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3Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK

Accepted 2014 August 29. Received 2014 August 29; in original form 2014 January 30

ABSTRACT
We use a new non-parametric gravitational modelling tool – GLASS – to determine what quality
of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure
the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained
adaptive grid of mass pixels to model the lens, searching through thousands of models to
marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data,
multiple sources with wide redshift separation give the strongest constraints as this breaks
the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays
also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar
masses – for lenses where the stars dominate the central potential – can also break the steepness
degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay
data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass
at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the
Einstein radius rE �= r1/2; and (v) if rE ∼ r1/2, then stellar kinematic data can be used to probe
the stellar velocity anisotropy β – an interesting quantity in its own right. Where information
on the mass distribution from lensing and/or other probes becomes redundant, this opens up
the possibility of using strong lensing to constrain cosmological models.
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1 IN T RO D U C T I O N

Strong gravitational lenses are rare. Since the discovery of the first
lens Q0957+561 (Walsh, Carswell & Weymann 1979), just ∼400
have been discovered to date.1 However, this number is expected to
increase to several thousand over the next 10 years as new surveys,
both ground based2,3 and space based4 – together with a commu-
nity of citizen-science volunteers examining the image data for
candidates5 – come online.

Since lensing depends only on gravity, strong lenses offer a
unique window on to dark matter and cosmology (Bartelmann 2010;
Amendola et al. 2013). However, extracting dark matter properties
or cosmological constraints from these lensing data will require

� E-mail: jonathan.coles@exascale-computing.eu
1See e.g. http://masterlens.astro.utah.edu for a catalogue.
2http://pan-starrs.ifa.hawaii.edu
3http://www.darkenergysurvey.org
4http://www.euclid-ec.org
5http://spacewarps.org

sophisticated modelling. In particular, with an unprecedented data
set imminent, it is prudent to look again at systematic errors in
the lens models to determine what quality of data (in particular
complementary data from stellar/gas kinematics, lens time delays
and/or stellar-mass constraints) are required to address problems of
interest. It is towards that goal that this work is directed.

To see why lens modelling details are of crucial importance, let
us recall the essential quantities that appear in lensing (see also
Section 2 for a more detailed exposition). First, we have the dis-
tances. Let DL, DS, DLS be the angular-diameter distances to the
lens, source, and from lens to source; these are all proportional
to c/H0 but have factors that depend on the particular choice of
cosmology.6 Typically

DL ≈ zL
c

H0
and

DS

DLS
∼ 1, (1)

where zL is the redshift of the lens. For multiple images, the sky-
projected density must exceed the critical lensing density in some

6Here, c is the speed of light in vacuo and H0 is the Hubble parameter.
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region:

�crit = c2

4πGDL
∼ 1 kg m−2

zL
, (2)

where G is Newton’s gravitational constant. The angular separation
between the lensed images is of the order of the Einstein radius θE,
which is related to the mass by

θE ∼ RG

DL

DLS

DS
, (3)

where RG = GM/c2 (with M the projected mass enclosed within
θE) is the gravitational radius. If the source is a quasar or otherwise
rapidly variable, a time-delay �t in the variability will be present,
where

�t ∼ RG/c. (4)

So, in principle, one can not only measure the mass of the lens,
one can use the dependence on the cosmology-dependent D factors
to extract the cosmological model and all its parameters. Zwicky
(1937) drew attention to the former, and Refsdal (1964, 1966)
pointed out the latter, all long before lenses were discovered. The
difficulty with actually doing this, however, became apparent soon
after the discovery of the first lens by Walsh et al. (1979). In the first
ever paper on lens modelling, Young et al. (1981) found that many
plausible mass distributions could reproduce the data.

Young et al. (1981) were remarkably prescient about the sub-
sequent development of lens modelling. First, they introduced the
technique of choosing a parametric form for the lensing mass and
then fitting for the parameters, which is still the most common
strategy (see for example Keeton 2010; Kneib & Natarajan 2011).
Secondly, they pointed out the non-uniqueness of lens models –
lensing degeneracies. Thirdly, they suggested combining lensing
data with stellar kinematics and X-rays, to reduce the effect of the
degeneracies. Later work, as well as following up these suggestions,
has introduced some further new ideas. Five of these are important
for this work.

(i) Free-form modelling: In ‘free-form’ or non-parametric mod-
elling, there is no specified parametric form for the mass distribu-
tion. There are still assumptions (or priors) on the mass distribu-
tion, such as smoothness or being centrally concentrated (Saha &
Williams 1997; Diego et al. 2005; Merten et al. 2009; Coe et al.
2010), but these are much less restrictive than parametric forms.
A particularly elegant prior is implemented by Liesenborgs, De
Rijcke & Dejonghe (2006), requiring that the mass distribution be
non-negative and no extra images allowed. To be concrete, we define
from here on: ‘non-parametric, or ‘free-form’ ≡ more parameters
than data constraints (i.e. deliberately underconstrained)’.

Being underconstrained, it is then necessary to explore model
degeneracies rather than finding a single ‘best-fitting’ solution. Free-
form models are more commonly used with cluster lenses (Saha,
Read & Williams 2006; Merten et al. 2009; Saha & Read 2009;
Sendra et al. 2014), but can be used with galaxy lenses as well, where
their less restrictive assumptions can be important. For example, in
time-delay galaxy lenses, parametric model measures of the Hubble
parameter H0 have historically been at tension with independent
measures (e.g. Kochanek 2002a,b); these are resolved once the less
restrictive assumptions of free-form models are permitted (Read,
Saha & Macciò 2007). Hybrid methods, using a mass grid on top a
parametric model, have also been explored (e.g. Vegetti et al. 2010).

