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 Invasive aspergillosis is one of the most important infections in hematopoietic stem cell trans-
plant recipients, with an incidence rate of 5 – 15% and an associated mortality of 30 – 60%. It 
remains unclear why certain patients develop invasive aspergillosis while others, undergoing 
identical transplant regimen and similar post transplant immunosuppression, do not. Over the 
last decade, pattern recognition receptors such as Toll-like receptors (TLRs) and the C-type 
lectin receptors (CLRs) have emerged as critical components of the innate immune system. 
By detecting specifi c molecular patterns from invading microbes and initiating infl ammatory 
and subsequent adaptive immune responses, pattern recognition receptors are strategically 
located at the molecular interface of hosts and pathogens. Polymorphisms in pattern recogni-
tion receptors and downstream signaling molecules have been associated with increased or 
decreased susceptibility to infections, suggesting that their detection may have an increasing 
impact on the treatment and prevention of infectious diseases in the coming years. Infectious 
risk stratifi cation may be particularly relevant for patients with hematologic malignancies, 
because of the high prevalence and severity of infections in this population. This review sum-
marizes the innate immune mechanisms involved in  Aspergillus fumigatus  detection and the 
role of host genetic polymorphisms in susceptibility to invasive aspergillosis.  

  Keywords   Aspergillus  ,   innate immunity  ,   genetic polymorphisms  ,   toll-like receptors  ,  
 C-type lectins  ,   allogeneic stem cell transplantation    
 Introduction 

 Invasive aspergillosis (IA) is an important cause of morbid-

ity and mortality in patients with hematological malignan-

cies and prolonged neutropenia. Its incidence depends on 

multiple factors (such as the type of underlying disease, 

oncological treatment, antimicrobial prophylaxis) and 

ranges from 5 – 15% in patients undergoing intensive 

myeloablative chemotherapy for acute leukemia or alloge-

neic hematopoietic stem cell transplantation (HSCT) [1 – 4]. 

Although the prognosis of IA has improved with the advent 

of new effective antifungal drugs, its mortality remains 

high (30 – 60%) [1,3 – 6]. 
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 While early diagnosis is crucial, the non-specifi c clin-

ical presentation of IA together with the limited sensitiv-

ity of current diagnostic methods still makes it particularly 

challenging. Criteria of the European Organization for 

Research and Treatment of Cancer and Mycoses Study 

Group (EORTC-MSG) used to defi ne the probability 

of IA are often met late in the course of the disease [7]. 

The optimal management of IA among HSCT patients is 

under debate [8]. Various strategies have been proposed, 

including systematic antifungal prophylaxis [9,10], tar-

geted preemptive therapy (which is usually based on the 

use of circulating fungal antigens and radiological fi nd-

ings) [11,12] and empirical therapy [11,13]. The extended 

use of prophylactic agents has raised concerns about the 

emergence of resistance, changing epidemiology of 

molds, toxicity and costs [9,14]. Indeed, recent studies 

have highlighted the emergence of non- Aspergillus  

molds such as Zygomycetes which have reduced 

sensitivity to antifungal agents [6]. The sensitivity and 
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specifi city of circulating fungal antigens and radiological 

fi ndings, especially during the early course of infection, 

are suboptimal [15]. Recent developments in the fi eld of 

innate immunity and immunogenetics have opened new 

perspectives for the prevention and management of IA in 

patients with hematological malignancies. This review 

discusses the potential use of host genetic profi le for 

patient ’ s risk stratifi cation and individualized preventive 

strategies. 

 Innate immunity to Aspergillus fumigatus 

  A. fumigatus  is a ubiquitous pathogen that can release large 

amounts of spores in the air. Due to their small size, conidia 

formed by asexual reproduction can be inhaled deep into 

the alveolar spaces [16]. In the immunocompetent host, the 

innate immune system is usually effi cient at clearing 

conidia before their germination into hyphae, the poten-

tially angioinvasive form of the pathogen. The respiratory 

epithelium represents a fi rst mechanical barrier (ciliated 
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and mucous-secreting cells) and produces oxidative deri-

vates or other molecules (lactoferrin, chitinase, secretory 

leukoprotease inhibitor … ) which have a direct toxicity on 

the fungus [17]. In the alveolar compartment, spores inter-

act with macrophages, that contribute to the elimination of 

the pathogen by phagocytosis and by the production of 

pro-infl ammatory mediators, leading to the subsequent 

recruitment of polymorphonuclear neutrophils from the 

lung capillary network, which are essential for fungal 

clearance [17]. 

