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Abstract. In this paper we study Lyndon’s equation xpyqzr ¼ 1, with x, y, z group elements
and p, q, r positive integers, in HNN extensions of free and fully residually free groups, and
draw some conclusions about its behavior in L-free groups.

1 Introduction

The classical result of Lyndon and Schützenberger ([9]) states that any elements x, y
and z of a free group F that satisfy the relation xpyq ¼ zr for p; q; rd 2 necessarily
commute. In the paper of Brady, Ciobanu, Martino and O Rourke ([1]) this result
has been generalized to L-free groups. In particular, the following result has been
obtained. Let G be a group that acts freely on a L-tree, where L is an ordered abelian
group, and let x, y, z be elements in G. If xpyq ¼ zr with integers p; q; rd 4, then x, y
and z must commute. It has been unclear whether the same conclusion holds for p, q,
r not all larger than 4, and in particular the proof in [1] cannot be extended to these
smaller integer cases. Here we shed light on the behavior of this equation in some
HNN extensions and show that for p, q, r not all larger than 4 the conclusion of [1]
does not always hold (see Corollary 1). This work complements the results in [5],
where Lyndon’s equation is studied in various amalgams of groups.

2 Results

Theorem 1. Let F be a finitely generated non-cyclic free group, and let u and v be non-

trivial elements in F which are not proper powers. Let G ¼ hF ; t j tut�1 ¼ vi and rd 2
be a given integer. Then for particular choices of u and v there exist non-commuting

elements a; b; c A G such that a2b2cr ¼ 1.

Proof. The one-relator group H ¼ ha; b; c j a2b2cr ¼ 1i can also be written in terms
of the presentation hb; c; d j b�1d�1b ¼ c�rdi. This can be seen by letting d ¼ ab and
writing the relation a2b2cr ¼ 1 as db�1db�1b2cr ¼ 1, which can then be rewritten as
b�1d�1b ¼ c�rd.
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Thus in the HNN extension hb; c; d j b�1d�1b ¼ c�rdi of the free group generated
by fc; dg, with stable letter b and associated subgroups hdi and hc�rdi, the equality
a2b2cr ¼ 1, where a ¼ db�1, will be satisfied, but none of a, b, c will commute.

We can clearly take the HNN extension of any finitely generated non-cyclic free
group F with associated cyclic subgroups of the form hxi and hyrxi, where x and
y are generators of F , and an equality of the form a2b2cr ¼ 1 will be satisfied without
any of a, b, c commuting. r

For brevity we refer the reader to [2] for a complete account of L-trees and the
groups that act freely on them, called L-free groups.

Corollary 1. There exist L-free groups in which

a2b2cr ¼ 1

holds for non-commuting a; b; c A G, and rd 2.

Proof. In [10, Theorem 3.1] it is shown that groups with a presentation of the form
hx; y; x1; . . . ; xn j xyx�1y e ¼ wi, where w is any word in fx1; . . . ; xng, act freely on
ðZ� ZÞ-trees, unless e ¼ 1 and w ¼ 1. The groups arising in the proof of Theorem
1, i.e. the groups hb; c; d j b�1d�1b ¼ c�rdi where rd 2, have this form and will
therefore act on a L-tree. They also satisfy the equation a2b2cr ¼ 1, where a ¼ db�1,
with non-commuting a, b, c. r

Before we state the next results we need to make the following observations. Let F
be a free group with basis X . We remind the reader (see for example [8, Chapter I.4])
that a Whitehead automorphism of F is an automorphism t of one of the following
two kinds:

(1) t permutes the elements of XG1 ¼ X UX �1;

(2) for some fixed a A XG1, t carries each of the elements x A XG1 into one of x,
a�1x, xa or a�1xa.

We now consider the special situation with X ¼ fx1; x2; x3g and F free on X . In F

we consider the two words

(1) w1ðx1; x2; x3Þ ¼ x
p
1x

q
2x

r
3 with pd 2, qd 3, rd 3;

(2) w2ðx1; x2; x3Þ ¼ g1x3u
a1x�1

3 g2x3u
a2x�1

3 . . . gnx3u
anx�1

3 with nd1, 10u¼ uðx1; x2Þ
and u is not conjugate to a power of x1 or x2, ai non-zero integers and g1; . . . ; gn
freely reduced words in hx1; x2i, with gi 0 1 for i ¼ 1; . . . ; n.

