder representatives
were present. The aim of this workshop was to define (and use!)
a unique set of test scenarios for verifying the credibility and re-
liability of such programs. We applied each and every halo finder
to our newly established suite of test cases and cross-compared the
results.

To date most halo finders were introduced (if at all) in their re-
spective code papers which presented their underlying principles
and subjected them to tests within a full cosmological environment
[primarily matching (sub)halo mass functions to theoretical models
and fitting functions] and hence no general benchmarks such as the
ones designed at the workshop and presented below existed prior to
our meeting. Our newly devised suite of test cases is designed to be
simple yet challenging enough to assist in establishing and gauging
the credibility and functionality of all commonly employed halo
finders. These tests include mock haloes with well-defined prop-
erties as well as a state-of-the-art cosmological simulation. They
involve the identification of individual objects, various levels of
substructure and dynamically evolving systems. The cosmological
simulation has been provided at various resolution levels with the
best resolved containing a sufficient number of particles (10243)
that it can only presently be analysed in parallel.

All the test cases and the analysis presented here is publicly
available from http://popia.ft.uam.es/HaloesGoingMAD under the
tab ‘The Data’.

1.3 How to compare haloes?

One of the most crucial questions to address is obviously ‘how
to define a halo?’ This question is intimately related to ‘how do
we fairly cross-compare the results of the various halo finders?’
While we all agreed that the proper definition of a halo should be
a ‘gravitationally bound object’, how the size of a halo should be
defined proved harder to agree upon. The ‘virial radius’ is not a
well-defined property as its precise definition can (and does) vary

from halo finder to halo finder.1 Furthermore, this quantity is ill-
defined for subhaloes that live within the environment of a host halo.
While there is some work available that allows for a conversion
between commonly applied methods to calculate the mass of an
isolated field halo (see e.g. White 2001; Lukić et al. 2009), such
variations in definition will nevertheless lead to discrepancies in a
cross-comparison and hence we decided to abandon the ambiguous
definition for the edge of a halo and rather focus on a property that
uniquely specifies the halo for the code-comparison project: the
peak of the rotation curve as characterized by vmax and the radial
location of this peak Rmax. It has been argued (e.g. Ascasibar &
Gottlöber 2008) that these quantities do indeed provide a physically
motivated scale for DM haloes, showing that, in contrast to the inner
regions, there is substantial scatter in their physical properties, as
well as significant systematic trends with halo mass and cosmic
epoch, beyond the radius Rmax.

However, utilizing vmax raises two obvious issues: first, as vmax

is reached quite close to the centre of the halo, its measurement is
obviously sensitive to resolution. Secondly, as the value of vmax is set
by the central particles, it is not very sensitive to tidal stripping. The
relationship between Rmax and Rvir for a range of NFW (Navarro et al.
1995, 1996, 1997) halo concentrations is given in fig. 6 of Muldrew,
Pearce & Power (2011). The resolution issue can be addressed by
increasing the number of particles required when studying subhalo
properties so that vmax will always be resolved sufficiently and
credibly. The relevance of the stripping issue though depends upon
the questions to be asked of the simulation data – are we interested
in a (stable) measure of the (original) infall mass of the subhalo or
do we want to quantify the mass inside the tidal radius? For the
comparison project, we decided to evaluate vmax in order to have a
stable quantity. We further agreed that this quantity is better related
to observational data as it is possible to observe rotation curves
(and hence vmax), whereas the same ambiguity applies to observers:
what is the (outer) edge of a halo and/or galaxy? Nevertheless, we
also decided to include Npart (i.e. the total number of gravitationally
bound particles as returned by the respective halo finder) in the
comparison as a halo is (or should be) a gravitationally bound
entity. The values for Npart are the ones directly returned by the halo
finder and are based upon the internal criteria each code uses. How
(and if) to perform the unbinding procedure and what particles to
consider as belonging to the (sub)halo were questions left for each
group taking part to answer as they saw fit. For several groups,
these particle lists would normally be pruned further during an
additional post-processing phase prior to obtaining halo properties.
The numbers given here therefore serve solely as an indicator of
whether or not particles are missing and/or – in case of subhaloes –
belong to the host. In addition, we also used the list of particles
belonging to each halo to calculate a fiducial M200 value [defined
via M(<r)/4πr3 = 200 × ρcrit] considering the object in isolation,
even for subhaloes: there are physical situations – like the dynamical
friction on infalling loose groups (e.g. Read et al. 2008; Lux, Read
& Lake 2010) – where the (total) mass is the physically important
quantity. Such examples of the limitation of the vmax value as a
proxy for mass have also been witnessed in our test cases and we
will come back to it in Section 4.1.3.

The first preliminary comparisons focusing on the spatial loca-
tion, vmax, and the number of bound particles for the static mock

1 We like to add the cautionary remark that a lot of the properties and in
particular any ‘radius’ is based upon the assumption of spherical symmetry
which is not valid for all halo finders presented here.
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haloes indicate that even though there exist a variety of different
approaches for halo finding, most of the codes agree with the known
correct result well. If substructure is located close to the centre of
the host halo, then all the codes tested experience some difficulties
in accurately recovering it, with all the finders based in 3D config-
uration space missing some material. For subhaloes placed near the
very centre of the host halo, the more sophisticated 6D finders based
in phase space – while correctly noting the existence of a substruc-
ture – often overestimated the associated mass due to the confusion
with the material in the host halo. After proving to ourselves that we
could all successfully reproduce the location and scale of a supplied
mock halo, we performed a resolution study where the mass and
hence the number of particles in a subhalo was gradually lowered.
We found that practically all halo finders have a completeness limit
of 30–40 particles; substructure objects smaller than these are not
reliably found. Once we had established a firm baseline for our
comparisons, we extended the study to consider a full cosmological
volume at varying resolution. The results of this comparison are
presented in Section 4 below after we first briefly introduce each
of the halo finders involved in the comparison project in Section 2
and describe the setup of our mock haloes in Section 3. Finally, we
wrap up and present some conclusions in Section 5.

2 TH E C O D E S

In this section, we are going to briefly present the codes that par-
ticipated in the The Halo-Finder Comparison Project. We highlight
their main features allowing for a better understanding of any (pos-
sible) differences in the comparison (Section 4). The prime infor-
mation to be found in each code paragraph should be sufficient to
understand how the algorithm works, how the initial particle con-
tent of a halo is obtained, the way the (sub)halo centre and edge
are calculated, how the unbinding is performed and which method
of parallelization has been applied. Note that not all halo finders
perform an unbinding, are parallelized or suitable to detect sub-
haloes, and we explicitly stress that this section is neither intended
as a review of all available halo finders nor intended as an elaborate
exposition of the partaking codes; for the latter, we refer the reader
to the respective code papers referenced in the subsection of each
halo finder.

As much as possible, the halo finders have been organized in
terms of their methodology: SO finders first followed by FOF-based
finders with 6D phase-space finders last. This applies to both the
presentation in this section and the comparison in Section 4.

2.1 AHF (Knollmann & Knebe)

The MPI+OpenMP parallelized halo finder AHF2 (AMIGA Halo
Finder, Knollmann & Knebe 2009) is an improvement of the MHF

halo finder (Gill et al. 2004), which employs a recursively refined
grid to locate local overdensities in the density field. The identified
density peaks are then treated as centres of prospective haloes. The
resulting grid hierarchy is further utilized to generate a halo tree
readily containing the information which halo is a (prospective)
host and subhalo, respectively. We therefore like to stress that our
halo-finding algorithm is fully recursive, automatically identifying
haloes, subhaloes, sub-subhaloes, etc. Halo properties are calcu-
lated based on the list of particles asserted to be gravitationally

2 AHF is freely available from http://www.popia.ft.uam.es/AMIGA

bound to the respective density peak. To generate this list of parti-
cles, we employ an iterative procedure starting from an initial guess
of particles. This initial guess is based again upon the adaptive grid
hierarchy: for field haloes we start with considering all particles out
to the isodensity contour encompassing the overdensity defined by
the virial criterion based upon the spherical top-hat collapse model;
for subhaloes, we gather particles up to the grid level shared with
another prospective (sub)halo in the halo tree which corresponds to
the upturn point of the density profile due to the embedding within
a (background) host. This tentative particle list is then used in an
iterative procedure to remove unbound particles: in each step of the
iteration, all particles with a velocity exceeding the local escape
velocity, as given by the potential based on the particle list at the
start of the iteration, are removed. The process is repeated until no
particles are removed anymore. At the end of this procedure, we are
left with bona fide haloes defined by their bound particles and we
can calculate their integral and profiled quantities.

The only parameter to be tuned is the refinement criterion used
to generate the grid hierarchy that serves as the basis for the halo
tree and also sets the accuracy with which the centres are being de-
termined. The virial overdensity criterion applied to find the (field)
halo edges is determined from the cosmological model of the data
though it can readily be tailored to specific needs; for the analysis
presented here, we used 200 × ρcrit. For more details on the mode
of operation and actual functionality, we refer the reader to the
two code-description papers by Gill et al. (2004) and Knollmann &
Knebe (2009), respectively.

2.2 ASOHF (Planelles & Quilis)

The ASOHF finder (Planelles & Quilis 2010) is based on the SO ap-
proach. Although it was originally created to be coupled to an Eule-
rian cosmological code, in its actual version, it is a stand-alone halo
finder capable of analysing the outputs from cosmological simula-
tions, including different components (i.e. DM, gas and stars). The
algorithm takes advantage of an adaptive mesh refinement (AMR)
scheme to create a hierarchy of nested grids placed at different levels
of refinement. All the grids at a certain level, named patches, share
the same numerical resolution. The higher the level of refinement,
the better the numerical resolution, as the size of the numerical
cells gets smaller. The refining criteria are open and can be chosen
depending on the application. For a general purpose, ASOHF refines
when the number of particles per cell exceeds a user-defined param-
eter. Once the refinement levels are set up, the algorithm applies the
SO method independently at each of those levels. The parameters
needed by the code are the following: (i) the cosmological param-
eters when analysing cosmological simulations; (ii) the size of the
coarse cells, the maximum number of refinement levels (N levels) and
the maximum number of patches (Npatch) for all levels in order to
build up the AMR hierarchy of nested grids; (iii) the number of
particles per cell in order to choose the cells to be refined; and (iv)
the minimum number of particles in a halo.

After this first step, the code naturally produces a tentative list
of haloes of different sizes and masses. Moreover, a complete de-
scription of the substructure (haloes within haloes) is obtained by
applying the same procedure on the different levels of refinement.
A second step, not using the cells but the particles within each halo,
makes a more accurate study of each of the previously identified
haloes. These prospective haloes (subhaloes) may include particles
which are not physically bound. In order to remove unbound par-
ticles, the local escape velocity is obtained at the position of each
particle. To compute this velocity, we integrate Poisson equation
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assuming spherical symmetry. If the velocity of a particle is higher
than the escape velocity, the particle is assumed to be unbound and
is therefore removed from the halo (subhalo) being considered. Fol-
lowing this procedure, unbound particles are removed iteratively
along a list of radially ordered particles until no more of them need
to be removed. In the case that the number of remaining particles is
less than a given threshold, the halo is dropped from the list.

After this cleaning procedure, all the relevant quantities for the
haloes (subhaloes) as well as their evolutionary merger trees are
computed. The lists of (bound) particles are used to calculate canon-
ical properties of haloes (subhaloes), like the position of the halo
centre, which is given by the centre of mass of all the bound parti-
cles, and the size of the haloes, given by the distance of the farthest
bound particle to the centre.

The ability of the ASOHF method to find haloes and their substruc-
tures is limited by the requirement that appropriate refinements of
the computational grid exist with enough resolution to spot the
structure being considered. In comparison to algorithms based on
linking strategies, ASOHF does not require a linking length to be de-
fined, although at a given level of refinement the size of the cell can
be considered as the linking length of this particular resolution.

The version of the code used in this comparison is serial, although
there is already a first parallel version based on OpenMP.

2.3 BDM (Klypin & Ceverino)

The BDM (Bound Density Maxima) halo finder originally described
in Klypin & Holtzman (1997) uses a spherical 3D overdensity al-
gorithm to identify haloes and subhaloes. It starts by finding the
local density at each individual particle position. This density is
defined using a top-hat filter with a constant number of particles,
Nfilter, which typically is Nfilter = 20. The code finds all maxima of
density, and for each maximum it finds a sphere containing a given
overdensity mass M� = (4π/3)�ρcrR

3
�, where ρcr is the critical

density and � is the specified overdensity.
For the identification of distinct haloes, the code uses the density

maxima as halo centres; amongst overlapping spheres the code
finds the one that has the deepest gravitational potential. Haloes are
ranked by their (preliminary) size, and their final radius and mass
are derived by a procedure that guarantees the smooth transition
of properties of small haloes when they fall into a larger host halo
becoming subhaloes: this procedure assigns either R� or Rdist as the
radius for a currently infalling halo, depending on the environmental
conditions, where Rdist measures the distance of the infalling halo
from the surface of the soon-to-be host halo.