 At the molecular level, the innate immune process is 

triggered by a series of sensors, named  ‘ pattern recog-

nition receptors ’  (PRRs) located on immune cells that 

detect microbe-associated molecular patterns (MAMPs) 

from invading pathogens [18]. PRRs can be classifi ed into 

four main families, depending on their subcellular local-

ization and biological characteristics, the Toll-like recep-

tors (TLRs), the C-type lectin receptors (CLRs), the 

RIG-I like receptors (RLRs) and the NOD-like receptors 

(NLRs, Fig. 1). The PRRs ensure the interface between 
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Fig. 1  Pattern recognition receptors involved or potentially involved in the innate immune detection of  Aspergillus fumigatus . Microbial-associated 

molecular patterns (MAMPs) from the fungal cell wall are recognized by transmembrane or soluble pattern recognition receptors (PRRs), resulting in 

the activation of signal-transducing pathways and the production of cytokines and co-stimulatory molecules. MBL, mannose binding lectin; SP-A, 

surfactant protein A; SP-D, surfactant protein D; MyD88, myeloid differentiation primary response protein; TRIF, TIR-domain-containing adapter-

inducing interferon- β ; NOD2, nucleotide-binding oligomerization domain containing 2; RIP2, receptor interacting protein 2; CARD9, Caspase recruitment 

domain-containing protein 9; BCL10, B-cell lymphoma/leukemia 10; ROS, reactive oxygen species; NF- κ B, nuclear factor kappa B; IRF3, Interferon 

regulatory factor 3.  
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hosts and pathogens and recruit specifi c intracellular 

adaptor proteins to trigger signaling pathways, resulting 

in the activation of transcription factors (such as NF- κ B) 

and the production of cytokines and chemokines that are 

essential for the innate and subsequent adaptive immune 

responses. The number of known PRRs and their activa-

tors is expanding. Some PRRs such as the collectins 

(a subgroup of CLRs including mannose-binding lectin 

and surfactant proteins), complement factors or pentraxin 

3 are secreted molecules that act as opsonins [17]. At least 

two families of PRRs (TLRs and CLRs) have been 

in volved in the innate immune recognition of  Aspergillus 
fumigatus  (Table 1).  
© 2011 ISHAM, Medical Mycology, 49(Suppl. 1), S125–S136

 In vitro/ex vivo  experiments

PRRs

Macrophages 

(KO mice)

Involved Yes/No

Transfection

Involved 

Yes/No

Inhibition 1 

Involved 

Yes/No
 Toll-like receptors (TLRs) 

 The TLR family in mammals comprises 12 distinct trans-

membrane proteins, located on the cell surface (TLR1, 2, 

4, 5, 6) or within endocytic vesicles (TLR3, 7, 8, 9). The 

extracellular domain of TLRs is composed of leucin-rich 

repeat (LRRs) structures that are able to recognize a variety 

of MAMPs [18 – 20]. The interaction of TLRs with their 

specifi c MAMPs results in the activation of several adaptor 

proteins, such as the myeloid differentiation primary 

response protein 88 (MyD88) or the TIR-domain-contain-

ing adapter-inducing interferon- β  (TRIF), that in turn initi-

ate the activation of transcription factors, such as the 
  Table 1 Role of Pattern Recognition Receptors (PRRs) and main signaling pathway in the innate immunity against  Aspergillus fumigatus  infection 

(results of  in vivo/ex vivo/in vitr  o  studies).  
 In vivo  experiments

Addition of 

soluble PRR

Involved Yes/No

Lethal model 

(KO mice)

Effect

Sublethal model 

(KO mice)

Effect
Toll-like receptors (TLRs)
TLR2 Yes [21 – 26]

No [28]

Yes [24 – 26] Yes [26,27] – – Absence is 

deleterious 2  [21,22]

No effect 2  [28]
TLR4 Yes [22,23,25,26] 3 

No [24,26,28] 3 

Yes [25]

No [24]

Yes [26,27] – – Absence is 

deleterious 2  [22]