(ii) Model ensembles: Model ensembles, exploring a diverse
range of possible mass distributions that none the less all fit the

data, are a way of combating the non-uniqueness of models. Such
ensembles are possible in parametric models (e.g. Bernstein &
Fischer 1999; Jullo et al. 2010; Coe, Bradley & Zitrin 2014; John-
son et al. 2014; Richard et al. 2014), but are more common in
free-form models, where – since such models are deliberately un-
derconstrained – they become vital (Williams & Saha 2000; Saha
& Read 2009; Lubini & Coles 2012).

(iii) Stellar kinematic constraints: This was first suggested by
Treu & Koopmans (2002) as a means to break lensing degenera-
cies. The idea is that stellar kinematics can provide an independent
estimate of the Einstein radius, via the virial theorem

〈v2
los〉
c2

≈ θE

6π

DS

DLS
, (5)

where 〈v2
los〉 is the line of sight stellar velocity dispersion, and

the above relation becomes exact for isothermal lenses. This can
then be used to probe cosmological parameters if lenses are known
to be isothermal (e.g. Collett et al. 2012); or to break the steep-
ness degeneracy in the more general situation (see Section 2.3).
The technique has since been applied to many lenses (e.g. Koop-
mans et al. 2006; Bolton et al. 2008). Going further, the use of
two-dimensional kinematics (Barnabè et al. 2011) is especially
interesting.

(iv) Stellar-mass constraints: The stellar mass in a lens can be
inferred from photometry and compared with the total mass (e.g.
Keeton, Kochanek & Falco 1998; Kochanek et al. 2000; Rusin et al.
2003; Ferreras, Saha & Williams 2005; Ferreras, Saha & Burles
2008; Leier et al. 2011). Since the inferred stellar mass depends
on the assumed initial mass function (IMF), lenses in which stellar
mass dominates can be used to derive upper bounds on the stellar
M/L (Ferreras et al. 2010). Lower bounds on stellar M/L have also
recently been claimed by fitting �CDM (� cold dark matter) semi-
analytic models to the tilt of the Fundamental Plane (Dutton et al.
2013).

(v) Testing modelling strategies: Using mock data to see how
well a given model can recover simulated lenses is increasingly
being recognized as essential. Simple blind tests have appeared in
earlier work (for example, fig. 2 in Williams & Saha 2000), but more
recently, tests against dynamically simulated galaxies or clusters are
favoured (Liesenborgs et al. 2007; Read et al. 2007; Barnabè et al.
2009; Merten et al. 2009; Coe et al. 2010).

There are three further key modelling ideas in the literature that
we will not touch upon in this work: to use X-ray intensity and
temperature profiles as a mass constraint (e.g. Newman et al. 2013);
and to model multiple lenses simultaneously, with one or more
cosmological parameters variable but shared between the lenses.
This latter strategy has been used to constrain H0 from time-delay
lenses (Saha et al. 2006; Coles 2008; Paraficz & Hjorth 2010) and
recently the cosmological parameters � as well (Sereno & Paraficz
2014). Third, it is in principle possible to estimate the � parameters
even from a single lens, if there are lensed sources at multiple
redshifts (Lubini et al. 2014) or by using additional priors (Jullo
et al. 2010; Suyu et al. 2014).

In this paper, we introduce a new non-parametric lens modelling
framework – GLASS (Gravitational Lensing AnalysiS Software). This
shares some aspects with an earlier code PIXELENS (Saha & Williams
2004; Coles 2008). However, GLASS – which contains all new code
written from the ground up – significantly improves upon PIXELENS

in several key ways.

(i) At the heart of GLASS is a new uniform sampling algo-
rithm for high-dimensional spaces (Lubini & Coles 2012). This

MNRAS 445, 2181–2197 (2014)



Lens recovery with GLASS 2183

allows for large ensembles of >10 000 models to be efficiently
generated.

(ii) GLASS provides a modular framework that allows new priors
to be added and modified easily.

(iii) The basis functions approximating a model can be easily
changed (in this paper, we assume pixels as in PIXELENS).

(iv) With so many models in the final ensemble, we can afford to
apply non-linear constraints (for example stellar kinematic data; or
the removal of models with spurious extra images) to accept/reject
models in a post-processing step.

(v) The central region of the mass map can have a higher resolu-
tion to more efficiently capture steep models.

(vi) Stellar density can be used as an additional constraint on the
models.

(vii) Point or extended mass objects can be placed in the field.

As a first application, we use GLASS on mock data to determine
which combination of lensing, stellar mass and/or stellar kinematic
constraints best constrain the projected mass profile and shape of a
gravitational lens. We will apply GLASS to real lens data in a series
of forthcoming papers.

This paper is organized as follows. In Section 2, we review the
key elements of lensing theory, stellar population synthesis, and
stellar dynamics we will need. In Section 3, we describe the GLASS

code. In Section 4, we describe our mock data. In Section 5, we
present our results from applying GLASS to these mock data. Finally,
in Section 6 we present our conclusions.

2 TH E O RY

2.1 Lensing essentials

In the following summary, we follow Blandford & Narayan (1986)
with some differences in notation, in particular putting back the
speed of light c and the gravitational constant G.