Remark 1. Assume that p; q; rd 3. We first note that w1 0w2 and w1 is minimal

(with respect to length) in its automorphic orbit. It can be easily seen that if t is a
Whitehead automorphism of F of type (2), if we apply t to w1ðx1; x2; x3Þ, then the
length strictly increases. The minimality of w1 also shows that it cannot be a primitive
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element by [8, Proposition 4.17]. In fact, w1 is a word of minimal rank, also called a
regular word, that is, there is no Nielsen transformation from fx1; x2; x3g to a system
d, f , g with x

p
1x

q
2x

r
3 A fd; f g (see [6]).

Remark 2. We now consider w2ðx1; x2; x3Þ. If w2 is minimal, then there is no White-
head automorphism t such that the length strictly decreases when applying t. Hence,
if w2 is minimal, there is no automorphism taking w1 to w2 by [8, Proposition 4.17],
as the only automorphism taking w1 to w2 would be a permutation, and the form of
the two words does not allow for a permutation to send w1 to w2. If w2 is not mini-
mal, then each Whitehead automorphism which decreases the length of w2 will take
w2 to a word of the same form. To see this, notice that u contains both x1 and x2. If,
for instance, g1 ¼ g 0

1x2, then an automorphism which replaces x2 by x2x3 ¼ x 0
2 gives

x 0
2x

�1
3 at all other places where x2 occurred, especially inside u.

Remark 3. If p ¼ 2 and q; rd 3, then w1 is still minimal, and when we apply a White-
head automorphism t to w1ðx1; x2; x3Þ the length strictly increases, except when t is
of the form x1 ! x1x

�1
2 , x2 ! x2, x3 ! x3, in which case the length stays the same. If

w2 is minimal, the only automorphisms that could take w1 to w2 are of the form t

composed with permutations, and one can see that such automorphisms cannot take
w1 to a word of the form w2. As in Remark 2, if w2 is not minimal, then each White-
head automorphism which decreases the length of w2 will take w2 to a word of the
same form.

From the minimality of w1 and the facts about w2 in the above paragraphs we get
the following.

Lemma 1. Let F be free with basis fx1; x2; x3g and w ¼ w1ðx1; x2; x3Þ ¼ x
p
1x

q
2x

r
3 with

pd 2, qd 3, rd 3. Then there is no automorphism a of F with aðxiÞ ¼ yi, i ¼ 1; 2; 3,
such that a�1ðwÞ is, written in y1, y2, y3, of the form

g1y3u
a1y�1

3 g2 y3u
a2y�1

3 . . . gn y3u
any�1

3

with nd 1, 10 u ¼ uðy1; y2Þ and u not conjugate to a power of y1 or y2, all ai
non-zero integers, and g1; . . . ; gn freely reduced words in hy1; y2i, with gi 0 1 for

i ¼ 1; . . . ; n.

Lemma 1 states that words of the form w1 and w2 cannot be in the same automor-
phic orbit.

Theorem 2. Let F be a finitely generated free group, u and v non-trivial elements in

F that are not proper powers, and G ¼ hF ; t j tut�1 ¼ vi. Let a; b; c A G satisfy

apbqcr ¼ 1 with pd 2, qd 3, rd 3.

(i) If u is not conjugate to v�1, then a, b, c must commute.

(ii) If u is conjugate to v�1, then a, b, c either commute or generate the Klein bottle

group hx; y j xyx�1y ¼ 1i.
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Proof. Let H ¼ ha; b; ci. We will consider three cases:

(1) u and vG1 are not conjugate;

(2) u and v are conjugate;

(3) u and v�1 are conjugate.