No effect 2  [28]
TLR9 Yes [22,31] Yes [31] – – Absence is protective 

[22,32]

–

Other TLRs 

(1,3,5,6,7,8)

– No [25] – – – –

MyD88 Yes [22,24]

No [28,29]

Yes [85] – – – Absence is deleterious 

[22,30]

No effect [28]
C-type lectin receptors (CLRs)

Dectin-1 Yes [47,48] Yes [47] Yes [45 – 47] – – Absence is deleterious 

[47,48]
DC-SIGN – Yes [60] Yes [61] – – –
Mannose receptor 

(MR)

– – Yes [62] 4 – – –

Mannose binding 

lectins (MBL)

– – Yes [111] – Presence is protective 

[52,53]

–

Surfactant protein 

A (SP-A)

– – – Yes [52,54] No effect [52,56] –

Surfactant protein 

D (SP-D)

– – – Yes [52,54] Presence is protective 

[52,56]

–

NOD-like receptors (NLRs)
NLRP3 - - Yes [66] – – –

Others
Pentraxin-3 Yes [69] – Yes [69] – Presence is protective 

[70]

Absence is deleterious 

[69]
Complement 

(C5 component)

– – – – Presence is protective 

[74]

–

    1 This column regroups different possible modes of inhibition including silencing, antibodies, and purifi cation.  2 Effect on survival has been observed 

only in TLR2- and TLR4-defi cient immunocompromised mice (chemotherapy-induced neutropenia) [21,22], not in immunocompetent mice [22,28]. 

 3 Stimulation by  Aspergillus  conidia only, not hyphae [22,23,26].  4 Murine dendritic cells.   
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nuclear factor kappa B (NF κ B) and the activating protein 

1 (AP1) (Fig. 1). 

 All TLRs are expressed by respiratory epithelial cells 

and alveolar macrophages, and all TLRs but TLR3 are 

expressed by neutrophils [17]. Two TLRs (TLR2 and TLR4) 

and the MyD88 signaling pathway are involved in the innate 

immune detection of  A. fumigatus , as shown in  in vitro/ex 
vivo  experiments, including cytokine expression in bone 

marrow macrophages form wild-type and TLR-defi cient 

mice [21 – 26], complementation of human cell lines with 

TLR plasmids [24 – 26] and gene silencing [26,27] (Table 

1). Some discrepant results regarding the role of TLR2 [28], 

TLR4 [24,26,28] and MyD88 [29] may be explained, at 

least in part, by changes in the MAMPs exposed to PRRs 

during the developmental stages of  A. fumigatus  (resting, 

swollen, germinating conidia and hyphae). Similarly, neu-

tropenic mice defi cient in TLR2 and TLR4, as well as the 

mediator MyD88, were shown to have increased suscepti-

bility to IA in sublethal models of aspergillosis [21,22,30] 

(Table 1). However, no difference in survival has been 

observed among immunocompetent mice [22,28]. Some 

discrepancies may also result from the redundancy of the 

different PRRs involved in the pathogen recognition. TLR9, 

another MyD88 dependent-receptor, has also been involved 

in early detection of  A. fumigatus  probably through its abil-

ity to bind the hypomethylated DNA present in the fungus 

[31]. While a mouse model of IA suggests a protective, 

albeit modest, effect [22,32], its role in modulating the 

cytokine response remains complex and poorly elucidated. 

To our knowledge, one single study using a cell comple-

mentation system investigated the role of other TLRs 

(TLR1, 3, 5, 6, 7, 8), which all seemed not to be involved 

in the innate immune detection of  A. fumigatus  [25]. 

 The MAMPs from  A. fumigatus  that activate TLR2 and 

TLR4 are unknown. However, chitin, a major polysaccha-

ride component of the fungal cell wall (present in all fungi 

including  Aspergillus  spp.), has been shown to induce  in 
vitro  cytokine production of murine macrophages and 

acute infl ammation in a mouse model through the activa-

tion of TLR2 [33]. Other MAMPs of the fungal cell wall 

have been identifi ed as TLRs activators in fungi other than 

 Aspergillus  spp. (reviewed in [34]), including phospholi-

pomannans (TLR2) from  Candida albicans  [35], mannans 

(TLR4) from  C. albicans  and  Saccharomyces cerevisiae  

[36], glucuronoxylomannan (TLR4) from  Crypotococcus 
neoformans  [37], beta-glucan (MyD88) from  Pneumocys-
tis carinii  and  S. cerevisiae  [38,39] and zymosan (TLR2, 

TLR6) from  S. cerevisiae  [40].   