The identification of subhaloes is a more complicated procedure:
centres of subhaloes are certainly density maxima, but not all density
maxima are centres of subhaloes. BDM eliminates all density maxima
from the list of subhalo candidates which have less than Nfilter self-
bound particles. For the remaining set of prospective subhaloes,
the radii are determined as the minimum of the following three
distances: (i) the distance from the nearest barrier point [i.e. centres
of previously defined (sub)haloes]; (ii) the distance from its most
remote bound particle; and (iii) the truncation radius (i.e. the radius
at which the average density of bound particles has an inflection
point). This evaluation involves an iterative procedure for removing
unbound particles and starts with the largest density maximum.

The unbinding procedure requires the evaluation of the gravita-
tional potential which is found by first finding the mass in spherical
shells and then by integration of the mass profile. The binning is
done in log radius with a very small bin size of �log (R) = 0.005.

The bulk velocity of either a distinct halo or a subhalo is defined
as the average velocity of the 30 most bound particles of that halo
or of all particles, if the number of particles is less than 30. The
number 30 is a compromise between the desire to use only the
central (sub)halo region for the bulk velocity and the noise level.

The code uses a domain decomposition for MPI parallelization
and OpenMP for the parallelization inside each domain.

2.4 PSO (Sutter & Ricker)

The PSO (parallel spherical overdensity) halo finder is a fast, highly
scalable MPI-parallelized tool directly integrated into the FLASH sim-
ulation code that is designed to provide on-the-fly halo finding for
use in subgrid modelling, merger tree analysis and AMR schemes
(Sutter & Ricker 2010). The PSO algorithm identifies haloes by grow-
ing SO spheres. There are four adjustable parameters controlling the
desired overdensity criteria for centre detection and halo size, the
minimum allowed halo size, and the resolution of the halo radii rel-
ative to the grid resolution. The algorithm discovers halo centres by
mapping DM particles on to the simulation mesh and selecting cell
centres where the cell density is greater than the given overdensity
criterion. The algorithm then determines the halo edge using the
SO radius by collecting particles using the FLASH AMR tree hierar-
chy. The algorithm determines the halo centre, bulk velocity, mass
and velocity dispersion without additional post-processing. PSO is
provided both as an API for use in-code and as a stand-alone halo
finder.

2.5 LANL (Lukić, Fasel & Hsu)

The LANL halo finder is developed to provide on-the-fly halo analysis
for simulations utilizing hundreds of billions of particles and is
integrated into the MC3 code (Habib et al. 2009), although it can
also be used as a stand-alone halo finder. Its core is a fast kD-tree
FOF halo finder which uses 3D (block), structured decomposition to
minimize the surface-to-volume ratio of the domain assigned to each
process. As it is aimed at large-scale structure simulations (100+
Mpc h−1 on the side), where the size of any single halo is much
smaller than the size of the whole box, it uses the concept of ‘ghost
zones’ such that each process gets all the particles inside its domain
as well as those particles which are around the domain within a
given distance (the overload size, a code parameter chosen to be
larger than the size of the biggest halo we expect in the simulation).
After each process runs its serial version of a FOF finder, MPI-based
‘halo stitching’ is performed to ensure that every halo is accounted
for, and accounted for only once.

If desired, spherical ‘SO’ halo properties can be found using
the FOF haloes as a proxy. Those SO haloes are centred at the
particle with the lowest gravitational potential, while the edge is at
R� – the radius enclosing an overdensity of �. It is well known
that percolation-based FOF haloes suffer from the overbridging
problem; therefore, if we want to ensure the completeness of our
SO sample, then we should run the FOF algorithm with a smaller
linking length than usual in order to capture all density peaks, but
still avoid overbridging at the scale of interest (which depends on our
choice of �). Overlapping SO haloes are permitted, but the centre
of one halo may not reside inside another SO halo (that would
be considered as a substructure, rather than a ‘main’ halo). The
physical code parameters are the linking length for the FOF haloes
and overdensity parameter � for SO haloes. Technical parameters
are the overload size and the minimum number of particles in a
halo.
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The LANL halo finder is being included in the standard distribu-
tions of the PARAVIEW3 package, enabling researchers to combine
the analysis and visualization of their simulations. A substructure
finder is currently under development.

2.6 SUBFIND (Iannuzzi, Springel & Dolag)

SUBFIND (Springel et al. 2001a) identifies gravitationally bound, lo-
cally overdense regions within an input parent halo, traditionally
provided by a FOF group finder, although other group finders could
be used in principle as well. The densities are estimated based on
the initial set of all particles via adaptive kernel interpolation based
on a number Ndens of smoothing neighbours. For each particle, the
nearest Nngb neighbours are then considered for identifying local
overdensities through a topological approach that searches for sad-
dle points in the isodensity contours within the global field of the
halo. This is done in a top-down fashion, starting from the parti-
cle with the highest associated density and adding particles with
progressively lower densities in turn. If a particle has only denser
neighbours in a single structure, then it is added to this region. If
it is isolated, then it grows a new density peak, and if it has denser
neighbours from two different structures, an isodensity contour that
traverses a saddle point is identified. In the latter case, the two in-
volved structures are joined and registered as candidate subhaloes
if they contain at least Nngb particles. These candidates, selected
according to the spatial distribution of particles only, are later pro-
cessed for gravitational self-boundness. Particles with positive total
energy are iteratively dismissed until only bound particles remain.
The gravitational potential is computed with a tree algorithm, such
that large haloes can be processed efficiently. If the number of
the remaining bound number of particles is at least Nngb, then the
candidate is ultimately recorded as a subhalo. The set of initial
substructure candidates forms a nested hierarchy that is processed
inside out, allowing the detection of substructures within substruc-
tures. However, a given particle may only become a member of one
substructure, that is, SUBFIND decomposes the initial group into a set
of disjoint self-bound structures. Particles not bound to any genuine
substructure are assigned to the ‘background halo’. This component
is also checked for self-boundness, so that some particles that are
not bound to any of the structures may remain. For all substructures
as well as the main halo, the particle with the minimum gravita-
tional potential is adopted as (sub)halo centre. For the main halo,
SUBFIND additionally calculates a SO virial mass around this centre,
taking into account all particles in the simulation (i.e. not just those
in the FOF group that are analysed). There exist both serial and
MPI-parallelized versions of SUBFIND, which implement the same
underlying algorithm. For more details, we refer the reader to the
paper by Springel et al. (2001a).

2.7 FOF (Gottlöber & Turchaninov)

In order to analyse large cosmological simulations with up to 20483

particles, we have developed a new MPI version of the hierarchical
FOF algorithm with low memory requests. It allows us to construct
very fast clusters of particles at any overdensity (represented by
the linking length) and to deduce the progenitor–descendant rela-
tionship for clusters in any two different time-steps. The particles
in a simulation can consist of different species (DM, gas, stars)
of different mass. We consider them as an undirected graph with

3 http://www.paraview.org/

positive weights, namely the lengths of the segments of this graph.
For simplicity, we assume that all weights are different. Then, one
can show that a unique minimal spanning tree (MST) of the point
distribution exists, namely the shortest graph which connects all
points. If subgraphs cover the graph, then the MST of the graph
belongs to the union of MSTs of the subgraphs. Thus, subgraphs
can be constructed in parallel. Moreover, the geometrical features
of the clusters, namely the fact that they occupy mainly almost
non-overlapping volumes, allow the construction of fast parallel
algorithms. If the MST has been constructed, all possible clus-
ters at all linking lengths can be easily determined. To represent
the output data, we apply topological sorting to the set of clusters
which results in a cluster-ordered sequence. Every cluster at any
linking length is a segment of this sequence. It contains the dis-
tances between adjacent clusters. Note that for the given MST there
exist many cluster-ordered sequences which differ in the order of
the clusters but yield the same set of clusters at a desired linking
length. If the set of particle clusters has been constructed, further
properties (centre of mass, velocity, shape, angular momentum, ori-
entation, etc.) can be directly calculated. Since this concept is by
construction aspherical, a circular velocity (as used to characterize
objects found with SO algorithms) cannot be determined here. The
progenitor–descendant relationship is calculated for the complete
set of particles by comparison of the cluster-ordered sequences at
two different output times.

The hierarchical FOF algorithm identifies objects at different
overdensities depending on the chosen linking length (More et al.
2011). In order to avoid artificial misidentifications of subhaloes
on high overdensities, one can add an additional criterion. Here we
have chosen the requirement that the spin parameter of the subhalo
should be smaller than one. All subhaloes have been identified at 512
times the virial overdensity. Thus, only the highest density peak has
been taken into account for the mass determination and the size of
the object, which are therefore underestimated. The velocity of the
density peak is estimated correctly but without removing unbound
particles.

2.8 PFOF (Rasera & Roy)

PFOF (Parallel FOF) is a MPI-based parallel FOF halo finder which is
used within the DEUS Consortium4 at the Laboratory Universe and
Theories. It has been parallelized by Roy and was used in several
studies involving large N-body simulations such as Courtin et al.
(2011) and Rasera et al. (2010). The principle is the following: first,
particles are distributed in cubic subvolumes of the simulation and
each processor deals with one ‘cube’ and runs the FOF algorithm
locally. Then, if a structure is located close to the edge of a cube,
PFOF checks if there are particles belonging to the same halo in the
neighbouring cube. This process is carried out iteratively until all
haloes extending across multiple cubes have been merged. Finally,
particles are sorted on a per halo basis, and the code writes two
kinds of output: particles sorted per region and particles sorted per
halo. This makes any post-processing straightforward because each
halo or region can be analysed individually on a single CPU server.
PFOF was successfully tested on up to 4096 Bluegene/P cores with
a 20483 particle N-body simulation. In this paper, the serial version
was used for mock haloes and small cosmological simulations, and
the parallel version for larger runs. The linking length was set to
b = 0.2 (however, see Courtin et al. 2011, for a discussion on the

4 www.deus-consortium.org
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halo definition) and the minimum halo mass to 100 particles; the
halo centres reported here are the centre of mass of the respective
particle distribution.

2.9 NTROPY-FOFSV (Gardner, McBride & Stinson)

The Ntropy parallel programming framework is derived from N-
body codes to help address a broad range of astrophysical prob-
lems.5 This includes an implementation of a simple but efficient
FOF halo finder, NTROPY-FOFSV, which is more fully described in
Gardner et al. (2007a) and Gardner et al. (2007b). Ntropy provides
a ‘distributed shared memory’ implementation of a kD-tree, where
the application developer can reference tree nodes as if they exist in
a global address space, even though they are physically distributed
across many compute nodes. Ntropy uses the kD-tree data structures
to speed up the FOF distance searches. It also employs an imple-
mentation of the Shiloach & Vishkin (1982) parallel connectivity
algorithm to link together the haloes that span separate processor
domains. The advantage of this method is that no single computer
node requires the knowledge of all of the groups in the simulation
volume, meaning that NTROPY-FOFSV is scalable to petascale plat-
forms and handles large data input. This algorithm was used in
the mock halo test cases to stitch together particle groups found
across many threads into the one main FOF halo. As FOF is a
deterministic algorithm, NTROPY-FOFSV takes a single physical link-
ing length to group particles into FOF haloes without performing
any particle unbinding or subhalo identification. The halo centres
for the analysis presented here use centre-of-mass estimates based
on the FOF particle list. Ntropy achieves parallelization by calling
the ‘machine-dependent library’ that consists of high-level opera-
tions such as ‘acquire_treenode’ or ‘acquire_particle’. This library
is rewritten for a variety of models (MPI, POSIX Threads, Cray
SHMEM, etc.), allowing the framework to extract the best perfor-
mance from any parallel architecture on which it is run.

2.10 VOBOZ (Neyrinck)

Conceptually, a VOBOZ (VOronoi BOund Zones, Neyrinck et al.
2005) halo or subhalo is a density peak surrounded by gravitation-
ally bound particles that are down steepest density gradients from
the peak. A statistical significance is measured for each (sub)halo,
based on the probability that Poisson noise would produce it.