The lens equation

β = θ − DLS

DS
α(θ )

α(θ ) = 4G

c2DL

∫
�(θ ′)

(θ − θ ′)
|θ − θ ′|2 d2θ ′ (6)

maps an observed image position θ to a source position β.
Using the thin lens approximation, the lens can be thought of as
a projected surface density � which diverts the path of a photon
instantaneously through the bending angle α. The D factors, as in
the previous section, are angular-diameter distances, which depend
on the cosmological density-parameters �, the redshifts zL, zS of
the lens and the source, and the Hubble parameter H0; thus,

DLS = c

H0

1 + zS

1 + zL

∫ zS

zL

dz√
�m(1 + z)3 + ��

(7)

and DL ≡ D0, L, DS ≡ D0, S. One way to understand the lens equation
is via Fermat’s principle. We can think of light as travelling only
along extremum paths where lensed images occur. Such paths occur
at the extrema of the photon arrival time t(θ) that depends on
the geometric path the photon takes and the general relativistic
gravitational time dilation due to a thin lens at redshift zL:

ct(θ )

(1 + zL)DL
= 1

2 |θ − β|2 · DS

DLS

−4GDL

c2

∫
�(θ ′) ln |θ − θ ′| d2θ ′. (8)

We can simplify the above equation by introducing a dimensionless
time τ and density κ:

τ (θ ) = ct(θ )

(1 + zL)DL
; κ(θ ) ≡ �(θ)

�crit
(9)

and hence rewrite equation (8) as

τ (θ ) = 1
2 |θ − β|2 · DS

DLS
− 1

π

∫
κ(θ ′) ln |θ − θ ′|d2θ ′. (10)

The scaled arrival time τ is like a solid angle. It is of the order of
the area (in steradians) of the full lensing system. The expression
|θ − β|2 is of the order of the image-separation squared, and the
other terms are of similar size. For this reason, it is convenient to
measure τ in arcsec2.

Lensing observations provide information only at θ where there
are images. Hence, the arrival-time surface τ (θ ) is not itself observ-
able. Its usefulness lies in that observables can be derived from it. An
image observed at θ1 implies that ∇τ (θ1) = 0. A measurement of
time delays between images at θ1 and θ2 implies that t(θ1) − t(θ2)
is known. Interestingly, both these types of observations give con-
straints that are linear in κ and β.

The rather complicated dependence of lensing observables on the
mass distribution κ(θ ) has an important consequence: very different
mass distributions can result in similar observables. This is the phe-
nomenon of lensing degeneracies. While the non-uniqueness of lens
models noted by Young et al. (1981) already hinted at degeneracies,
their existence was first derived by Falco, Gorenstein & Shapiro
(1985). The most important is the so-called mass-sheet degeneracy,
which is that image positions remain invariant if τ (θ ) is multiplied
by an arbitrary constant. This corresponds to rescaling the surface
density at the images κ(θ ). In fact there are infinitely many degen-
eracies (Saha 2000) because any transformation of the arrival-time
surface away from the images has no effect on the lensing observ-
ables. In particular, there are degeneracies that involve the shape of
the mass distribution (Saha & Williams 2006; Schneider & Sluse
2014). Degeneracies tend to be suppressed if there are sources at
very different redshifts or ‘redshift contrast’ (AbdelSalam, Saha &
Williams 1998; Saha & Read 2009), because the presence of dif-
ferent factors of DS/DLS in the image plane makes it more difficult
to change the mass distribution and the arrival-time surface without
affecting the lensing observables. But degeneracies are still present
with multiple source redshifts (Liesenborgs et al. 2008; Schneider
2014).

2.2 Stellar populations

For many galaxy lenses, the gravitational potential in the inner re-
gion is dominated by the stellar mass. Stellar mass can be estimated
by combining photometry and colours with models of the stellar
populations. Such estimates are reasonably robust, even if the star
formation history is very uncertain: given a stellar-population model
(such as Bruzual & Charlot 2003) and an IMF, the stellar mass can
be inferred to 0.1–0.2 dex using just two photometric bands (see e.g.
fig. 1 in Ferreras et al. 2008). By comparing the lensing-mass and
stellar-mass profiles in elliptical galaxies, it is possible to extract
the radial dependence of the baryonic versus dark matter fraction
(Ferreras et al. 2005, 2008; Leier et al. 2011).

The major uncertainty at present in the stellar mass is probably the
IMF. In the lensing galaxy of the Einstein Cross, the IMF cannot be
much more bottom-heavy than Chabrier (2003), because otherwise
the stellar mass would exceed the lensing mass (Ferreras et al.
2010). More massive galaxies, however, do appear to have more of
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their stellar mass in low-mass stars. This is indicated by molecular
spectral features characteristic of low-mass stars (Cenarro et al.
2004; Conroy & van Dokkum 2012; Ferreras et al. 2013). The
Chabrier (2003) IMF would, however, still provide a robust lower
limit on the stellar mass and hence, also a limit on the total mass.
Accordingly, GLASS allows a constraint of the form

M(θ) ≥ Mstel(θ) (11)

on the total mass.

2.3 Stellar kinematics

Another useful constraint follows from the velocity of stars within
the lensing galaxy. Assuming spherical symmetry, stars obey the
projected Jeans equations (e.g. Binney & Tremaine 2008):

σ 2
p (R) = 2

I (R)

∫ ∞

R

dr

(
1 − β

R2

r2

)
νσ 2

r r√
r2 − R2

; (12)

σ 2
r (r) = r−2β

ν

∫ ∞

r

r ′2βν
GM(r ′)

r ′2 dr ′, (13)

where σ p is the projected velocity dispersion of the stars as a func-
tion of projected radius R; I(R) is the surface density of the stars;
ν(r) is the three-dimensional stellar density; σ r, t(r) are the radial and
tangential velocity dispersions, respectively; β(r) = 1 − σ 2

t /2σ 2
r =

const. is the velocity anisotropy (here assumed to be constant, and
not to be confused with β(θ) from lensing); G is Newton’s gravita-
tional constant; and M(r) is the mass profile that we would like to
measure. By convention, we always write R for a projected radius,
and r for a 3D radius.