 C-type lectin receptors (CLRs) 

 The large superfamily of CLRs is divided in 17 groups, 

characterized by the presence of at least one structurally 
related C-type lectin-like domain. Some CLRs, such as the 

transmembrane receptors Dectin-1 (group V) and Dectin-2 

(group II), the mannose receptor (MR, group VI), DC-SIGN 

(group II) and collectins (mannose-binding lectin [MBL] 

and lung surfactant proteins [SP], both group III) are 

involved in antifungal immunity (reviewed in [41]). 

 In the CLR family, the best characterized PRR is Dec-

tin-1, which is present on the surface of myeloid cells and 

is able to bind to the  β -glucan component of the fungal 

cell wall leading to the production of various cytokines 

and chemokines and the stimulation of phagocytosis 

[42,43]. Dectin-1 signaling pathway is mediated through 

the spleen tyrosine kinase (Syk) and the caspase recruit-

ment domain protein 9 (CARD9) [44]. The adjunctive 

role of some TLRs (TLR2 and 6) may however be required 

for certain functions [42]. Dectin-1 has been found to be 

highly expressed in alveolar macrophages and its role 

in the recognition of  A. fumigatus  through the MAMP 

 β -glucan cell wall component and subsequent activation 

of the immune system has been shown by  in vitro  and  in 
vivo  analyses (Table 1) [45 – 48]. This mechanism of rec-

ognition is also dependent from the morphological 

changes of  A. fumigatus , being able to distinguish between 

dormant and potentially threatening spores, as the expo-

sure of  β -glucan on the cell wall occurs mainly during 

the swelling of conidia, which is the fi rst step of germina-

tion and transformation to invading hyphae [45 – 47]. 

Interestingly, Dectin-1 seems to be required for an effec-

tive response to  A. fumigatus  in immunosuppressed as 

well as in immunocompetent mice [48], which is not 

the case for TLRs. Prophylactic administration of a fusion 

protein comprising the extracellular domain of Dectin-1 

has been tested in a neutropenic mouse model of IA with 

promising results [49].   Another transmembrane receptor of 

the CLRs family, Dectin-2, has been shown to trigger Th17 

response to fungal infection [50] and to elicit bone mar-

row-derived dentritic cells (BMDCs) response to  A. fumig-
atus  [51]. 

 Collectins are soluble CLRs characterized by the 

presence of collagen. Their C-terminal region consists of 

a carbohydrate-recognition domain (CRD) which has the 

ability to interact with a wide range of microbial molecules 

and to activate the innate immune system [41]. Collectins 

such as the lung surfactant proteins (SP-A and SP-D) and 

the mannose-binding lectin (MBL) were shown to bind  in 
vitro  to  A. fumigatus  conidia in the presence of calcium 

acting as osponins for their phagocytosis by alveolar mac-

rophages and neutrophils [52]. The works of Madan  et al . 
have emphasized their role in the innate immune response 

against  A. fumigatus  antigens or allergens and their thera-

peutic potential in murine models of invasive aspergillosis 

and allergic bronchopulmonary aspergillosis (Table 1) 

[52 – 59]. 
© 2011 ISHAM, Medical Mycology, 49(Suppl. 1), S125–S136
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 DC-SIGN is expressed exclusively on the surface of 

dendritic cells and a subset of macrophages through an 

IL-4 dependent manner and is able to recognize a wide 

spectrum of microbial agents [41]. DC-SIGN recognizes 

carbohydrates such as high-mannose structures. Some 

works have highlighted its ability to bind to  A. fumigatus  

conidia and mediate their internalization by dendritic cells 

and macrophages triggering their maturation (Table 1) 

[60,61]. It has been suggested that  A. fumigatus  may use 

the DC-SIGN functions as a mean to escape immune rec-

ognition: increased DC-SIGN expression mediated by 

IL-4 may promote alternative activation of macrophages 

with reduced antifungal activity facilitating the develop-

ment of IA by persistence and germination of intracellular 

conidia [61]. 