The only physical parameter in VOBOZ is the density threshold
characterizing the edge of (parent) haloes (set to 200 times the mean
density here), which typically only affects their measured masses.
To return a definite halo catalogue, we also impose a statistical-
significance threshold (set to 4σ here), although depending on the
goal of a study, this may not be necessary.

Density peaks are found using a Voronoi tessellation (paralleliz-
able by splitting up the volume), which gives an adaptive, parameter-
free estimate of each particle’s density and a set of neighbours (e.g.
Schaap & van de Weygaert 2000). Each particle is joined to the
peak particle (whose position is returned as the halo centre) that
lies up the steepest density gradient from that particle. A halo as-
sociated with a high-density peak will also contain smaller density
peaks. The significance of a halo is judged according to the ratio
of its central density to a saddle point joining the halo to a halo
with a higher central density, comparing to a Poisson point process.
Pre-unbinding (sub)halo boundaries are defined along these density
ridges.

5 http://www.phys.washington.edu/users/gardnerj/ntropy

Unbinding evaporates many spurious haloes and often brings
other halo boundaries inwards a bit, reducing the dependence on the
outer density contrast. Particles not gravitationally bound to each
halo are removed iteratively, by comparing their potential energies
(measured as sums over all other particles) to kinetic energies with
respect to the velocity centroid of the halo’s core (i.e. the particles
that directly jump up density gradients to the peak). The unbinding
is parallelized using OpenMP. In the cosmological test, we remove
haloes with fewer than 20 particles from the VOBOZ halo list.

2.11 ORIGAMI (Falck, Neyrinck & Aragon-Calvo)

ORIGAMI (Order-ReversIng Gravity Apprehended Mangling Indices,
Falck et al., in preparation) uses a natural, parameter-free defini-
tion of the boundary between haloes and the non-halo environment
around them: halo particles are particles that have experienced shell-
crossing. This dynamical definition does not make use of the density
field, in which the boundary can be quite ambiguous. In 1D, shell-
crossings can be detected by looking for pairs of particles whose
positions are out-of-order compared with their initial positions. In
3D, then, a halo particle is defined as a particle that has undergone
shell-crossings along three orthogonal axes. Similarly, this would
be two axes for a filament, one for a wall and zero for a void. There
is a huge number of possible sets of orthogonal axes in the initial
grid to use to test for shell-crossing, but we only used four simple
ones, which typically suffice to catch all the shell-crossings. We
used the Cartesian x-, y- and z-axes, as well as the three sets of axes
consisting of one Cartesian axis and two (45◦) diagonal axes in the
plane perpendicular to it.

Once halo particles have been tagged, there are many possible
ways of grouping them into haloes. For this paper, we grouped them
on a Voronoi tessellation of final-conditions particle positions. This
gives a natural density estimate [e.g. Schaap & van de Weygaert
2000; Voronoi Tessellation Field Estimator (VTFE)] and a set of
neighbours for each particle. Haloes are sets of halo particles con-
nected to each other on the Voronoi tessellation. To prevent haloes
from being unduly linked, we additionally require that a halo con-
tains at most one halo ‘core’, defined as a set of particles connected
on the tessellation that all exceed a VTFE density threshold. This
density threshold is the only parameter in our algorithm, since the
initial tagging of halo particles is parameter-free; for this study, we
set it to 200 times the mean density. We partition connected groups
of halo particles with multiple cores into haloes as follows: each core
iteratively collects particles in concentric rings of Voronoi neigh-
bours until all halo particles are associated. The tagging procedure
establishes halo boundaries, so no unbinding procedure is neces-
sary. Also, we note that, currently, the algorithm does not identify
subhaloes. We remove haloes with fewer than 20 particles from the
ORIGAMI halo catalogue, and the halo centre reported is the position
of the halo’s highest density particle.

Note that due to its nature ORIGAMI is only applicable to cosmo-
logical simulations and hence only enters the comparison project
in the respective Section 4.2.

2.12 SKID (Stadel & Potter)

SKID (Spline Kernel Interpolative Denmax),6 first mentioned in
Governato et al. (1997) and extensively described in Stadel (2001),

6 The OpenMP parallelized version of SKID can be freely downloaded from
http://www.hpcforge.org
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finds density peaks within N-body simulations and subsequently de-
termines all associated bound particles, thereby identifying haloes.
It is important to stress that SKID will only find the smallest scale
haloes within a hierarchy of haloes as is generally seen in cosmo-
logical structure formation simulations. Unlike original DENMAX
(Bertschinger & Gelb 1991; Gelb 1992) which used a fixed grid
based density estimator, SKID uses smoothed particle hydrodynam-
ics (SPH) kernel averaged densities which are much better suited to
the Lagrangian nature of N-body simulations and allow the method
to locally adapt to the large dynamic range found in cosmological
simulations.

Particles are slowly slid (each step moving the particles by a
distance of the order of the softening length in the simulation)
along the local density gradient until they pool at a maximum, each
pool corresponding to each initial group. This first phase of SKID

can be computationally very expensive for large simulations, but is
also quite robust.

Each pool is then ‘unbound’ by iteratively evaluating the binding
energy of every particle in their original positions and then removing
the most non-bound particle until only bound particles remain. This
removes all particles that are not part of substructure either because
they are part of larger scale structure or because they are part of the
background.

SKID can also identify structure composed of gas and stars in
hydrodynamical simulations using the DM only for its gravitational
binding effect. The ‘Haloes going MAD’ meeting has motivated
the development of an improved version of the algorithm capable
of also running on parallel computers.

2.13 ADAPTAHOP (Tweed & Colombi)

The code ADAPTAHOP is described in appendix A of Aubert et al.
(2004). The first step is to compute an SPH density for each particle
from the 20 closest neighbours. Isolated haloes are then described
as groups of particles above a density threshold ρ t, where this pa-
rameter is set to 80, which closely matches results of a FOF group
finder with parameter b = 0.2. To identify subhaloes within those
groups, local density maxima and saddle points are detected. Then,
by increasing the density threshold, it is a simple matter to decom-
pose haloes into nodes that are either density maxima or groups of
particles whose density is between two values of saddle points. A
node structure tree is then created to detail the whole structure of
the halo itself. Each leaf of this tree is a local density maximum and
can be interpreted as a subhalo. However, further post-processing
is needed to define the halo structure tree, describing the host halo
itself, its subhaloes and subhaloes within subhaloes. This part of
the code is detailed in Tweed et al. (2009); the halo structure tree
is constructed so that the halo itself contains the most massive lo-
cal maximum (Most massive Sub maxima Method, MSM). This
method gives the best result for isolated snapshots, as used in this
paper.

In more detail, ADAPTAHOP needs a set of seven parameters. The
first parameter is the number of neighbours nnei used with a kD-
tree scheme in order to estimate the SPH density. Among these nnei

neighbours, the nhop closest are used to sweep through the density
field and detect both density maxima and saddle points. As pre-
viously mentioned, the parameter ρ t sets the halo boundary. The
decomposition of the halo itself into leaves that are to be redefined
as subhaloes has to fulfil certain criteria set by the remaining four pa-
rameters. The most relevant is the statistical significance threshold,
set via the parameter fudge, defined via (〈ρ〉−ρt)/ρt > f udge/

√
N ,

where N is the number of particles in the leaves. The minimal mass

of a halo is limited by the parameter nmembers, the minimum number
of particles in a halo. Any potential subhalo has also to respect
two conditions with respect to the density profile and the minimal
radius, through the parameters α and f ε . These two values ensure
that a subhalo has a maximal density ρmax such as ρmax > α〈ρ〉 and
a radius greater than f ε times the mean interparticle distance. We
used the following set of parameters (nnei = nhop = 20, ρ t = 80,
fudge = 4, α = 1, f ε = 0.05 and nmembers = 20). It is important to
understand that all nodes are treated as leaves and must comply with
aforementioned criteria before being further decomposed into sep-
arate structures. As for defining haloes and subhaloes themselves,
this is done by grouping linked lists of particles corresponding to
different nodes and leaves from the node structure tree. Further, the
halo and subhalo centres are defined as the positions of the particle
with the highest density. The halo edge corresponds to the ρ t density
threshold, whereas the saddle points define the subhalo edge.

Note that ADAPTAHOP is a mere topological code that does not fea-
ture an unbinding procedure. For substructures (whose boundaries
are chosen from the saddle point value), this may have impact on
the estimate of the mass as well as lead to the contamination by host
particles.

2.14 HOT (Ascasibar)

This algorithm, still under development, computes the Hierarchical
Overdensity Tree (HOT; Ascasibar, in preparation) of a point dis-
tribution in an arbitrary multidimensional space. HOT is introduced
as an alternative to the MST for spaces where a metric is not well
defined, like the phase space of particle positions and velocities.

The method is based on the Field Estimator for Arbitrary Spaces
(FIESTAS, Ascasibar & Binney 2005). First, the space is tessellated
1D at a time, until it is divided into a set of hypercubical cells
containing exactly one particle. Particles in adjacent cells are con-
sidered as neighbours. Then, the mass of each point is distributed
over an adaptive smoothing kernel as described in Ascasibar (in
preparation), which provides a key step in order to define a metric.

In the HOT+FIESTAS scheme, objects correspond to the peaks of the
density field, and their boundaries are set by the isodensity contours
at the saddle points. At each saddle point, the object containing
less particles is attached to the most massive one, which may then
be incorporated into even more massive objects in the hierarchy.
This idea can be implemented by computing the MST of the data
distribution, defining the distance between two neighbouring parti-
cles as the minimum density along an edge connecting them (i.e.
the smallest of the two densities, or the density of the saddle point
when it exists). However, this is not practical for two reasons. First,
defining a path between two particles is not trivial when a metric
is not available. Secondly, finding the saddle points would require
a minimization along the path, which is extremely time-consuming
when a large number of particles are involved. These problems may
be overcome if the distance between two data points is given by the
average density within the hyperbox they define.

Once the distances are defined in this way, HOT+FIESTAS com-
putes the MST of the data distribution by means of Kruskal’s al-
gorithm (Kruskal 1956). The output of the algorithm consists of
the tree structure, given by the parent of each data point in HOT,
and a catalogue containing an estimate of the centroid (given by
the density-weighted centre of mass) as well as the number of par-
ticles in the object (both including and excluding substructures).
In order to discard spurious density fluctuations, a minimum num-
ber of points and density contrast are required for an object to
be output to the catalogue. Currently, these parameters are set to
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N > 20 particles and a contrast threshold ρpeak/ρbackground > 5.
Although these values seem to yield reasonable results, more ex-
perimentation is clearly needed.

In this work, the algorithm is applied to the particle positions only
(HOT3D) as well as the full set of phase-space coordinates (HOT6D).
Since it is intended as a general data analysis tool, not particularly
optimized for the problem of halo identification, it should not (and
does not) take into account any problem-specific knowledge such as
the concepts of binding energy or virial radius. The latter quantity,
as well as the maximum circular velocity, has been computed from
the raw particle IDs returned by the code.

The definition of object boundaries in terms of the saddle points
of the density field will have a relatively mild impact on the results
concerning the mock haloes, but it is extremely important in the
cosmological case. HOT+FIESTAS will, for instance, identify large-
scale filamentary structures that are not considered haloes by any
of the other algorithms (although many of these objects are indeed
gravitationally bound).

On the other hand, keeping unbound particles will be an issue for
subhaloes close to the centre of their host, especially in 3D, and a
post-processing7 script will be developed to perform this task.

Note that due to its present implementation HOT is not yet ap-
plicable to cosmological simulations and hence only enters the
comparison project in the mock halo Section 4.1.

2.15 HSF (Maciejewski)

HSF (Hierarchical Structure Finder, Maciejewski et al. 2009) identi-
fies objects as connected self-bound particle sets above some density
threshold. This method consists of two steps. Each particle is first
linked to a local DM phase-space density maximum by follow-
ing the gradient of a particle-based estimate of the underlying DM
phase-space density field. The particle set attached to a given maxi-
mum defines a candidate structure. In a second step, particles which
are gravitationally unbound to the structure are discarded until a
fully self-bound final object is obtained.

In the initial step, the phase-space density and phase-space gra-
dients are estimated by using a 6D SPH smoothing kernel with a
local adaptive metric as implemented in the ENBID code (Sharma &
Steinmetz 2006). For the SPH kernel, we use Nsph between 20 and
64 neighbours, whereas for the gradient estimate, we use Nngb = 20
neighbours.