It is immediately clear from equation (12) that, even assuming
spherical symmetry, we have a degeneracy between the enclosed
mass profile M(r) and the velocity anisotropy β(r). This can be un-
derstood intuitively since β(r) measures the relative importance of
radial versus circular orbits and is intrinsically difficult to constrain
given only one component of the velocity vector for each star. None
the less, β(r) can be constrained given sufficiently many stars, since
radial Doppler velocities sample eccentric orbits as r → 0 and tan-
gential orbits as r → ∞ (e.g. Wilkinson et al. 2002). It can also
be estimated if an independent measure of M(r) is available – for
example coming from strong lensing.

While M(r) is difficult to measure from stellar kinematics alone,
the mass within the half-light radius is robustly recovered (e.g.
Walker et al. 2009; Wolf et al. 2010; Agnello & Evans 2012) since
stellar systems in dynamic quasi-equilibrium obey the virial theo-
rem (equation 5). This means that stellar kinematics can break the
steepness degeneracy if r1/2 �= rE, where rE = DLθE is the physical
Einstein radius. We test this expectation in Section 5.

We describe our numerical solution of equation (12) in Section 3.7
and present tests applied to mock data in Section 5.

3 N U M E R I C A L M E T H O D S

3.1 A new lens modelling framework: GLASS

GLASS is the Gravitational Lensing AnalysiS Software. It extends
and develops some of the concepts from the free-form modelling
tool PIXELENS (Saha & Williams 2004; Coles 2008), but with all
new code. The most compute intensive portion was written in C but
PYTHON was chosen because of its flexibility as a language and for its
large scientific library support. The flexibility allows GLASS to have

quite sophisticated behaviour while at the same time simplifying the
user experience and reducing the overall development time. One of
the striking features is that the input file to GLASS is itself a PYTHON

program. Understanding PYTHON is not necessary for the most basic
use, but this allows a user to build complex analysis of a model
directly into the input file. GLASS may furthermore be used as an
external library to other PYTHON programs. The software is freely
available for download or from the first author.7

The key scientific and technical improvements are:

(i) A new uniform sampling algorithm for high-dimensional
spaces.

At the heart of GLASS lies a new algorithm for sampling the
high-dimensional linear space that represents the modelling so-
lution space. This algorithm was described and tested in Lubini &
Coles (2012); it is multithreaded allowing it to run efficiently on
many-cored machines.

(ii) A modular framework that allows new priors to be added and
modified easily.

Each prior is a simple function that adds linear constraints that
operate on either a single lens object or the entire ensemble of
objects. GLASS comes with a number of useful priors (the default
ones will be described in Section 3.3), but a user can write their
own directly in the input file, or by modifying the source code.

(iii) The basis functions approximating a model can be changed.

GLASS currently describes the lens mass as a collection of pixels,
but the code has been designed to support alternative methods. In
particular, there are future plans to develop a module using Bessel
functions. This will require a new set of priors that operate on these
functions.

(iv) Non-linear constraints can be imposed in an automated post-
processing step.

Once GLASS has generated an ensemble of models given the linear
constraints, any number of post-processing functions can be applied.
Not only can these functions be used to derive new quantities from
the mass models, they can also be used as a filter to accept or reject
a model based on some non-linear constraint. For example, we
can reject models that have spurious extra images (Section 3.6), or
models that do not match stellar kinematic constraints (Section 3.7).
The plotting functions within GLASS will correctly display models
that have been accepted or rejected.

(v) The central region can have a higher resolution to capture
steep models.

With the default basis set of pixels, the mass distribution of the
lens is described by a uniform grid. However, in the central region of
a lensing galaxy where the mass profile may rise steeply, the centre
pixel uses a higher resolution. This allows the density to increase
smoothly but still allow for a large degree of freedom within the
inner region without allowing the density to be arbitrarily high.

(vi) Stellar density can be used as an additional constraint.

The mass in inner regions of galaxies is often dominated by the
stellar component which one can estimate using standard mass-to-
light models. These data can be added to the potential as described

7http://www.jpcoles.com
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later in Section 5.3. By using the stellar mass one can place a lower
bound on the mass and help constrain the inner most mass profile.

(vii) Point or extended mass objects can be placed in the field.

A shear term can be added to the potential, as shown later in
equation (15), to account for mass external to the modelled region.
This is useful to capture the gross effects of a distant neighbour,
since there is a degeneracy between the ellipticity of a lens and its
shear field (the greater the allowed shear, the more circular the lens
may be). GLASS also allows further analytic potential components to
be included. These can be used to model substructure or multiple
neighbours close to the main lens. The substructure may have only a
small effect if the lens is a single galaxy, but if the lens is a group or
cluster then a potential can be added for each of the known member
galaxies. A few standard functions are already included in GLASS

including those for a point mass, a power law distribution, or an
isothermal (a particular case of the power law).

3.2 Analysis tools

GLASS is not only a modelling tool but also an analysis engine. GLASS

provides many functions for viewing and manipulating the com-
puted models. These functions can either be called from a program
written by the user or by using the program VIEWSTATE.PY included
with GLASS. There is also a tool, LENSPICK.PY for creating a lens,
either analytically or from an N-body simulation file. To load the
simulation data, GLASS relies on the PYNBODY library (Pontzen et al.
2013) and can thus load any file supported by that package.

3.3 Pixelated models

For this paper, we will restrict ourselves to using a pixelated basis
set as used by PIXELENS (Saha & Williams 2004; Coles 2008), but
note that it is straightforward to add other basis function expansions
to GLASS. The algorithm for generating models in GLASS samples a
convex polytope in a high-dimensional space whose interior points
satisfy both the lens equation and other physically motivated linear
priors (Lubini & Coles 2012). A limitation of our sampling strategy
is that only linear constraints may be applied when building the
model ensemble; however, non-linear constraints can be applied in
post-processing (see Sections 3.6 and 3.7). We therefore formulate
all of our equations as equations linear in the unknowns. We describe
the density distribution κ as a set of discrete grid cells or pixels κ i

and rewrite the potential (equation A4) as

ψ(θ) =
∑

n

κnQn(θ ) (14)

where the sum runs over all the pixels and Qn is the integral of
the logarithm over pixel n. The exact form for Q is described in
Appendix B. We can find the discretized lens equation by simply
taking the gradient of the above equations.