 The mannose receptor (MR) is a transmembrane endo-

cytic receptor mainly expressed in macrophages and den-

dritic cells. Because of its ability to bind terminal mannose, 

fucose or N-acetyl glucosamine, MR is implicated in the 

recognition and immune response to various fungi such as 

 C. albicans ,  P. carinii  and  C. neoformans  [17,41]. One 

study suggests its role in the recognition and internaliza-

tion of  A. fumigatus  conidia by murine dendritic cells 

(Table 1) [62]. This function has not been confi rmed in 

human dendritic cells. A study using human Langerhans 

cells suggests their ability to recognize  A. fumigatus  

through a CLR with galactomannan specifi city distinct 

from mannose receptor [63].   

 NOD-like receptors (NLRs) and RIG-I like receptors (RLRs) 

 NLRs (Nucleotide-binding domain, Leucin-Rich repeat 

containing) are conserved cytoplasmic proteins encoded by 

22 genes in humans that are involved in microbial recogni-

tion and responses to stress. Their action is mediated 

through the activation of multiprotein complexes (includ-

ing caspases) called infl ammasomes that trigger the matu-

ration of cytokines [64]. They can be subdivided in three 

subfamilies: NLRC (previously called NOD), NLRP and 

IPAF [64]. 

 Among NLRCs, NOD-2 is a receptor expressed essen-

tially by leukocytes, dendritic cells and epithelial cells 

which is well-known for its ability to bind to the peptido-

gylcan of gram-negative and gram-positive bacteria. Its 

role in the innate immune response to  A. fumigatus  has 

been suggested by a recent study documenting  in vitro  and 

 in vivo  increased NOD-2 levels after stimulation by conidia, 

although direct evidence is lacking [65].   A study in human 

monocyte demonstrated that the NLRP3 infl ammasome is 

activated by  A. fumigatus  hyphae leading to IL-1 β  release 

[66]. NLRP3 signaling seems to rely on the Syk tyrosine 

kinase pathway, also activated by Dectin-1 and distinct 

from the MyD88 pathway of TLRs [66]. RLRs are cyto-
plasmic RNA helicases, including RIG-I, MDA5 and 

LGP2, which are mainly involved in the recognition of 

viral RNA [67]. Their potential role in the innate immune 

response to fungal pathogens has not been established.   

 Other PRRs 

 In addition to these important families of PRRs, other sol-

uble molecules have been recognized as important media-

tors at the interface between host and pathogen. Some of 

them may be involved in the immune response to  A. fumig-
atus  acting as opsonins and facilitating their elimination by 

the host ’ s immune system, such as pentraxins or proteins 

of the complement and the fi brinolytic pathways.    

 Pentraxins are conserved polymeric proteins repre-

senting a superfamily divided into two groups: short and 

long pentraxins. Pentraxin 3 (PTX3) is a long pentraxin 

produced by sentinel cells and released in response to 

cytokines in infl ammatory conditions that can bind to 

various microbial agents including  A. fumigatus  [68,69]. 

Lack of PTX3 is associated with defective recognition of 

 A. fumigatus  conidia by alveolar macrophages and den-

dritic cells and with decreased survival in a murine model 

of invasive pulmonary aspergillosis (Table 1) [69]. The 

potential role of this soluble receptor in the treatment of 

invasive aspergillosis has also been studied with promising 

results suggesting a potentiating effect when combined 

with amphotericin B [70]. 

 Proteins of the complement have many antimicro-

bial properties including infl ammation, opsonization and 

pathogen destruction. The observation in 1989 that spores 

of  A. fumigatus  were more susceptible to killing by alveo-

lar macrophages when serum has been heated to 56 ° C 

suggested a role of heat-labile serum components of the 

complement in antifungal defences [71]. Interactions of 

 A. fumigatus  with the complement component C3 leading 

to the cleavage of C3 and the activation of an alternative 

pathway that facilitates phagocytosis, as well as the ability 

of the fungus to escape the activation of the complement, 

have been described [17,72,73]. An important role of 

the component C5 in the resistance to IA has also been 

suggested by a mouse model [74]. 