Once phase-space densities have been calculated, we sort the
particles according to their density in descending order. Then, we
start to grow structures from high to low phase-space densities.
While walking down in density we mark for each particle the two
closest (according to the local phase-space metric) neighbours with
higher phase-space density, if such particles exist. In this way, we
grow disjoint structures until we encounter a saddle point, which
can be identified by observing the two marked particles and seeing
if they belong to different structures. A saddle point occurs at the
border of two structures. According to each structure mass, all the
particles below this saddle point can be attached to only one of
the structures if it is significantly more massive than the other one,
or redistributed between both structures if they have comparable
masses. This is controlled by a simple but robust cut or grow cri-
terion depending on a connectivity parameter α which is ranging
from 0.2 up to 1.0. In addition, we test on each saddle point if struc-
tures are statistically significant when compared to Poisson noise

7 HOT3D does not even read particle velocities.

(controlled by a β parameter). At the end of this process, we obtain
a hierarchical tree of structures.

In the last step, we check each structure against an unbinding
criterion. Once we have marked its more massive partner for each
structure, we sort them recursively such that the larger partners
(parents) are always after the smaller ones (children). Then, we
unbind structure after structure from children to parents and add
unbound particles to the larger partner. If the structure has less than
Ncut = 20 particles after the unbinding process, then we mark it as
not bound and attach all its particles to its more massive partner (note
that a smaller Ncut is used for the resolution study in Section 4.1.4).
The most bound particle of each halo/subhalo defines its position
centre.

Although HSF can be used on the entire volume, to speed up the
process of the identification of the structures in the cosmological
simulation volume, we first apply the FOF method to disjoint the
particles into smaller FOF groups.

2.16 6DFOF (Zemp & Diemand)

6DFOF is a simple extension of the well-known FOF method which
also includes a proximity condition in velocity space. Since the
centres of all resolved haloes and subhaloes reach a similar peak
phase-space density, they can all be found at once with 6DFOF. The
algorithm was first presented in Diemand et al. (2006). The 6DFOF

algorithm links two particles if the condition

(x1 − x2)2

�x2
+ (v1 − v2)2

�v2
< 1 (1)

is fulfilled. There are three free parameters: �x, the linking length
in position space, �v, the linking length in velocity space, and
Nmin, the minimum number of particles in a linked group so that
it will be accepted. For �v → ∞, it reduces to the standard FOF
scheme. The 6DFOF algorithm is used for finding the phase-space
coordinates of the high phase-space density cores of haloes on all
levels of the hierarchy and is fully integrated in parallel within the
MPI and OpenMP parallelized code PKDGRAV (Stadel 2001).

The centre position and velocity of a halo are then determined
from the linked particles of that halo. For the centre position of a
halo, one can choose between the following three types: (i) the centre
of mass of its linked particles; (ii) the position of the particle with
the largest absolute value of the potential among its linked particles;
or (iii) the position of the particle which has the largest local mass
density among its linked particles. For the analysis presented here,
we chose type (iii) as our halo centre position definition. The centre
velocity of a halo is calculated as the centre-of-mass velocity of
its linked particles. Since in 6DFOF only the particles with a high
phase-space density in the very centre of each halo (or subhalo) are
linked together, it explains the somewhat different halo velocities
(compared to the other halo finders) and slightly offset centres in
cases where only a few particles were linked.

Other properties of interest (e.g. mass, size or maximum of the
circular velocity curve) and the hierarchy level of the individual
haloes are then determined by a separate profiling routine in a post-
processing step. For example, a characteristic size and mass-scale
definition (e.g. r200c and M200c) for field haloes based on traditional
SO criteria can be specified by the user. For subhaloes, a trunca-
tion scale can be estimated as the location where the mass density
profile reaches a user-specified slope. During the profiling step, no
unbinding procedure is performed. Hence, the profiling step does
not base its (sub)halo properties upon particle lists but rather on
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spherical density profiles. Therefore, 6DFOF directly returned halo
properties instead of the (requested) particle ID lists.

2.17 ROCKSTAR (Behroozi)

ROCKSTAR is a new phase-space-based halo finder designed to max-
imize halo consistency across time-steps; as such, it is especially
useful for studying merger trees and halo evolution (Behroozi et al.,
in preparation). ROCKSTAR first selects particle groups with a 3D
FOF variant with a very large linking length (b = 0.28). For each
main FOF group, ROCKSTAR builds a hierarchy of FOF subgroups
in phase space by progressively and adaptively reducing the linking
length, so that a tunable fraction (70 per cent, for this analysis) of
particles are captured at each subgroup as compared to the imme-
diate parent group. For each subgroup, the phase-space metric is
renormalized by the standard deviations of the particle position and
velocity, that is, for two particles p1 and p2 in a given subgroup, the
distance metric is defined as

d(p1, p2) =
[

(x1 − x2)2

σ 2
x

+ (v1 − v2)2

σ 2
v

]1/2

, (2)

where σ x and σ v are the particle position and velocity dispersion,
respectively, for the given subgroup. This metric ensures an adap-
tive selection of overdensities at each successive level of the FOF
hierarchy.

When this is complete, ROCKSTAR converts FOF subgroups into
haloes beginning at the deepest level of the hierarchy. For a subgroup
without any further sublevels, all the particles are assigned to a
single seed halo. If the parent group has no other subgroups, then
all the particles in the parent group are assigned to the same seed
halo as the subgroup. However, if the parent group has multiple
subgroups, then particles are assigned to the subgroups’ seed haloes
based on their phase-space proximity. In this case, the phase-space
metric is set by halo properties, so that the distance between a halo
h and a particle p is defined as

d(h, p) =
[

(xh − xp)2

r2
vir

+ (vh − vp)2

σ 2
v

]1/2

, (3)

where rvir is the current virial radius of the seed halo and σ v is the
current particle velocity dispersion. This process is repeated at all
levels of the hierarchy until all particles in the base FOF group have
been assigned to haloes. Unbinding is performed using the full par-
ticle potentials (calculated using a modified Barnes & Hut method,
Barnes & Hut 1986); halo centres are defined by averaging parti-
cle positions at the FOF hierarchy level which yields the minimum
estimated Poisson error – which in practice amounts to averaging
positions in a small region close to the phase-space density peak.
For further details about the unbinding process and for details about
the accurate calculation of halo properties, see Behroozi et al. (in
preparation).

ROCKSTAR is a massively parallel code (hybrid OpenMP/MPI
style); it can already run on up to 105 CPUs and on the very largest
simulations (>1010 particles). Additionally, it is very efficient, re-
quiring only 56 bytes of memory per particle and 4–8 (total) CPU
hours per billion particles in a simulation snapshot. The code is in
the final stages of development; as such, the results in this paper are
a minimum threshold for the performance and accuracy of the final
version.8

8 Those interested in obtaining a copy of the code as well as a draft of
the paper should contact the author at behroozi@stanford.edu. The current
acceptable input formats for simulation files are ART, GADGET-2 and ASCII.

3 TH E DATA

In order to study, quantify and assess the differences between vari-
ous halo-finding techniques, we, first, have to define a unique set of
test cases. In that regard, we decided to split the suite of comparisons
into two major parts:

(i) well-defined mock haloes consisting of field haloes in isola-
tion as well as (sub-)subhaloes embedded within the density back-
ground of larger entities; and

(ii) a state-of-the-art cosmological simulation primarily focusing
on the large-scale structure.

We further restricted ourselves to analysing DM-only data sets as
the inclusion of baryons (especially gas and its additional physics)
will most certainly complicate the issue of halo finding. As most of
the codes participating in this comparison project do not consider
gas physics in the process of object identification, we settled for
postponing such a comparison to a later study.

We further adopted the following strategy for the comparison. For
the mock haloes, each code was asked to return a list of particles
and the centre of the (sub)halo as derived from applying the halo
finder to the respective data set. These centres and particle lists were
then post-processed by one single code deriving all the quantities
studied below. By this approach we aimed at homogenizing the
comparison and eliminating subtle code-to-code variations during
the analysis process. However, we also need to acknowledge that
not all codes complied with this request as they were not designed
to return particle lists; those codes nevertheless provided the halo
properties in question and are included in the comparison.

For the comparison of the cosmological simulations, each code
merely had to return those halo properties to be studied, based upon
each and every code individually. The idea was to compare the actual
performance of the codes in a realistic setup without interference in
the identification/analysis process.

3.1 Mock haloes

In order to be able to best quantify any differences in the results re-
turned by different halo finders, it is best to construct test scenarios
for which the correct answer is known in advance. Even though we
primarily aim at comparing vmax and the number of gravitationally
bound particles, we also want to have full control over various defi-
nitions of, for instance, virial mass, that is, we require haloes whose
density profile is well known. Additionally, as subhalo detection is
of prime interest in state-of-the-art cosmological simulations, we
also place haloes within haloes within haloes, and so on. Further,
sampling a given density profile with particles also gives us the flex-
ibility to study resolution effects related to the number of particles
actually used.

We primarily used the functional form for the (DM) density
profile of haloes originally proposed in a series of papers by Navarro,
Frenk & White (Navarro et al. 1995, 1996, 1997), the so-called
‘NFW profile’:
ρ(r)

ρcrit
= δc

r/rs(1 + r/rs)2
, (4)

where ρcrit is the critical density of the universe, rs is the scale radius
and δc is the characteristic density. NFW haloes are characterized
by their mass for a given enclosed overdensity,

M� = 4π

3
r3
��ρcrit, (5)

where � is a multiple of the critical density that defines the mag-
nitude of the overdensity and r� is the radius at which this occurs.
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Table 1. The properties of the (sub)haloes for the study of recovered halo properties presented in Sections 4.1.1 and 4.1.2. The
number of particles Nxxx counts all particles out to Rxxx where the density drops below xxx × ρcrit. Masses are given in h−1 M	,
radii in h−1 kpc and velocities in km s−1. Note that all haloes have been sampled out to 2 × R100 and that the Plummer sub-subhalo
does not reach this overdensity and has been truncated at 23.9 h−1 kpc. The halo type indicates whether the halo is a host, a subhalo
or a sub-subhalo. Rs is the scalelength of the appropriate halo type.

Profile Type N100 M100 R100 N200 M200 R200 Rs vmax

NFW Host 106 1014 947.4 760 892 7.61 × 1013 689.1 189.5 715
Sub 104 1012 204.1 8066 8.07 × 1011 151.4 17.0 182
Sub-sub 102 1010 44.0 84 8.42 × 109 33.1 2.6 43

Plummer Host 106 1014 947.0 966 326 9.66 × 1013 760.5 190.0 961
Sub 104 1012 204.0 9937 9.94 × 1011 161.7 17.0 314
Sub-sub 102 1010 23.9 100 10.00× 109 23.9 2.6 79

The characteristic density is then defined as

δc = �

3

c3

ln(1 + c) − c/(1 + c)
, (6)

where c = r�/rs is the concentration. The mock haloes were gen-
erated by using a predefined number of particles that reproduced
the NFW profile even though the consensus has moved away from
the statement that DM haloes follow this particular profile all the
way down to the centre. We are not interested in probing those very
central regions where the density profile starts to deviate from the
NFW form as found nowadays in cosmological simulations (Stadel
et al. 2009; Navarro et al. 2010). We need to stress that the po-
sition and size of the maximum of the rotation curve is in fact
unaffected in all tests presented here. The velocities of the particles
were then assigned using the velocity dispersion given in Łokas &
Mamon (2001) and distributed using a Maxwell–Boltzmann func-
tion (Hernquist 1993).9

In addition to mock haloes whose density profile is based upon the
findings in cosmological simulations (at least down to those scales
probed here), we also chose to generate test haloes that follow a
Plummer profile (Plummer 1911),

ρ(r) = 3M

4πr3
s

(
1 + r2

r2
s

)−5/2

, (7)

where M is the total mass and rs is the scale radius. The mock haloes
were then produced again using a pre-defined number of particles to
reproduce the profile, but this time the velocities were obtained using
an isotropic, spherically symmetric distribution function (Binney &
Tremaine 1987). The two major differences between the Plummer
and the NFW density profile are that for the former profile the mass
converges and it contains a well-defined constant-density core. This
constant density may pose problems for halo finders as most of them
rely on identifying peaks in the density field as (potential) sites for
DM haloes. We stress that the Plummer spheres are intended as
academic problems with no observed counterpart in cosmological
simulations and hence only to be taken lightly and for information
purposes; they may be viewed as a stability test for halo finders
and as a trial how sensitive halo characteristics are against precise
measurements of the centre. We will see that some properties can

9 We are aware of that the velocity distribution is not derived from the full
distribution function and that the Maxwell–Boltzmann distribution is only
an approximation (cf. Kazantzidis, Magorrian & Moore 2004; Zemp et al.
2008). Despite this, it will have no effect on the ability of halo finders to
recover the haloes as has been shown in Muldrew et al. (2011) where also
more details about the generation of the mock haloes can be found.

still be stably recovered even if an incorrect determination of the
Plummer halo centre is made.