The pixels only cover a finite circular area with physical radius
Rmap and pixel radius Rpix with the central cell centred on the lens-
ing galaxy. To account for any global shearing outside this region
from, e.g. a neighbouring galaxy, we also add to equation (14) two
shearing terms:

γ1(θ2
x − θ2

y ) + 2γ2θxθy. (15)

We can continue adding terms to account for other potentials. For
instance, we may want to impose a base potential over the field, or
add potentials from the presence of other galaxies in the field. GLASS

already includes potentials for a point mass or an exponential form,

but custom potentials are straightforward to add and can be included
directly in the input file. If the stellar density κs has been estimated,
we can use this as a lower bound where the stellar potential is a
known constant of the form equation (14), e.g. κn = κdm, n + κ s, n

for a two-component model.

3.3.1 Priors

The lens equation and the arrival times alone are typically not
enough to form a closed volume in the solution space. We there-
fore require additional linear constraints – priors. Some of these
are ‘physical’ in the sense that they are unarguable – for exam-
ple demanding that the mass density is everywhere positive; others
are more subjective, for example demanding that the mass map
is smooth over some region. Such ‘regularization’ priors may be
switched off for all or some of the mass map if the data are suffi-
ciently constraining.

The priors built in to GLASS are similar to those used in PIXELENS

(Coles 2008). The physical priors are always used by default; the
regularization priors are used sparingly – i.e. only if the data are not
sufficiently constraining to obtain sensible solutions without them:

Physical priors

(i) The density must be non-negative everywhere.
(ii) Image parity is enforced.

Regularization priors

(i) The local gradient everywhere must point within 45◦ of the
centre.

(ii) The azimuthally averaged density profile must have a slope
everywhere ≤0.

(iii) The density is inversion symmetric.

For typical lens data, the regularization priors are very important
for creating physically sensible solutions. Prior (i) demands that
the peak in the mass density is at the centre of the mass map. Sec-
ondary ‘plateaus’ in the mass map are possible, but not secondary
peaks. Note that this prior still successfully allows merging galaxy
systems to be correctly captured, provided that the two galaxies
are not equally dense in projection (see for example the PIXELENS

model of the merger system B1608 in Read et al. 2007), and for the
successful detection of ‘meso-structure’ in strong lensing galaxy
clusters (Saha, Williams & Ferreras 2007). Prior (ii) is arguably
a physical prior since a positive slope in the azimuthally aver-
aged density profile would be unstable (e.g. Binney & Tremaine
2008). Note that this prior does not preclude successful mod-
elling of mergers or substructure unless the total projected mass
in substructure is comparable to the projected mass of the host in
an azimuthal annulus (Read et al. 2007; Saha et al. 2007). Prior
(iii) is only used for doubles that ought to be inversion symmet-
ric and quads where inversion symmetry is clear from the image
configuration.

Finally, we remind the reader that all of the regularization pri-
ors can be switched off or changed/improved depending on the
data quality available. For clusters, substructure can be explicitly
modelled by adding analytic potentials at the known locations of
galaxies; furthermore, the above priors can be relaxed in regions
of the mass map where the data are particularly constraining (for
example near the images). We will apply GLASS to a host of strong
lensing clusters in forthcoming work, where we will explicitly test
the prior on mock data that has significant substructure.
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3.4 Building the model ensemble

In the simplest form, a single model for a lens is a tuple M =
(κ, β, γ1, γ2). A single model represents a single point in the solu-
tion space polytope. Using the MCMC sampling strategy described
in Lubini & Coles (2012), we uniformly sample this space. Collec-
tively, the sampled models are referred to as an ensemble E = {Mi},
where we usually generate |E | ∼ 1000 models. One can choose to
further process these models to impose priors that may be difficult
to enforce during the modelling process. For instance, non-linear
constraints, or simply filtering of models that do not meet some cri-
teria can be excluded, or weighted against as discussed previously.
In this paper, we do not exclude any models and treat all models as
equally likely.

The time to generate the model ensemble is mostly a function
of the size of the parameter space. The MCMC algorithm has a
‘warm-up’ phase where it estimates the size and shape of each
dimension in the solution space. Once this has been completed, the
models are sampled very quickly. In fact, there is little difference
between generating 1000 models and generating 10 000 models,
although we find little statistical difference after 1000 models. For
the mock lenses, the typical ‘warm-up’ time was about 4 s, and the
modelling time was 20 s using a parallel shared-memory machine
with 40 cores. The ability to rapidly generate so many models is
what allows us to then accept/reject models to apply non-linear
constraints (see Sections 3.6 and 3.7). This is a key advantage over
our earlier pixelated strong lens tool PIXELENS.

3.5 Ray-tracing

GLASS can also determine the position of images and time delays
from particle-based simulation output given a source position β.
This is used to generate the lens configurations used in the parameter
study. The particles are first projected on to a very high resolution
grid representing the lens plane. The centres θ i of each of the grid
cells are mapped back on to the source plane using equation (6). If
the location on the source plane β i is within a user specified εaccept

of β then θ i is accepted and further refined using a root finding
algorithm until the distance to β is nearly zero. If multiple points
converge to an εroot of each other then only one point is taken.
Care must be taken that the grid resolution is high enough that the
resulting image position error is below the equivalent observational
error. Time delays are then calculated in order of the arrival time at
each image (equation A2).