 As opposed to most PRRs, which were mainly discov-

ered by classical biological approaches, the identifi cation 

of plasminogen as an important contributor to the immune 

defences against  A. fumigatus  resulted from a large genetic 

mapping study [75]. The role of plasminogen in the infl am-

matory response and mechanisms of microbial pathogenic-

ity such as invasion or dissemination has been widely 

described [76]. The demonstration that this protein may 

bind  in vitro  to  A. fumigatus  suggests its role in some 

mechanisms of pathogenicity of the fungus, such as hemor-

rhage and tissue damage associated with IA [75]. 
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  Cytokines and chemokines . These molecules secreted by 

sentinel cells are not PRRs, but the immunoregluatory 

effectors of the immune system and the ultimate product 

resulting from the interactions of MAMPs and PRRs. 

 Tumor Necrosis Factor alpha (TNF α ) stimulates vari-

ous functions of polymorphonuclear leukocytes including 

secretion of other cytokines, phagocytosis, oxidative respi-

ratory burst and degranulation. Its key role in the infl am-

matory response against  A. fumigatus  has been demonstrated 

by  in vitro  and  in vivo  studies [77 – 79]. Various interleuk-

ines are secreted in response to  A. fumigatus . While some 

of them have a protective pro-infl ammatory role (IL-1, 

IL-6, IL-12 or IL-15), others seem to impede the host 

defences or to have controversial effects [17,80]. For 

instance, IL-10 suppresses the antifungal activity of mac-

rophages against  A. fumigatus , while increasing pha-

gocytosis [17,81]. A detrimental effect of the IL-23/IL-17 

pathway in the infl ammatory response and resistance 

against  A. fumigatus  has recently been highlighted by  in 
vitro  analyses and a murine model of invasive aspergillosis 

[82]. Chemokines, such as KC and MIP-2, have been 

shown to promote neutrophil recruitment in a murine 

model of IA [79,83,84]. MIP-2 is considered to be the 

murine homolog of IL-8 (not present in mice), a potent 

infl ammatory mediator which is secreted by human respi-

ratory cells and neutrophils in response to  A. fumigatus  

[23,85]. Chemokines receptors, such as CCR1, CCR6 and 

CXCR2, have also been shown to play a role in host 

defences against  A. fumigatus  [86 – 88].      

 Genetic polymorphisms of pattern 

recognition receptors and risk of aspergillosis 

 Invasive aspergillosis represents a particular interest for 

immunogenetic studies as it affects patients from a specifi c, 

relatively homogenous population (i.e., allogeneic hemato-

poietic stem cell transplant recipients) that can benefi t from 

preventive strategies. A relatively large number of studies 

have investigated the association of numerous SNPs or other 

genetic variations of different pattern recognition receptors 

(Table 2) or infl ammatory mediators (cytokines, chemok-

ines, Table 3) and an increased risk of aspergillosis.   

 Toll-like receptors (TLR) 

 A study identifi ed a donor haplotype in  TLR4  (containing 

the D299G and T399I SNPs) present at a frequency of 6% 

in the Caucasian population as a predictor of IA (22% vs 

5% at 6 months,  P   �  0.002) [89]. This association was 

confi rmed in a large ( � 300 patients) validation study. The 

presence of this TLR4 haplotype and/or of a CMV positive 

serostatus (donor or recipient) compared to negative results 
for both CMV and the TLR4 haplotype increased the 

3-year cumulative incidence of IA (12% vs 1%,  P   �  0.02) 

and death not related to relapse (35% vs 22%,  P   �  0.02). 

Although TLR4 has been shown to detect  A. fumigatus  

[22,23,25 – 27], the functional role of the D299G and T399I 

SNPs remains partially controversial [90]. The interaction 

of TLR4 with other pathogens such as CMV [91] or anti-

fungal drugs [92] has been proposed as alternative explana-

tions by which  TLR4  SNPs infl uence susceptibility to IA. 

However,  TLR4  D299G and T399I SNPs have been associ-

ated with susceptibility to aspergillosis in non-HSCT 

patients, who are not susceptible to CMV disease and usu-

ally did not receive antifungal agents prior to diagnosis 

[93]. Furthermore, CMV disease and  TLR4  SNPs seem to 

be independent factors for the risk of IA among HSCT 

recipients [89]. 

 Another study reported an association of the same 

SNP with fungal colonization in HSCT recipients, 

although this was not associated with an increased risk of 

IA in the small subset of colonized patients [94]. Discrep-

ancies between studies may be explained by several fac-

tors, such as different types of patients, differential 

assessment of demographic or clinical co-factors into 

multivariate models, and the power to detect associations. 