As we also plan to study the accurate recovery of substructure, we
generated setups where one (or multiple) subhaloes are embedded
within the density profile of a larger host halo. To this end, we
generate, for instance, two haloes in isolation: one of them (the
more massive one) will then serve as the host, whereas the lighter
one will be placed inside at a known distance from the centre of
its host and with a certain (bulk) velocity. The concentrations (i.e.
the ratio between the virial and the scale radii) have been chosen in
order to meet the findings of cosmological simulations (e.g. Bullock
et al. 2001). All our mock haloes are set up with fully sampled 6D
initial phase-space distributions and every halo (irrespective of it
becoming a host or a subhalo) has been evolved in isolation for
several Gyr in order to guarantee equilibrium. The mass of all
particles in both the host halo and the subhalo is identical and all
haloes have been sampled with particles out to 2 × R100, where R100

marks the point where the density drops below 100 × ρcrit. For more
details of the procedure and the generation of the NFW haloes, we
would like to refer the reader to Muldrew et al. (2011) and Read
et al. (2006), respectively.

The characteristics of the haloes are summarized in Table 1. We
are aware of the fact that even though the radius at which the en-
closed overdensity reaches some defined level is well defined for
our subhaloes when they were generated in isolation, such a defini-
tion becomes obsolete once they are placed inside a host. However,
we nevertheless need to acknowledge that such a definition may
serve as a fair basis for the comparisons of the recovery of subhalo
properties amongst different halo finders.

Further, placing an unmodified subhalo at an arbitrary radial
distance within a parent halo is also in part an academic exercise.
It neglects that ‘real’ subhaloes will always be tidally truncated.
In that regard, it is not realistic to have an extended/untruncated
subhalo at small distances to the host’s centre. Some halo finders
(e.g. SUBFIND) rely on the tidal truncation in order to be able to avoid
a very large radially dependent bias in the amount of mass that can
be recovered for a subhalo.

For each of the two types of density profiles, we generated the
following setups:

(i) isolated host halo;
(ii) isolated host halo + subhalo at 0.5Rhost

100 ;
(iii) isolated host halo + subhalo at 0.5Rhost

100 + subsubhalo at
(0.5Rhost

100 + 0.5Rsubhalo
100 ); and

(iv) isolated host halo + five subhaloes at various distances.

The (sub-)subhaloes were placed along the x-axis and given radi-
ally infalling bulk velocities of 1000 km s−1 for the subhalo and
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Table 2. The properties of the subhaloes for the NFW resolution
study presented in Section 4.1.4. Radii are given in h−1 kpc and
velocities in km s−1.

N100 Ntot R100 vmax Rvmax

10 13 20.41 18.24 3.68
20 27 25.72 22.99 4.62
30 41 29.44 26.31 5.30
40 55 32.40 28.96 5.85
50 68 34.90 31.20 6.30
100 137 43.98 39.31 7.93
500 687 75.20 67.21 13.55
1000 1375 94.74 84.68 17.08

1200 km s−1 for the sub-subhalo. These velocities are typical for
what you would expect in a DM host halo and were set to round
numbers to make the analysis easier; their values were motivated
by

√
2GMhost(<D)/D, where D is the distance of the subhalo from

the host’s centre.
The first three setups were used to study the overall recovery

of (sub)halo properties presented in Section 4.1.1. The fourth test
has been used to study the radial dependence of subhalo properties
introduced in Section 4.1.2.

Besides the recovery of (sub)halo properties, we also aim at
answering the question ‘how many particles are required to find a
subhalo?’ To this end, we systematically lowered the number of
particles (and hence also the subhalo mass as our particle mass
remains constant) used to sample the subhalo listed above as test
case # 2. The properties of these mock subhaloes are summarized
in Table 2 and the results will be shown in Section 4.1.4.

Besides these well-controlled tests, we also performed a so-called
‘Blind Test’ where the precise setup of the data to be analysed by
each halo finder was unknown to the participants. We introduce
this particular experiment alongside its results in a stand-alone Sec-
tion 4.1.5. Only a small subset of the halo finders took part in this
trial.

We close this section with a cautionary remark that not all halo
finders are ab initio capable of identifying subhaloes and hence
some of the test cases outlined here were not performed by all the
finders. Therefore, some of the codes only contribute data points
for the host halo in Section 4.

3.2 Cosmological simulation

The cosmological simulation used for the halo-finder code com-
parison project is the so-called MareNostrum Universe which was
performed with the entropy-conserving GADGET-2 code (Springel
2005). It followed the non-linear evolution of structures in gas and
DM from z = 40 to the present epoch (z = 0) within a comoving
cube of side 500 h−1 Mpc. It assumed the spatially flat concordance
cosmological model with the following parameters: the total matter
density 
m = 0.3, the baryon density 
b = 0.045, the cosmological
constant 
� = 0.7, the Hubble parameter h = 0.7, the slope of the
initial power spectrum n = 1 and the normalization σ 8 = 0.9. Both
components, the gas and the DM, were resolved by 10243 particles,
which resulted in a mass of mDM = 8.3 × 109 h−1 M	 for the DM
particles and mgas = 1.5 × 109 h−1 M	 for the gas particles. For
more details, we refer the reader to Gottlöber & Yepes (2007) that
describes the simulation and presents results drawn from it.

For the comparison presented here, we discarded the gas parti-
cles as not all halo finders yet incorporate a proper treatment of
gas physics in their codes. The focus here lies with the DM struc-

tures. However, to avoid that too many particles will be considered
‘unbound’ (for those halo finders that perform an unbinding proce-
dure), the masses of the DM particles have been corrected for this,
that is, mcorrected

DM = mDM/(1 − fb), where f b = 
b/
m is the cosmic
baryon fraction of our model universe.

In order to allow non-parallel halo finders to participate in this
test, we degraded the resolution from the original 10243 particles
down to 5123 as well as to 2563 particles. The properties to be
compared will, however, be drawn from the highest resolved data set
for each individual halo finder, making the appropriate mass/number
cuts when producing the respective plots.

3.3 Code participation

Not all codes have participated in all the tests just introduced and
outlined. Hence, in order to facilitate an easier comparison of the
results and their relation to the particular code, we provide in Table 3
an overview of the tests and the halo finders participating in them. In
that regard, we also list for the cosmological simulation the respec-
tive resolution of the data set analysed by each code. The last two
columns simply indicate whether the code performs an unbinding
procedure and provided subhalo properties, respectively.

4 TH E C O M PA R I S O N

This section forms the major part of this paper as it compares the
halo catalogues derived with various halo finders when applied to
the suite of test scenarios introduced in the previous section. We first
address the issue of the controlled experiments brought forward in
Section 4.1 followed by the analysis of the cosmological simulation
introduced in Section 4.2. As already mentioned before, we are
solely addressing DM haloes, leaving the inclusion of baryonic
matter (especially gas) for a later study.

4.1 Mock haloes

Before presenting the results of the cross-comparison, we need to
explain further the actual procedures applied. Each data set was
given to the respective code representative asking them to return the
centre of each object found as well as a list of the (possible) particles
belonging to each (sub)halo. A single code using only that particu-
lar list was then used to derive the bulk velocity Vbulk, the (fiducial)
mass M200 and the peak of the rotation curve, vmax, in order to elim-
inate differences in the determination of said values from code to
code, or, in other words, we did not aim at comparing how different
codes calculate, for instance, vmax or M200 and so eliminated that
issue. This simple analysis routine is also available from the project
website. We were aiming at answering the more fundamental ques-
tion ‘which particles may or may not belong to a halo?’ according
to each code. However, not all representatives returned particle lists
as requested (due to a different method or technical difficulties) but
rather directly provided the values in question; those codes are BDM,
FOF and 6DFOF. Further, FOF did not provide values for vmax.

When comparing results, we primarily focused on fractional dif-
ferences to the theoretical values by calculating �x/xModel = (xcode −
xModel)/xModel, where x is the halo property in question.

4.1.1 Recovery of host and subhalo properties

For all the subsequent analyses and the plots presented in this
subsection, we used the setups (i) through (iii) specified in Sec-
tion 3.1. In that regard, we have three host haloes (one for the
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Table 3. Brief summary of the codes participating in the comparison project. The first six columns provide a synopsis of the respective tests the code participated
in (columns 2–7). The last two columns simply list whether the code performs an unbinding procedure and provided subhalo properties, respectively.

Code Participation in the test Unbinding Subhaloes
Recovery Radial dependence Dynamical infall Resolution Blind Cosmology

AHF Yes Yes Yes Yes Yes 10243 Yes Yes
ASOHF Yes Yes Yes Yes Yes 2563 Yes Yes
BDM Yes Yes Yes Yes Yes 5123 Yes Yes
PSO Only host No No No Only host 10243 No No
LANL Only host No No No No 10243 No No
SUBFIND Yes Yes Yes Yes Yes 10243 Yes Yes
FOF Yes Yes Yes Yes No 10243, no vmax No Limited
PFOF Only host No No No No 5123 No No
NTROPY-FOFSV Only host No No No No 10243, no vmax No No
VOBOZ Yes Yes No Yes Yes 5123 Yes Yes
ORIGAMI No No No No No 5123 Yes No
SKID Yes Yes Yes Yes Yes 10243 Yes Yes
ADAPTAHOP Yes Yes Yes Yes Yes 5123 No Yes
HOT Yes Yes Yes Yes Yes No No Yes
HSF Yes Yes Yes Yes Yes 10243 Yes Yes
6DFOF Yes Yes Yes Yes Yes 10243 No Yes
ROCKSTAR Yes Yes Yes Yes No 10243 Yes Yes

host alone, one from the host+subhalo setup and one from the
host+subhalo+subsubhalo configuration); we further have two sub-
haloes at our disposal (one from the host+subhalo and one from
the host+subhalo+subsubhalo tests) as well as one subsubhalo.
In all the figures presented below, the origin of the halo is indi-
cated by the size of the symbol: the largest symbol refers to the
host+subhalo+subsubhalo set with the symbol size decreasing in
the order of the host+subhalo towards the host test alone. We further
always show the results for the NFW mock haloes in the left-hand
panel and for the Plummer spheres in the right-hand panel. As much
as possible, the halo finders have been organized in terms of their
methodology: SO finders first followed by FOF-based finders with
6D phase-space finders last.

Centre determination. We start with inspecting the recovery of
the position of the haloes as practically all subsequent analyses
as well as the properties of haloes depend on the right centre de-
termination. The results can be viewed in Fig. 2 where the y-axis

Figure 2. The offset of the actual and recovered centres for the NFW
(left-hand panel) and Plummer (right-hand panel) density mock haloes. The
symbols refer to either the host halo, subhalo or subsubhalo as indicated,
while the symbol size indicates the test sequence as detailed in the text (i.e.
larger symbols for haloes containing more subhaloes).

represents the halo finder and the x-axis measures the offset between
the actual position and the recovered centre in h−1 kpc.

We can clearly see differences for all sorts of comparisons: host
haloes versus (sub-)subhaloes, NFW versus Plummer model, and –
of course – amongst halo finders. While for the NFW density pro-
file the deviations between the analytical and recovered centres are
for the majority of haloes and codes below ≈5 h−1 kpc, there are
nevertheless some outliers. For the large halo, the 100th particle
is 3 h−1 kpc from the nominal centre. These outliers are primarily
for the FOF-based halo finders which are using a centre of mass
rather than a density peak as the centre. However, for a perfectly
spherically symmetric setup as the one used here, the differences
between the centre of mass and density peak should be small. Some
of the finders (PSO, LANL, PFOF, NTROPY-FOFSV) were not designed
to find substructure and so do not return the locations for these.
Interestingly, HOT6D cannot detect the NFW sub-subhalo. The situ-
ation is a bit different for the Plummer model that consists of a flat
density profile inwards from the scale radius of 190 h−1 kpc. While
the centre offset for the FOF finders remains the same, we now
also observe a shift towards larger offset values for the majority of
the other codes; some codes were even unable to locate the host
halo at all (e.g. SKID), while other finders marginally improved their
(sub)halo centre determination (AHF, ASOHF, HOT3D). Remember that
for 6DFOF all positions and velocities were solely determined from
the linked particles, which explains the slightly offset centres in
cases where only a few particles were linked (as in the case of the
Plummer sphere which had an artificial low phase-space density
by construction) as well as the somewhat different bulk velocities
(when compared to the other halo finders below).