3.6 Removing models with extra images

While linear constraints are applied in GLASS by the nature of the
sampling algorithm, non-linear constraints must be applied in post-
processing. Models that are inconsistent with such constraints must
then be statistically discarded via a likelihood analysis. An ex-
ample of such a non-linear constraint is the spurious presence of
unobserved images. This ‘null-space’ prior was first proposed and
explored by Liesenborgs et al. (2006) and found to be extremely
powerful. We find that our gradient prior in GLASS (see Section 3.3)
performs much of the same function as Liesenborgs et al.’s null-
space prior, but some models can still rarely turn up spurious images.
We reject these in a post-processing step, where we sweep through
the model ensemble applying the ray-tracing algorithm described
in Section 3.5.

3.7 A post-processing module for stellar kinematics

Similarly to the null-space constraint (Section 3.6), stellar kinematic
constraints constitute a non-linear prior on the mass map and must
be applied in post-processing. We sweep through the model ensem-
ble performing an Abel de-projection to determine M(r) from the
projected surface density �(R) assuming spherical symmetry (e.g.
Binney & Tremaine 2008; Broadhurst & Barkana 2008):

M(r) = Mp(<r)

−4r2
∫ π/2

0
� (x)

[
1

cos2 θ
− sin θ

cos3 θ
arctan

(
cos θ

sin θ

)]
dθ,

(16)

where

Mp(<r) = 2π

∫ r

0
R�(R)dR (17)

is the projected enclosed mass evaluated at 3D radius r; and
x = r/cos θ .

This de-projection algorithm was tested on triaxial figures in
Saha et al. (2006). They found that for triaxialities typical of our
current cosmology, the method works extremely well unless the
triaxial figure is projected directly along the line of sight such
that we see the galaxy or galaxy cluster ‘down the barrel’. Such
a situation is unlikely, but in any case avoidable since the resultant
figure appears spherical in projection. This leads to the seemingly
counter-intuitive result that the kinematic constraints – that rely on
the above de-projection – are most secure for systems that do not
appear spherical in projection (unless independent data can confirm
the three-dimensional shape is indeed very round).

We use the de-projected mass to numerically solve equation (12)
for constant β(r), assuming either β(r) = 1 or β(r) = 0 at all
radii to bracket the two extremum situations. Where the data are
good enough, these two may be distinguished giving dynamical
information about β(r). In more typical situations, however, we
seek to simply marginalize over the effect of β(r), using the stellar
kinematics as a robust measure of M(r1/2) (see Section 2.3).

4 TH E MO C K DATA

We now present a study of four mock galaxies with known analytic
forms. These are used to verify that GLASS is able to correctly recover
the mass profile, and – more importantly – to determine what type
and quality of data best constrain the mass profile and shape of a
lens.

4.1 The triaxial N-body mock galaxies

We generate four two-component mock galaxies, where the dark
matter and stellar profiles are allowed to be both steep and shallow.
The enclosed mass of the stars and dark matter are both fixed to
be M∗,DM = 1.8 × 1010 M� at the stellar scale radius a∗ = 2 kpc,
such that the stars and dark matter contribute equally to the total
mass at a∗. The dark matter scalelength is fixed for all models at
aDM = 20 kpc. These values were chosen to closely resemble the
lensing galaxy PG1115+080 (Weymann et al. 1980). We place the
galaxy at a redshift of zL = 0.31 for lensing. Throughout, we assume
a cosmology where H−1

0 = 13.7 Gyr, �M = 0.28, and �� = 0.72.
The critical lensing density is κcrit ∼ 1.8 × 109 M� kpc−2.
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Table 1. Profile parameters for the four mock galaxies. The name
indicates whether the galaxy is centrally dark matter or stellar domi-
nated with a shallow or cuspy dark matter density profile. Masses are
in units of 1.8 × 1010 M�. The scalelengths for all lenses are (a�,
aDM) = (2, 20) kpc. Rmap is the 2D projected radius used to generate
the lens configurations. In the case of STAR1.5-DMCUSP, the profile is
sufficiently steep that the profile could be truncated at Rmap = 10 kpc.

Galaxy γ � M� γ DM MDM Rmap

STAR1.0-DMCORE 1 4 0.05 112.95 50 kpc
STAR1.0-DMCUSP 1 4 1 112 50 kpc
STAR1.5-DMCORE 1.5 21.5 0.16 112.84 50 kpc
STAR1.5-DMCUSP 1.5 21.5 1 112 10 kpc

The galaxies were generated as three-dimensional particle distri-
butions as in Dehnen (2009). Each component follows the profile

ρ(r̃) = M

4πa3
(3 − γ )(r̃/a)−γ (1 + r̃/a)γ−4, (18)

where a is the component scale radius mentioned in Table 1; r̃2 =
(x/λ1)2 + (y/λ2)2 + (z/λ3)2 is the ellipsoidal radius; and the axis
ratios are λ1: λ2: λ3 = 6: 4: 3. In the case where the central density
profile index γ is unity (and in the limit of spherical symmetry), this
is the Hernquist profile (Hernquist 1990). The four combinations of
profile indices are shown in Table 1.

In Fig. 1, we show the 3D radial density, the 2D projected density,
and the 2D enclosed mass for each galaxy.

4.2 Lens configurations

For each of the four galaxies, we used the ray-tracing feature
of GLASS described in Section 3.5 to construct six basic lensing
morphologies:

(i) one double and one extended double;
(ii) one quad and one extended quad;
(iii) two 2-source quads with varying redshift contrast.