An increased risk of IA has also been associated with 

polymorphisms of TLR1 and TLR6 in HSCT recipients 

[95]. It is noteworthy that no genetic polymorphism pre-

disposing to aspergillosis has been identifi ed in TLR2 up 

to now, although it has been investigated in some studies 

[89,93,94]. However, the absence of genetic association 

should always be interpreted within the limited power of 

existing studies.     

 C-type lectin receptors (CLRs) 

 Some studies have investigated the role of polymorphisms 

in MBL and lung surfactant proteins in the development 

of aspergillosis (Table 2) [75,96 – 100]. Most of them 

addressed the issue of chronic pulmonary aspergillosis 

and not IA, comparing small series of cases with a control 

group. Although some of them suggest an association of 

the disease with some SNPs, the very limited sample size 

( � 25 cases of aspergillosis) does not allow drawing fi rm 

conclusions. However, a role of the 868 C/T polymor-

phism in the MBL gene in predisposing to chronic pulmo-

nary aspergillosis is supported by two small studies 

showing concordant results [96,100]. The presence of 

SNPs in other CLRs that may affect the host ’ s response 

to  A. fumigatus  has not been investigated up to now. 

The recent discovery of the association of an early stop 

polymorphism in dectin-1 with an increased susceptibility 

to colonization with  Candida  species deserves further 

investigations with respect to IA [101].   
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 Other PRRs 

 Using a genetic mapping model approach in a murine 

model, Zaas  et al . have identifi ed a SNP in the gene encod-

ing plasminogen that affected IA outcome in mice [75]. 

The association between this SNP and an increased sus-

ceptibility to IA was confi rmed in a large cohort study of 

HSCT recipients [75]. Such an interesting approach may 

allow the identifi cation of new PRRs and related polymor-

phisms improving our understanding of the pathogenesis 

of  A. fumigatus .   

 Cytokines and chemokines 

 Small association studies suggest that different SNPs in 

the genes encoding various cytokines and chemokines or 

their receptors may predispose to aspergillosis (Table 3) 

[102 – 109]. Concordant results suggesting an increased 

risk of aspergillosis related to the presence of a SNP in 

the encoding gene of interleukine 10 (G/A at position 

-1082) were described by two separate groups of investi-

gators [102,105]. These results deserve further investiga-

tions in larger data sets.     

 Synthesis and future perspectives 

 Over the last decade, PRRs appeared as major contributors 

of the immune responses to  A. fumigatus . Growing evi-

dence supports the role of TLR2, TLR4 and dectin-1 in 

the detection of the fungus. Furthermore, a number of 

studies investigated the association of polymorphisms in 

PRRs or cytokine genes with susceptibility to aspergillo-

sis. Certain polymorphisms are emerging as real risk fac-

tors, because the associations have been validated and/or 

functional consequences of the polymorphism have been 

clearly demonstrated. These data suggest that genetic 

markers may be used for infectious risk stratifi cation in 

the coming years. 

 However, many genetic association studies still need 

further validation, as their quality and methodological 

approaches are quite variable. Most common limitations 

include limited sample size in retrospective studies, use of 

inappropriate or ill-defi ned controls (no reporting or adjust-

ment for underlying diseases, type of transplant, degree 

and duration of immunosuppression, antifungal drugs or 

concomitant infections), absence of time-dependent analy-

ses, no reporting on ethnicity, lack of correction for mul-

tiple testing with respect to the multiplicity of markers, 

absence of replication studies to validate new associations 

and over-interpretation of negative results in underpowered 

studies. Furthermore, many studies have focused on one or 

a limited number of genetic markers, without accounting 

for the others. Due to the ethnic diversity, polymorphisms 
identifi ed as risk factors in a given population may not 

apply to another one [110]. 

 Larger studies with detailed clinical data will help to 

precisely determine the individual contribution of several 

individual polymorphisms to the risk of developing the 

disease. New approaches combining the use of well defi ned 

host genetic markers, more sensitive and specifi c serologic 

tests and improved radiological surveillance may signifi -

cantly improve the management of IA in the future. 

  Declaration of interest:  The authors report no confl icts of 
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