Halo bulk velocity. A natural follow-up to the halo centre is to
ask for the credibility of the bulk velocity of the halo. Errors in this
value would indicate the contamination from particles not belonging
to the halo in question to be studied in greater detail in Section 4.1.4
below. In our test data, the host is always at rest, whereas the subhalo
(sub-subhalo) flies towards the centre with 1000 (1200) km s−1

along the negative x-direction. The fractional difference between
the model velocity and the bulk velocity as measured for each halo
finder is presented in Fig. 3. Note that we have normalized the host’s
velocities to the rotational velocity at R100, that is, ≈1000 km s−1,
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Figure 3. Recovery of halo bulk velocities in comparison to the analytical
input values for the NFW (left-hand panel) and Plummer (right-hand panel)
density mock haloes. Note that the host halo has been set up to be at rest
with vbulk = 0. The symbols have the same meaning as in Fig. 2.

Figure 4. Total number of particles recovered for the (sub)halo for the NFW
(left-hand panel) and Plummer (right-hand panel) density mock haloes with
respect to the number of particles within M200. The symbols have the same
meaning as in Fig. 2.

for the two density profiles. Here we find that for practically all
halo finders, the error in the bulk velocity is smaller than 3 per
cent; only some outliers exist. Note that we used all particles in the
determination of the bulk velocities as returned/recovered by the
respective halo finder. SKID displays very significant contamination
in the recovered subhaloes with a 40 per cent error in the recovered
bulk velocity but is also one of the codes whose returned particle
lists are intended to undergo significant post-processing. ADAPTAHOP

and HOT3D have smaller but still significant levels of contamination
within the returned substructures. The marginal offset in the bulk
velocities of the Plummer host haloes for 6DFOF and BDM is directly
related to the respective centre offsets seen in Fig. 2: those two
codes base their bulk velocities on particles in the central regions.

Number of particles. In Fig. 4, we are comparing the number of
particles recovered by each halo finder to the number of particles
within M200 listed in Table 1.10 We are aware that there is no such
well-defined radius for (sub-)subhaloes, but it nevertheless provides
a well-defined base to compare against.

10 Note that in all subsequent plots, we are using N200 when referring to
Nmodel.

Figure 5. M200 mass (as determined from the supplied particle lists) mea-
sured according to the mean enclosed density being 200 × ρcrit criterion for
the NFW (left-hand panel) and Plummer (right-hand panel) density mock
haloes extracted from each finder’s list of gravitationally bound particles.
The symbols have the same meaning as in Fig. 2.

We observe that while the errors are at times substantial for the
NFW model the Plummer results appear to be more robust this
time. However, this is readily explained by the form of the applied
density profile: the variations in mass and hence in the number of
particles are more pronounced for the NFW profile than for the
Plummer model when changing the (definition of the) edge of a
halo or, in other words, the total mass of a Plummer model is well
defined, whereas the mass of an NFW halo diverges. Therefore,
(minor) changes and subtleties in the definition of the other edge of
a (sub)halo will lead to deviations from the analytically expected
value – at least for the NFW model. To this extent we also need
to clarify that each halo finder had been asked to return that set
of particles that was believed to be part of a gravitationally bound
structure; participants were not asked to return the list of particles
that make up M200. Post-processing of the supplied particle lists to
apply this criterion results in errors for the NFW profiles that are
well below 10 per cent – at least for the host haloes (cf. Fig. 5
below). However, a straight comparison of the number of recovered
particles amongst the codes reveals a huge scatter. This is due to the
fact that the individual codes are tuned to different criteria to define
the edge of the halo. Clearly, some codes (HSF, HOT, VOBOZ) have
been tuned to extract an effectively smaller overdensity for this test
than, say, 6DFOF, LANL, PSO or AHF. This is a well-known issue and
all code developers are well aware of it. Perhaps more concerning
is the wide scatter in the relative mass of the largest subhalo. Here
M200 is ill-determined but the ratio of the substructure mass to the
host halo mass displays a wide scatter. This ratio is of astrophysical
importance for several issues.

The difference in a host halo seen for FOF and PFOF is – in gen-
eral – due to the choice of a linking length not corresponding to
200 × ρcrit. However, with an appropriate linking length the FOF
algorithm detects the halo at the desired overdensity correctly as
can be seen for the host-only and host+subhalo data for which
there is agreement with the analytical expectation as opposed to
the host+subhalo+subsubhalo where the standard linking length
has been applied and hence the number of particles (and mass) is
overestimated. As a (down)tuned linking length has also been uti-
lized for the detection of the (positions of the) subhaloes, the higher
overdensity encompassed naturally led to a smaller number of par-
ticles (and masses) than assumed in the model.
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Again, we stress that Fig. 4 does not necessarily reflect the num-
ber of particles actually used to calculate halo properties; it is the
raw number of (bound) particles assigned to the centre of the re-
spective (sub)halo and used for further post-processing with most
of the codes. However, the comparison also indicates that neither
the number of particles nor M as defined by some overdensity cri-
terion (see below) is a stable quantity for a fair comparison; this
is why we argue in favour of the peak of the rotation curve for
cross-comparison as already highlighted in the Introduction.

Mass. Using the particle lists provided by each halo finder, we
extract each object and calculate the density profile. From this we
determine the point where it drops below 200 × ρcrit. This point can
then be used as a radial distance within which to define M200 which
is then compared against the theoretical expectation (cf. Table 1) in
Fig. 5. Again, we acknowledge that this is not the correct definition
for the (sub-)subhalo mass, but can regardlessly be used to compare
halo finders amongst themselves.

As already outlined in the previous paragraph, the differences
to the analytical values (and between the codes) are substantially
alleviated, now that differences in the definition for the edge of
each halo have been removed. The apparent underestimation of the
(sub-)subhalo masses has also to be taken and digested carefully as
the M200 values are based upon objects in isolation when these are
embedded in a large host halo. However, recall that the values for
BDM, FOF and 6DFOF are based upon their respective criteria as these
codes did not return particle lists but directly M200.

Amongst those codes that did recover subhaloes and underwent
the same processing scheme, there remains a surprisingly wide vari-
ation in the recovered subhalo mass M200. Almost all the codes stud-
ied here post-process their subhalo catalogues heavily to alleviate
this problem. We would, however, stress that the precise definition
for a subhalo content can, as demonstrated, lead to a range of re-
covered subhalo masses, a point users of subhalo catalogues should
be well aware of. We will return to the issue of the missing subhalo
mass in Section 4.1.3 below, which provides some explanation for
the variation.

Maximum of the rotation curve. As outlined in Section 1.3,
M200 does not provide a fair measure for the (sub-)subhalo mass
and hence we consider the maximum circular velocity vmax as a
proxy for mass. The fractional difference between the theoretically
derived vmax and the value based upon the particles returned by each
halo finder is plotted in Fig. 6. While we now find a considerably

Figure 6. Recovery of numerical vmax values in comparison to the analytical
input values for the NFW (left-hand panel) and Plummer (right-hand panel)
density mock haloes. The symbols have the same meaning as in Fig. 2.

improved agreement with the analytical calculation, the sub-subhalo
has still not been recovered correctly in most of the cases. This
result is entirely in line with the results of fig. 7 of Muldrew et al.
(2011) where the error in measuring vmax for a range of particle
numbers was calculated: we should not be surprised by a 10 per
cent underestimate for our subsubhalo as this is well within the
expected limits.

4.1.2 Radial dependence of subhalo properties

The following test aims at studying how the recovered properties of
a subhalo change as a function of the distance from the centre of the
subhalo to the centre of its host. We always placed the same subhalo
(sampled with 10 000 particles) at various distances and applied
each halo finder to this test scenario, without changing the respective
code parameters in between the analyses. We then focused our
attention on the number of gravitationally bound particles in Fig. 7,
the recovered M200 masses in Fig. 8 and the maximum of the rotation
curve in Fig. 9.

We reiterate that this particular test (as well as the following two)
is only suited to halo finders that are able to identify the substruc-
ture embedded within the density profile of a larger encompassing
object. Therefore, some of the codes will not appear in this and
the following tests in Sections 4.1.3 and 4.1.4. However, we also
need to acknowledge that some of the code developers were keen

Figure 7. Number of particles belonging to the subhalo for the NFW (upper
panel) and Plummer (lower panel) density mock haloes as a function of the
subhalo distance from the host.
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Figure 8. Hypothetical M200 value comparison to the NFW (upper panel)
and Plummer (lower panel) subhalo as a function of the distance from the
host. M200 was calculated again considering the recovered particles N (as
presented in Fig. 7) in isolation.

to participate in this venture and manually tuned their halo finders
to (at least) provide a centre and possibly mass estimate for the
subhalo under investigation (e.g. FOF by Gottlöber & Turachninov
systematically lowered their linking length until an object had been
found using the spin parameter as a measure for credibility (cf.
Section 2.7); however, as FOF in its basic implementation does not
perform any unbinding, they did not dispense particle lists and/or
internal properties). Therefore, the results for FOF are to be taken
lightly and with care.

Number of particles. Aside from the location of the substructure,
which we are not investigating in more detail in this particular
subsection, the number of particles recovered by each halo finder
is the first quantity to explore as a function of the subhalo distance.
The results can be viewed in Fig. 7 with the NFW mock halo in the
upper panel and the Plummer sphere in the lower. Recall that there
are five subhaloes placed at various distances from the centre of the
host with the closest one actually overlapping with the host centre.

As expected from the above results of the previous section (which
equate to the middle position of these five haloes), various halo
finders recover a range of the number of particles within the halo.
Only the phase-space-based finders are capable of disentangling
the subhalo when it is directly at the centre. Even then their particle
recovery indicates that either there are too few particles associated
with the subhalo or they found the host. We further observe that, at

Figure 9. Recovery of numerical vmax values in comparison to the analytical
input values for the NFW (upper panel) and Plummer (lower panel) density
mock haloes as a function of the subhalo distance from the host.

least for the NFW haloes, the number of recovered particles drops
the closer we get to the centre. This is naturally explained by the
fact that the density contrast of the subhalo becomes smaller and
the point where the host halo’s density takes over is closer to the
centre of the subhalo. This is another reflection of the fact that the
number of particles (or anything based upon a measure of the ‘halo
edge’) is not a good proxy for the actual subhalo. The situation
is obviously different for the Plummer sphere with no pronounced
density rise towards the centre; therefore, the subhalo appears to
be well recovered in this case. For the low number of particles
recovered by SUBFIND, we refer the reader to an improved discussion
and investigation, respectively, in Muldrew et al. (2011).

In any case, these are still simply the particle lists; we continue
to check the (hypothetical) M200 values as well as the recovery of
the maximum of the rotation curve. When defining a (hypothetical)
M200 value, considering the subhalo in isolation, we find basically
the same trends as for the number of particles. This can be verified
in Fig. 8 where we observe the same phenomena as in Fig. 7. How-
ever, SKID is the exception with the M200 values closer to the actual
model mass across all distances than to the number of particles,
as expected and as they themselves would obtain during their own
post-processing steps.

We note that the discrepancy between the (fiducial) mass and the
real mass of the subhalo placed at different radial distances from
the centre is more serious in this idealized setup than it would be
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in a realistic situation, where the substructures would experience
tidal truncation in moving towards the inner regions of the halo (see
the discussion in Section 3.1 as well as the study of the dynamical
subhalo infall in Section 4.1.3 below); when considering the mass
within the tidal truncation radius, the discrepancy between the ‘real’
and recovered mass would reduce.
Maximum of the rotation curve. The most credible measure of the
subhalo mass, however, appears to be the maximum of the rotation
curve: it hardly changes its value, irrespective of the position inside
the host halo as can be seen in Fig. 9. All halo finders perform
equally well in recovering the vmax value from the list of particles
used in Fig. 7. This then indicates that the only difference between
the halo finders as seen as a substantial spread in (the upper panel
of) Fig. 7 stems from the outer and less-well-contrasted regions of
the subhalo.