The ‘extended’ configurations use multiple point sources at the
same redshift to simulate an extended source that will produce an
arc-like image. Fig. 2 shows the lens configurations for the STAR1.5-
DMCUSP galaxy. The configurations for the other galaxies are similar.
The labels Z1, Z2, Z3 within the names refer to the redshift of the
sources. We have chosen Z1 = 1.72, Z2 = 0.72, and Z3 = 0.51 so
that the radial distribution of the images is roughly equally spaced.
For all mocks, we do not apply any external shear field. Only the
central image of the Z1 source is used to avoid overconstraining the
models, otherwise all the central images would fall within the central
pixel and no solution exists that satisfies all locations simultaneously
for one pixel value.

Each of these configurations were modelled with and without
time delays, with and without a central image, and with and without
the stellar mass as a lower bound, for a total of 48 test cases. The
central image is typically highly demagnified. For galaxy lenses it
is very difficult to find since it lies along the sight line to the bright
lensing galaxy; in clusters, however, such images have been seen –
e.g. Inada et al. (2005). We assumed for all our tests that the lensing
mass was radially symmetric (Prior vi). For our mock data, this is
known to be true; it is most often the case with real galaxies, unless
there is an obvious observed asymmetry. We explore the effect of
switching off the symmetry prior in Appendix C. For the quads,

the difference is small; for the doubles – as expected – the results
are significantly degraded without this prior. We use, by default,
8 pixels from the centre to the edge of the mass map; the central
pixel was further refined into 5 × 5 pixels to capture any steep rise in
the profile (two of the four mock galaxies have a steeply rising inner
profile). We demonstrate that our results are robust to changing the
grid resolution in Appendix D.

In all cases – despite applying no external shear to the mock
lenses – we allow a broad range of external shear in our lens model
reconstructions. GLASS correctly returns a small or zero shear in
all cases. It is possible that more complex shear fields present in
real lensing galaxies could introduce further degeneracies beyond
those discussed here. However, any such shear field can, at least
in principle, be constrained by data (e.g. combining weak lensing
constraints, or assuming that the shear field correlates with visible
galaxies – e.g. Merten et al. 2009; Wong et al. 2011).

5 R ESULTS

5.1 Radial profile recovery

Figs 3 and 4 show shows some example reconstructions of the
radial profile of our mock lenses. The left-hand column shows
the ensemble average arrival-time surface with images marked as
circles and the inferred source positions as diamonds. The centre
column shows the radial density profile. The error bars cover a 1σ

range around the median; the grey bands show the full ensemble
range. The true density profile from the mock data is also plotted
for comparison. The vertical lines mark the radial position of the
images. The right-hand column shows the enclosed mass. From top
to bottom, the rows in Fig. 3 correspond to an extended double
for STAR1.5-DMCUSP, and an extended double with stellar-mass
constraints for STAR1.5-DMCUSP. The rows in Fig. 4 correspond
to a quad with time-delay data for STAR1.5-DMCUSP, and a quad
with time delays for STAR1.0-DMCORE. Fig. 5 shows an example 2D
reconstruction for STAR1.5-DMCUSP for a quad; we discuss shape
recovery further in Section 5.2.

As expected, the accuracies and precisions are best in the range
of radii with lensed images where the most information about the
lens is present. Even in the weakly constrained case of the extended
double where the radial profile is poor, the true enclosed mass
M(<R) is well-recovered at the image radii and our ensemble always
encompasses it. We have verified this is the case in all of our tests,
although for brevity we have not included the plots here. In all cases,
there is a dip in the profile at large R due to the cut-off in mass in
the lensing map. This is of little importance, though, as there is no
lensing information there.

Note that the extended double (top row) gives the poorest con-
straints, as expected. Adding stellar mass (second row) significantly
improves the constraints, for this example where the stars contribute
significantly to the potential. Moving to a quad with time delays
gives constraints almost as strong as the double with stellar mass,
but note that focusing only on the goodness of the fit can be mis-
leading. In the third row of Fig. 3, we obtain a better recovery than
in the bottom row for precisely the same data quality. This oc-
curs because the GLASS prior favours steeper models consistent with
STAR1.5-DMCUSP, but not STAR1.0-DMCORE. It is the GLASS prior, rather
than the data that is driving the good recovery for STAR1.5-DMCUSP

in this example. This emphasizes the importance of using a wide
range of mock data tests to determine the role of data versus prior
in strong lensing.
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Figure 1. Profiles of the four mock galaxies showing the stellar (dotted) and dark matter (dashed) components and the total (solid). Left: the spherically
averaged density. The stars in models STAR1.5-DMCORE and STAR1.5-DMCUSP contribute significantly to the central potential. Middle: the radially averaged
two-dimensional projected density. The critical lensing density at zL = 0.31, κcrit ∼ 1.8 × 109 M� kpc−2, is marked by the horizontal line. Right: the enclosed
projected mass.

Figure 2. The lens configurations for the six test cases using the STAR1.5-DMCUSP mock galaxy. The other mock galaxies produce similar results. Here,
the central image is shown, although not all tests include it. The naming convention indicates the redshift of the sources with Z1 = 1.72, Z2 = 0.72, and
Z3 = 0.51. The central image only belongs to the Z1 source to avoid overconstraining the models (see Section 4.2 for further details). Small diamonds identify
the location of the source(s) and images of the same shape share a common source. The extended source examples have been constructed so that the images
will form arclets. The maximum separation of the sources in the source plane is 2.23 kpc in the extended double and 0.92 kpc in the extended quad. Grey
circles are a visual aid to help determine radial separation between images. The axes are in arcseconds.