In case (1) assume that H is not abelian. Then H cannot be free of rank 2 or 3
because the word apbqcr is regular by Remark 1. Thus, by [4, Theorem 2.2], H

must be a one-relator group, that is, in our case, H ¼ ha; b; c j apbqcr ¼ 1i. Further-
more, by the proof of [4, Theorem 2.2], there is a Nielsen transformation from
fa; b; cg to a system fx1; x2; x3g for which we may assume, without loss of generality,
that x1; x2 A F , hx1; x2i non-cyclic, x3 ¼ t and H has a presentation of the form

H ¼ hx1; x2; x3 jwðx1; x2; x3Þ ¼ 1i;

with wðx1; x2; x3Þ ¼ g1x3h
a1x�1

3 g2x3h
a2 . . . gnx3h

anx�1
3 , nd 1, h ¼ ua A hx1; x2i,

a0 0, ai 0 0 and gi A hx1; x2i non-trivial and freely reduced for i ¼ 1; . . . ; n. But
this contradicts Lemma 1 if h is not conjugate to a power of x1 or x2. Therefore H

is abelian if h is not conjugate to a power of x1 or x2.
Now suppose that h is conjugate to a power of x1 or x2. Without loss of gener-

ality we may assume that h ¼ x
g
1. Since h ¼ ua and u is not a proper power in F

we get that x1 ¼ ud in F . With respect to the equation apbqcr ¼ 1 and because
H ¼ ha; b; ci we may replace x1 by u. Hence, let x1 ¼ u. We may also assume that
x2 is not a proper power in F . Now let both x1 and x2 be not a proper power in F .
Using this and the cancellation arguments in [4, Theorems 1 and 2], we see that v is
in hx1; x2i because H is not free of rank 2 or 3. Hence, H has a presentation of the
form K ¼ hx1; x2; t j tx1t

�1 ¼ vi with v ¼ vðx1; x2Þ freely reduced in x1 and x2, and
t ¼ x3. But in the free group on a, b, c there is no automorphism j with
jðaÞ ¼ x1; jðbÞ ¼ x2 and jðcÞ ¼ t such that j�1ðapbqcrÞ with 2c p, 3c q, 3c r is,
written in x1, x2 and t, of the form tx1t

�1v�1. This gives a contradiction. Hence, H is
abelian in this case as well.

In case (2), we can assume without loss of generality that u ¼ v. Then G is fully
residually free, which implies that H is fully residually free. Thus H has the same uni-
versal theory as that of free groups. Therefore apbqcr ¼ 1 with p; q; rd 2 implies that
a, b and c commute.

In addition we remark that, for the case u ¼ v, by the classification given in
[7, Theorem 5], any non-abelian, non-free rank 3 subgroup K of G is a free
rank one extension of centralizers of a free group of rank 2, that is, in our case:
K ¼ hx1; x2; x3 j x3hx

�1
3 ¼ hi with h A hx1; x2i; additionally, either h is regular and

not a proper power in G or h is not regular, in which case K is isomorphic to
hx; y; j xy ¼ yxi ? hz ji (the free product of a free abelian group of rank 2 and the
integers).

In case (3), we can assume without loss of generality that u ¼ v�1, that is,
G ¼ hF ; t j tut�1 ¼ u�1i. Since t2ut�2 ¼ u, one can easily extend the arguments in
[7, Theorem 5] (which only rely on the Nielsen cancellation method, and no residual

336 L. Ciobanu, B. Fine and G. Rosenberger



properties, in a group with relation u ¼ v, in order to obtain a classification of rank
3 subgroups), regarding non-abelian, non-free rank 3 subgroups of fully residually
free groups to the case u ¼ v�1 and obtain that any non-abelian, non-free rank 3
subgroup K of G has a presentation K ¼ hx1; x2; x3 j x3hx

�1
3 ¼ hei, with e ¼G1 and

h A hx1; x2i; additionally, either h is regular and not a proper power in G or h is not
regular, in which case K is isomorphic to hx; y j xyx�1 ¼ y ei ? hz ji, where e ¼ 1 or
e ¼ �1.