We have seen in Section 4.1.1 that the maximum of the rotation
curve, vmax, serves as an adequate proxy for mass and hence we
test its sensitivity to the radial position in Fig. 9. We find that this
quantity is, as expected, hardly affected by the actual position of the
subhalo within the host. Its value is determined by the more central
regions of the subhalo and hence does not change if the object is
truncated in the outskirts due to the embedding within the host’s
background density field. Only when the two centres of the subhalo
and the host halo overlap do we encounter problems again; however,
HOT6D and HSF even master this situation fairly well (at least for the
more realistic NFW test scenario).

4.1.3 Dynamical infall of a subhalo

The test described and analysed in this subsection is a dynamic
extension of the previously studied radial distance test: we throw
a subhalo (initially sampled with 10 000 particles inside M100) into
a host halo two orders of magnitude more massive. It was initially
placed at a distance of D = 3×Rhost

100 with a radially inward velocity
of v = √

2GM(<D)/D = 686 km s−1 and then left to free fall.
During the temporal integration of this system with GADGET-2, the
cosmological expansion was turned off so the haloes were only
affected by gravity. The orbit of the subhalo takes it right through
the host halo centre, exiting on the other side. Due to the tidal forces,
the subhalo will lose mass and we aim at quantifying how different
halo finders recover both the number of (bound) particles as well as
the evolution of the peak rotational velocity.

Evolution in the number of particles. In Fig. 10, we start again
with the number of recovered particles, this time as a function of
time measured in Gyr since the infalling object passed 2×Rhost

200 . Note
that the fractional difference �N/Nmodel is measured with respect to
the number of particles, Nmodel, prior to infall and that the analysis
has only been performed over a certain number of output snapshots
and not every integration step. At the starting point, we observe
again the same scatter in the number of particles as already found in
Fig. 7.11 Until the passage through the very centre of the host halo
after approximately 1.8 Gyr, we also find the expected drop in the
number of particles due to the stripping of the subhalo; however, as
noted in Fig. 7, part of this drop can also be attributed to the subhalo
moving deeper into the dense region of the host. This drop in the
particle number has a marginally different shape depending on the
halo finder. However, this time, actually, all halo finders (expect

11 However, when comparing Fig. 7 with Fig. 10 one needs to bear in
mind that the radial dependence of subhalo properties only extends out to
≈1.37 × Rhost

200 , whereas the first data point in Fig. 10 is for 2 × Rhost
200 .

Figure 10. Temporal evolution of the number of particles belonging to the
subhalo for the dynamical infall study.

most of the phase-space finders, cf. Fig. 12 shown below) do lose
the subhalo when it overlaps with the host halo – or at least are
unable to determine its properties at that time (e.g. 6DFOF actually
found the objects but could not assign the correct particles to it as the
search radius for ‘subhalo membership’ was practically zero). After
the passage through the centre, all halo finders identify the object
again with more particles yet obviously not reaching the original
level anymore.

However, we also like to mention that after the core transition
of the subhalo we expect to find a more or less constant set of
particles that remain bound to the subhalo: as the radial distance
increases again there is no reason for the subhalo to lose additional
mass. It seems clear that the majority of structure finders agree on
this plateau value, but there are also some that return an unphysical
result in this regime (e.g. both HOT codes as well as 6DFOF in the
early phases).

Note again that none of the FOF-based halo finders is ab ini-
tio designed to locate substructure, but the FOF results have been
included as this code was manually tuned to locate subhaloes (cf.
Section 4.1.2).

Evolution of the maximum of the rotation curve. As we have
already seen before a number of times, the number of particles has
to be used with care as the actual halo properties will be based upon
them, but the list has undeniably to be pruned and/or post-processed.
We therefore present in Fig. 11 again the evolution of the maximum
of the rotation curve which focuses on the more central regions of
the subhalo and its particles. Here, we can undoubtedly see that all
halo finders perform equally well (again): they all start with a value
equal to the analytical input value and have dropped by the same
amount, once the subhalo has left the very central regions again.
However, the majority of the codes (except SUBFIND, HSF and SKID)
found a sharp rise in vmax right after the central passage.

To gain better insight into this region, we show in Fig. 12 a zoom
into the time-frame immediately surrounding the central passage,
this time though using the distance (as measured by the respective
halo finder) from the host centre as the x-axis. We attribute part of
this rise to an inclusion of host particles in the subhalo’s particle list
to be studied in greater detail below in Section 4.1.4; we can see

C© 2011 The Authors, MNRAS 415, 2293–2318
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



The Halo-Finder Comparison Project 2311

Figure 11. Temporal evolution of the maximum of the rotation curve for
the dynamical infall study.

Figure 12. The maximum of the rotation curve for the dynamical infall
study as a function of the distance (as measured by the halo finder) from the
centre of the host – zooming into the region about the centre.

that codes having problems with such contamination appear to show
this rise too – even though not all of the codes showing this rise are
amongst the list of finders showing contamination. However, this
rise is also (or maybe even more) indicative of problems with the
unbinding procedure: particles which have just left the subhalo (and
are then part of the host) may still be considered bound, depending
on the particulars of the halo finder. For instance, AHF assumes a
spherically symmetric object during the unbinding process which
is obviously not correct for an object heavily elongated by the
strong tides during the central passage. However, one should also
bear in mind that a rise in vmax also occurs when the subhalo gets
(tidally) compressed and hence Rmax is lowered (cf. Dekel, Devor &
Hetzroni 2003) even though this has not been seen in all (controlled)

experiments of this kind (e.g. Hayashi et al. 2003; Klimentowski
et al. 2009).

Finally, we point out that the x-axis is based upon the distance
to the host centre as measured by each individual halo finder and it
is rather obvious that all halo finders have recovered (more or less)
the same distance for the subhalo.

4.1.4 Resolution study of a subhalo

While we have seen that there is little variation of the most stable
subhalo properties with respect to the distance from the host (i.e.
vmax), we now investigate the number of particles required to (cred-
ibly) identify a subhalo. To this extent we used setup (ii) from the
list in Section 3.1 where we placed a single subhalo into a host halo
at half the host’s M100 radius. But this time we gradually lowered
its mass and number of particles (keeping the mass of an individual
particle constant). Even though it is meaningless to talk about R200

radii for subhaloes again, we are nevertheless comparing the num-
ber of gravitationally bound particles, as returned by the respective
halo finder, with the number of particles inside the subhaloes’ R200

radius; remember that the subhaloes were generated in isolation and
sampled out to two times their M100 radius (cf. Section 3.1).

Number of particles. The results of this resolution study can
be viewed in Fig. 13 where we plot the fractional difference in
the number of particles within R200 against the number of particles
in the subhalo. In this figure, there are two important things to
note and observe: (i) the end-point of each curve (towards lower
particle numbers) marks the point where the respective halo finder
was no longer able to identify the object; and (ii) a constant line
(irrespective of being above, on top or below the 0-line) means that
for each particle number the error in the determination is equal.
Again, practically all halo finders perform equally well, that is, they
recover the input number of particles with a constant error across all
values. Only the two HOT algorithms show a strong deviation due to
the lack of an unbinding procedure. It is also interesting to compare
the (inner) end-point of the curves marking the number of particles

Figure 13. Fractional difference between the number of particles within
the recovered R200 and the number of particles belonging to the halo as
returned by the respective halo finder versus the number of particles inside
the subhalo.
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for which a certain code stopped finding the subhalo: all of them
were still able to identify the object with 50 particles. HSF and SKID

actually went all the way down to 10 particles with VOBOZ, 6DFOF and
ROCKSTAR stopping at 20 particles, and AHF at 30. We need to stress
that codes were asked not to alter their technical parameters while
performing this resolution study and hence some may in fact be able
to recover objects with a lower number of particles than presented
here. For instance, we are aware of that SUBFIND (as well as AHF and
ASOHF) is capable of going all the way down to 20 particles, if the
technical parameters are adjusted appropriately.

In any case, we also observe that some codes show a rise in
�N/Nmodel towards lower particle numbers (e.g. ADAPTAHOP, HOT);
could this be due to the contamination from host halo particles? We
will study this phenomenon in the following subsection.

Contamination by host particles. Downsizing a subhalo yet still
trying to pinpoint it also raises the question how many of the re-
covered particles are actually subhalo and how many are host halo
particles. We are in the unique situation to know the IDs of both
the subhalo and the host halo and hence studied the ‘contamination’
of the subhalo with host particles as a function of the number of
(theoretical) subhalo particles in Fig. 14. We can see that the vast
majority of the halo finders did not assign any host particles to the
subhalo. However, some halo finders appear to have picked up a
fraction of host particles possibly leading to differences in the sub-
halo properties such as vmax investigated next. Note that the high
contamination for ADAPTAHOP is due to the lack of an unbinding
procedure.

Maximum of the rotation curve. As the number of particles is
merely a measure for the cross-performance of halo finders and not
(directly) related to credible subhalo properties, we also need to
have a look at vmax again. The fractional error as a function of the
(theoretical) number of subhalo particles is plotted in Fig. 15. We
note that aside from those halo finders who showed a contamination
by host particles, all codes recover the theoretical maximum of
the rotation curve down to the limit of their subhalo’s visibility
(although possibly the last data point for the lowest number of
particles should be discarded in that regard).

Figure 14. Fraction of host’s particles identified to be part of the subhalo
as a function of particles inside the subhalo.

Figure 15. Fractional difference between the theoretical maximum of the
rotation curve and the numerically derived maximum versus the theoretical
maximum for the subhalo.

4.1.5 The ‘Blind Test’

Aside from the mock haloes analysed before, we also designed a
particular test where none of the participants had foreknowledge of
what it contained; only Stuart Muldrew, who generated all the mock
haloes, knew the setup that is summarized in Table 4 where the type
‘Host’ refers to the host halo and ‘Sub’ refers to a subhalo. We
dubbed this individual test the ‘Blind Test’. Note that some of the
subhalo’s density profiles in this test followed a Hernquist model
(Hernquist 1990, marked ‘Hern’ in the table) instead of the NFW
profile. Further, two haloes were deliberately placed at the same
location yet with diametrically opposed velocities.

As this test more or less marked the end of the workshop and
was primarily considered a fun exercise, we did not include it in
the actual data set presented in Section 3.1. Note that not all halo
finders participated and that we did not give the players in the game a
chance to tune their code parameters to the data set. Nevertheless we
decided to simply show visual impressions of those who returned
results in Fig. 16. There we merely show the projections of the
(fiducial) R200 and Rvmax radii in the x–y plane as the z-coordinate
of all haloes is identical.

It is interesting to note that the phase-space halo finders were
again capable of locating the two overlapping subhaloes even though
this is not clearly visible in the projection (as their circles are ob-
viously overlapping). Of the 3D finders, SKID noted that there was
something odd at that position, returning one object with double

Table 4. Summary of the haloes in the Blind Test. Positions are given in
h−1 Mpc and velocities in km s−1.

Type N100 x y z vx vy vz Profile

Host 106 50 50 50 0 0 0 NFW
Sub 104 50.5 50 50 −103 0 0 NFW
Sub 104 50.5 50 50 103 0 0 NFW
Sub 104 49.5 50 50 103 0 0 Hern
Sub 102 50 49.8 50 103 103 0 NFW
Sub 102 50 50.2 50 0 −103 0 Hern
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Figure 16. Visual impression of the ‘Blind Test’ (projection into the x–y plane). Each halo found is represented by a circle with a radius equal to the fiducial
R200 value (solid black) and the Rvmax value (dashed red).

the mass (and Rvmax extending out to the outer radius). All other
halo finders only found one of the two subhaloes. Also remember
that PSO is not (yet) designed to find subhaloes and hence only the
host has been returned. It is further remarkable that none of the halo
finders had trouble finding the two small subhaloes while the host
had not been found for some of the codes.

Again, we would like to stress that this test should not be taken
too seriously. However, we nevertheless remark that analysing a
cosmological simulation is also a sort of ‘blind’ analysis as the
answer is not previously known.

4.2 Cosmological simulation

We now turn to the comparison of a real cosmological simulation
including a substantial number of objects formed and embedded
within the large-scale structure of the Universe.

However, even though the simulation contains a large number
of particles (i.e. up to 10243 in the highest resolved data set), the
given volume of side length 500 h−1 Mpc does not allow for a
study of subhaloes in detail: for the fiducial 5123 particle run the
largest object in the simulation box merely contains of the order of
10 subhaloes with the number of substructure objects dramatically
decreasing when moving to (potentially) lower mass host haloes.
We therefore stress that this particular comparison only focuses
on field haloes and hence is well suited even for those codes that
(presently) cannot cope with subhaloes.

Further, as mentioned already in Section 3.2 we have the data
available at various resolutions ranging from 2563 to 10243 particles.
We decided to use the highest resolution analysis performed by each
finder as has already been summarized in Table 3 in the subsequent
comparison plots. The analysis in this particular section primarily
revolves around the (statistical) recovery of halo properties. In that
regard, we are nevertheless limiting our analysis to properties akin
to the ones already studied in Section 4.1, namely the mass M,
the position R, the peak of the rotation curve vmax and the (bulk)

velocity Vbulk. We are going to utilize masses as defined via 200 ×
ρcrit, that is, M200.

We like to reiterate at this point again that for this particular com-
parison each halo finder returned halo properties as derived from
applying the code to the actual data set; we aim at comparing the
results of the codes for each and every single one being applied
to the data individually. We consider this the most realistic com-
parison as this directly gauges the differences of the resulting halo
catalogues.

We have already seen that all halo finders are capable of recov-
ering the mass of mock haloes, irrespective of whether the density
profile is cored or has a cusp (cf. Fig. 5). We therefore do not expect
to find surprising differences in the first and most obvious compar-
ison, that is, the (cumulative) mass function presented in Fig. 17.
Note that PFOF discarded objects below 100 particles and hence did
not return haloes below ≈8 × 1012 h−1 M	; similarly, PSO discarded
objects with fewer than 50 particles, according to the criterion laid
out in equation (30) of Lukić et al. (2007), and in each case the
(cumulative) mass function starts to flatten at approximately the
resolution limit of the simulation analysed by the respective code.

However, ORIGAMI seems to miss some low-mass structures
caught by other halo finders. One possible reason is that some
smaller density enhancements seen by other finders have not un-
dergone shell-crossing along three axes, and therefore do not meet
ORIGAMI’s definition of a halo. Another is that ORIGAMI may be miss-
ing subhaloes, which it does not attempt to separate from parent
haloes.

Further, the LANL halo finder is designed to be an FOF finder and,
if needed, SO objects are defined on top of such FOF haloes. Thus,
for smaller haloes, completeness is an issue as not every SO halo
will have an FOF counterpart. Of course, it is possible to run the
code in the limit b → 0 and Nmin = 1, having each particle serving
as a potential centre of an SO halo, but the increase in computational
cost would make this impractical, as direct SO halo finders which do
precisely this in a more effective manner already exist. Nevertheless,
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Figure 17. Upper panel: the cumulative mass (M200) function. The arrows indicate the 50 particle limit for the 10243 (left-hand panel), 5123 (middle panel)
and 2563 (right-hand panel) simulation data. The thin black lines crossing the whole plot corresponds to the mass function as determined by Warren et al. (2006,
solid line) and Tinker et al. (2008, dashed line). The error bars represent the mean mass function of the codes (±1σ ). Lower panel: the fractional difference
between the mean and code halo mass functions. For more details, refer to the text.

we can see that the computationally very fast method of growing
SO spheres on top of FOF proxy haloes results in excellent match
when compared to direct SO finders for well-sampled haloes (∼500
particles per halo).

In order to better view (possible) differences in the mass func-
tions, we further calculated the ‘mean mass function’ in 10 loga-
rithmically placed bins across the range 2 × 1011–1 × 1015 h−1 M	
alongside 1σ error bars for the means. Note that all codes only con-
tributed to those bins where their data set is considered complete.
We further deliberately stopped the binning at 1 × 1015 h−1 M	
to not be dominated by small number statistics for the few largest
objects. The results can also be viewed in Fig. 17, where we show
in the bottom panel the fractional difference between the mean and
the code mass functions across the respective mass range, and we
additionally added as the thin solid black line to the actual mass
function plot in the upper panel of Fig. 17 the numerically deter-
mined mass function of Warren et al. (2006) which is based upon
a suite of 16 10243 simulations of the �CDM universe as well as
the one of Tinker et al. (2008) derived from a substantial set of cos-
mological simulations actually including the ones used by Warren

et al. (2006) (cf. their fig. 1). Note that the former is based upon
FOF and the latter on SO masses.

As highlighted in Introduction 1.3, the peak value of the rotation
curve may be a more suitable quantity to use when it comes to com-
paring the masses of (DM) haloes. We therefore show in Fig. 18 the
cumulative distribution of vmax. Apart from the expected flattening
at low vmax due to resolution, we now note that this is in fact the
case: codes that did not estimate masses according to the standard
definition M(<R) = 4π/3R3�ρ nevertheless recovered the correct
vmax values. Given the ability of comparing vmax to observational
data (cf. Section 1.3), we conclude that vmax is a more meaning-
ful quantity which can serve as a proxy for mass. Note again the
flattening of some curves at the low-vmax end due to either the reso-
lution of the simulation analysed or an imposed minimum number
of particles cut and that not all FOF-based finders returned a vmax

value.
We have seen in Section 4.1 that there exists some scatter between

halo finders in the recovery of the halo position. It therefore appears
mandatory to check for differences in halo positions recovered from
the cosmological simulation, too. To this extent, we calculated the
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Figure 18. The cumulative vmax function.

Figure 19. The two-point correlation function for the 10 000 most massive
objects.

two-point correlation function and present the results in Fig. 19. In
order to analyse a comparable data set (remember that some codes
analysed the 10243, some the 5123 and some the 2563 particle sim-
ulation), we restricted the haloes to the 10 000 most massive objects
and found excellent agreement.12 The smallest scale considered in
this comparison is 2 h−1 Mpc in order not to probe the interiors of
galaxy clusters. The minute drop of the correlation function for PFOF

at the smallest scale probed may be explained by the usage of the
marginally larger linking length of b = 0.2 applied during their
analysis and the fact that PFOF uses the centre of mass instead of the
density peak as the centre of the halo.

Finally, we cross-compare the bulk velocities of haloes in Fig. 20
where we find excellent agreement. We further give in the legend
the medians of the distribution for each halo finder: the mean (of

12 Note that it makes little difference to use the 10 000 objects with the
largest vmax value as there is a strong correlation between M and vmax for
each code. At the end, we are interested in limiting the analyses to the N
most massive objects and hence a ‘miscalculation’ of the mass is irrelevant
as long as differences in mass are systematic as in our case.

Figure 20. The distribution of bulk velocities for objects more massive than
5 × 1011 h−1 M	.

the medians) is 489 km s−1 with a 1σ of 9 km s−1 (i.e. 2 per cent
deviation).

5 SU M M A RY A N D C O N C L U S I O N S

We have performed an exhaustive comparison of 18 halo finders
for cosmological simulations. These codes were subjected to var-
ious suites of test scenarios all aimed at addressing issues related
to the subject of identifying gravitationally bound objects in such
simulations.

The tests consisted of idealized mock haloes set up according
to a specific matter density profile (i.e. NFW and Plummer) where
we studied isolated haloes as well as (sub-)subhaloes. We further
utilized a cosmological simulation of the large-scale structure of the
universe primarily containing field haloes. The requirement for the
mock haloes was to simply return the centres of the identified objects
alongside a list of particles (possibly) belonging to that halo. We then
applied a universal tool to calculate all other quantities [e.g. bulk
velocity, rotation curve, (virial) mass, etc.]. For the cosmological
data, the code representatives were simply asked to return their
‘best’ values for a suite of canonical values.

Mock haloes. We found that the deviation of the recovered posi-
tion to the actual centre of the object is largest for FOF-based meth-
ods which is naturally explained by the fact that they define centres
as the centre of mass, whereas most other codes identify a peak in
the density field. Further, DM haloes that have an intrinsic core (e.g.
a Plummer sphere) yield larger differences between the input centre
and the recovered centre for most codes. Such density profiles are
not expected within the Universe we inhabit. However, the bulk
velocities, (virial) masses and vmax values satisfactorily agreed with
the analytical input, irrespective of the underlying density profile –
at least for hosts and subhaloes; subsubhaloes still showed at times
departures as large as 50 per cent in mass and 20 per cent for vmax.
Note that all results are based upon the same post-processing soft-
ware and only the list of particles (and the centre) was determined
by each halo finder individually. Hence, variations in the centre will
automatically lead to differences as both the mass and rotation curve
are spherically averaged quantities.

We further investigated the dependence of subhalo properties
upon the position within the host, in particular its distance from the
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centre. There we found that – while all codes participating in this
exercise recovered excellent vmax values for a NFW subhalo sampled
with 10 000 particles inside a NFW host two orders of magnitude
more massive13 – phase-space finders excelled by also locating the
subhalo when it overlapped with the centre of the host. However, in
this case they struggle to properly calculate its properties.

Putting a subhalo at varying positions inside a host is closely
related to a subhalo actually falling into a host. However, the latter
also introduces distortions in the shape of the subhalo due to tidal
forces while it is plunging through the background potential of the
host. We performed a simulation of the scenario where a subhalo
initially containing 10 000 particles shoots right through the centre
of a host two orders of magnitude more massive. While we found
that the number of particles significantly drops when the subhalo
approaches the host’s centre, it rises again to a plateau level after
the central passage – and this is apparent in all codes. The peak of
the rotation curve, which should be less susceptible to (tidally in-
duced) variations in the outer subhalo regions, shows less variation.
However, vmax actually rises shortly after the subhalo leaves the
very central region indicative of two (related) effects: contamina-
tion with host particles and problems with the unbinding procedure.
Nevertheless, these problems are (still) common to all halo finders
used in this particular study and they all mutually agree upon the
initial and final values.

Another question addressed during our tests with the mock haloes
was the number of particles required in a subhalo in order to still
be able to separate it from the host background. To this extent,
we successively lowered the number of particles used to sample a
subhalo that had been placed at half the M100 radius of the host.
We found that the majority of finders participating in this exercise
are capable of identifying the subhalo down to 30–40 particles. Yet
again, (most of) the phase-space finders even locate the object with
as few as 10–20 particles. Some of the configuration space finders
also tracked down the subhalo to such low numbers of particles;
however, they did not obtain the correct particle lists leading to
subhalo properties that differ from the analytical input values.

We would like to close this part of the summary with the notion
that while there is a straightforward relation between the (virial)
mass and the peak of the rotation curve for isolated field haloes
(once the density profile is known), the mass of a subhalo is more
ambiguously defined. As we have seen, it is (in most situations)
more meaningful to utilize the peak of the rotation curve as a proxy
for mass (cf. Fig. 8 versus Fig. 9 as well as Fig. 10 versus Fig. 11).
However, as could also be witnessed in Fig. 11, quite a number of
halo-finding techniques gave rise to an artificial increase in vmax

right after the passage through the centre of its host, obscuring its
applicability as a mass representative.

Cosmological simulation. As a matter of fact there is little to say
regarding the comparison of the cosmological data sets; as can be
seen in Figs 17–20, the agreement is well within the (omitted) error
bars for the basic properties investigated here (i.e. mass, velocity,
position and vmax), and unless we can be certain which halo-finding
technique is the ultimate (if such exists at all), the observed scatter
indicates the accuracy to which we can determine these properties
in cosmological simulations. We would though like to caution that
the haloes found within the cosmological simulation are primarily
well-defined and isolated objects and hence it is no surprise that we
find such an agreement. Subhaloes, however, are not well defined

13 Note that only halo finders capable of identifying substructures can par-
ticipate in a comparison of (sub-)subhalo properties.

and therefore lead to larger differences between halo finders as
seen during the comparison of the mock haloes. For those codes
that diverge from the general agreement, the differences are readily
explained and have been discussed in Section 4.2.

Concluding remarks. The agreement amongst the different codes
is rather remarkable and reassuring. While they are based upon
different techniques and – even for those based upon the same
technique – different technical parameters, they appear to recover
comparable properties for DM haloes as found in state-of-the-art
simulations of cosmic structure formation. We nevertheless need to
acknowledge that some codes require improvement. For instance,
phase-space finders find halo centres even if the centre overlaps with
another (distinct) object and recover subhaloes to a smaller particle
number; however, they still have problems with the (separated) issue
of assigning the correct particles in these cases and hence deriving
halo properties afterwards.

We close with the remark that we deliberately did not dwell on
the actual technical parameters of each and every halo finder as
this is beyond the scope of this paper and we refer the reader to
the respective code papers for this. However, it is important to note
that with an appropriate choice of these parameters the results can
be brought into agreement. This is an important message from this
particular study. We are not claiming that all halo finders need to
return identical results, but they can (possibly) be tuned that way. In
that regard, we also like to remind the reader again that this particular
comparison is aimed at comparing codes as opposed to algorithms:
we even tried to gauge the differences found when applying codes
based upon the same algorithm to identical data sets.
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