We assume now that H ¼ ha; b; ci is not free, not abelian and of rank 3.
Then H is isomorphic to a subgroup K of G as described above, that is,
HGK ¼ hx1; x2; x3 j x3hx

�1
3 ¼ hei. If e ¼ 1, then H is fully residually free and so

apbqcr ¼ 1 implies that a, b and c commute.
Now let e ¼ �1. In case h is regular, and not a proper power, then, if H is non-free

and not abelian, by the above arguments H has to be a one-relator group, that is, in
our case, H ¼ ha; b; c j apbqcr ¼ 1i since apbqcr is regular. By the same arguments as
in case (1), there must be a Nielsen transformation from fa; b; cg to a system
fx1; x2; x3g for which, without loss of generality, H has a presentation of the form
hx1; x2; x3 j x3hx

�1
3 h ¼ 1i. But x3hx

�1
3 h is a word of the form w2, and so by Lemma 1

this cannot happen.
If h is not regular, then HGK ¼ hx; y j xyx�1 ¼ y�1i ? hz ji. But since a, b, c

satisfy apbqcr ¼ 1 and apbqcr is regular, [6, Theorem 5.2] implies that H must in
fact be a rank 2 subgroup, which is not the case.

Finally, let H ¼ ha; b; ci be a non-abelian, non-free rank 2 subgroup. Then by [3,
Theorem 1] H must be the Klein bottle group

V ¼ hx; y j xyx�1 ¼ y�1iG hu; v j u2 ¼ v2i:

In V the elements u and v do not commute. Thus by taking, for instance, a ¼ u,
b ¼ u�1 and c ¼ v�1, since u12u�8 ¼ v4, one gets that a12b8c4 ¼ 1. r

The groups in Theorem 2 for which the translation lengths of u and v are equal
are in fact L-free groups by Bass’ work (see [10, Theorem 2.4.1]). We may extend
Theorem 2 to the following result, after reminding the reader that a group G is
called n-free for a positive integer n if every subgroup of G generated by n elements
is free.

Theorem 3. Let L be a non-cyclic, 2-free, fully residually free group, u and v non-

trivial elements in L that are not proper powers and u is not conjugate to v�1. Let

G ¼ hL; t j tut�1 ¼ vi. If a; b; c A G satisfy apbqcr ¼ 1 for pd 2, qd 3, rd 3 then a,
b, c must commute.

Proof. We first remark that L is also 3-free by [7].
If u is conjugate to v, then we may assume that u ¼ v. Then G is fully residually

free and hence Theorem 3 holds.
From now on we assume that u is not conjugate to v. In the proof of Theorem 2

we used the classification of the rank 3 subgroups of G for the case that L is a non-
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abelian free group (see [4]). In [4], in addition to the standard Nielsen cancellation
method in HNN groups, one only needs three properties of L and G respectively:

(1) the subgroups hui and hvi are malnormal in L;

(2) L is 3-free;

(3) each two-generator subgroup of G is free.

Now let L, as in the statement of Theorem 3, be a non-cyclic, 2-free, fully residu-
ally free group. We have to show that the properties (1), (2) and (3) also hold in this
more general situation.

(1) holds because L is 2-free. Let x A L be such that xuax�1 ¼ ub for some integers
a; b0 0. Since L is 2-free, the subgroup hx; ui of L is cyclic. Hence x A hui.

(2) holds by the above remark that L is 3-free.
We now show that (3) also holds. In [3], in the special case that L is a non-abelian

free group we have used, besides the Nielsen cancellation method in HNN groups
and property (1), only the fact that L is 2-free. But this we assume anyway for L.
Hence (3) also holds for the more general situation. We may now apply analogous
arguments to the ones in the proof of Theorem 2. r

Corollary 2. Let S ¼ ha1; b1; . . . ; an; bn j ½a1; b1� . . . ½an; bn� ¼ 1i, nd 2, be an orient-

able surface group of genusd 2 or S ¼ ha1; . . . ; an j a2
1 . . . a

2
n ¼ 1i a non-orientable

surface group of genusd 4. Let u and v be non-trivial elements in S that are not proper

powers and u is not conjugate to v�1, and let G ¼ hS; t j tut�1 ¼ vi. Then if for

a; b; c A G and pd 2, qd 3, rd 3 the equality apbqcr ¼ 1 holds, the elements a, b, c
must commute.

Proof. In both cases S is a non-cyclic, 2-free, fully residually free group. Hence Cor-
ollary 2 holds by Theorem 3. r
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