Figs 6 and 7 show the results for our full mock data ensemble.
Each subplot corresponds to a different mock galaxy, as marked.
We show the fractional error of the mass distribution for each of the
test configurations with (red) and without (black) stellar mass. In
Fig. 6, we define the error

fR =
∑

i

∣∣∣M(i) − M̂(i)
∣∣∣∑

M̂(i)
, (19)

based on the mass M(i) of each pixel ring i and the mass M̂ from the
mock galaxy. In Fig. 7, the error is defined over all the pixels θ :

fθ =
∑

θ

∣∣∣M(θ) − M̂(θ )
∣∣∣∑

θ M̂(θ)
. (20)

Since both error measurements consider the mass of each pixel,
we are implicitly weighting the recovered density by the varying
size of the pixels. The value fR emphasises the error one would
see from radial profiles, while fθ is useful as a measure of how
well each individual pixel is recovered. For both fR and fθ , we only
consider mass up to one pixel length past the outermost image,
since there is no longer any lensing information beyond that point.
This means we typically use eight bins, linearly spaced, ignoring
the outermost three bins. The spacing changes, however, within the
high-resolution region in the middle.

The abundance of strong lensing data increases from left to right
within each plot. As a result, there is a general trend for the recon-
struction quality to increase (and therefore for f to decrease). When
both time delays and a central image are present (TD+central),
the quality is highest. A double is known to provide very little
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Figure 3. Two reconstructions of the mock galaxy STAR1.5-DMCUSP for an extended double without stellar mass (top) and with stellar mass (bottom). No time
delays were assumed. The improved constraints on the mass distribution when a lower bound is given by the stellar mass is evident in the reduced range
of allowable models. Left: the ensemble average arrival-time surface with just the iso-contours for the saddle points drawn. The central diamonds show the
reconstructed source positions. Middle: the surface density of the dark matter (DM; magenta), the stars (yellow), and the total (black). The original N-body
mass model (with stars) used to create the lens is shown in green. The vertical lines mark the radial positions of the images. The higher resolution feature of
GLASS has been used on the central pixel allowing the steep profile to be captured. Right: the cumulative mass. The error bars on all plots are 1σ ; the grey bands
show the full range of models.

constraint on the mass distribution. This is particularly evident
in galaxies STAR1.0-DMCUSP and STAR1.5-DMCUSP where the mass
profile is steepest and the reconstruction of the double is poor-
est. However, the addition of an arc from the extended source is
sufficient to correct this. Notice that, as in Fig. 3, the recovery
for STAR1.5-DMCUSP quickly saturates; there is little improvement
as the data improves beyond a single quad. This occurs because
the GLASS sample prior in the absence of data favours steep mod-
els like STAR1.5-DMCUSP over shallower models like STAR1.0-DMCORE

(see also Fig. 3).

5.2 Shape recovery

Fig. 7 already gives us important information about how well we
can recover the shape of a lens. The trends are very similar to
the radial profile recovery in Fig. 6, suggesting that if the radial
profile is well-recovered then, typically, the shape is too. A notable
exception is for the STAR1.5-DMCUSP models where adding stellar-
mass constraints aids the shape recovery, but improves the radial
mass profile very little. A visual example of the shape recovery is
given in Fig. 5.

We can also more directly probe the recovery of the shape of the
mass distribution by considering the ratio of the major and minor
axes λ1, λ2 of the inertia ellipse. If they are equal, the mass is
distributed uniformly on the projected disc. The more dissimilar

they are, the more elliptical the mass distribution. We define the
global measure of lens shape as

s ≡ λ1/λ2, (21)

where λ1 and λ2 are the eigenvalues of the 2D inertia tensor:( ∑
θ M(θ )θ2

y −∑
θ M(θ)θxθy

−∑
θ M(θ)θxθy

∑
θ M(θ )θ2

x

)
. (22)

We always take λ1 to be the largest value. As with fR and fθ , we only
consider mass up to one radial position past the outermost image
and compute the fractional error as

fshape = ∣∣s − ŝ
∣∣ /ŝ, (23)

where ŝ is the shape of the mock galaxy. The distribution of fshape for
each mock galaxy and each test case is shown in Fig. 8. Interestingly,
for this global shape parameter recovery it appears more important
to have time-delay data and/or a central image (TD,TD+central)
than to have a quad or multiple sources with wide redshift sepa-
ration. In all cases, the stellar mass does little to aid the recovery,
reflecting the fact that s is heavily weighted towards the shape e.g.
of the mass map, rather than at the centre where the stars may
dominate the potential (see equation 22).
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Figure 4. Two further reconstructions similar to Fig. 3. Top: the mock galaxy STAR1.5-DMCUSP but including time delays for a single quad and no stellar mass.
With the added information from the quad, the density in the outer regions andat the image radii, is better constrained. Bottom: a quad with time delays, but
using the STAR1.0-DMCORE mock galaxy. This galaxy has a shallower stellar density index, and a core in the dark matter. Due to the priors used in GLASS, the
modelling favours steep solutions without additional information.

Figure 5. Left: the mock data distribution for STAR1.5-DMCUSP projected on to a coarse grid. Right: the recovered ensemble average κ distribution for the
single quad with time delays. The contours are logarithmic base 10 values, where level 0 corresponds to the critical lensing density. Contours below the critical
lensing density are drawn with dashed lines.

5.3 Stellar mass

The stellar-mass distribution gives a lower bound on the total mass.
Where the stars dominate the central potential, it can provide a
powerful constraint extra to the strong lensing data. We took the
stellar mass directly from the generated galaxies and projected the
particles on to the pixels. GLASS also offers an option to interpolate

any map of stellar mass (e.g. from an observation) on to the pixels.
The linear constraint is added to GLASS by writing κn = κdm, n + κ s, n

as the sum of the dark matter and stellar-mass components in the
potential (equation 14). Since each κs, n is just a constant, we do not
add new, separate equations for each pixel. Although we assume
a perfect recovery of the stellar mass with no error on the lower
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Figure 6. Our main results showing the quality of the radially averaged model recovery (equation 19) for all our test cases. Within each panel are six groups
of results for each of six lens morphologies. Each morphology considered the presence of time delays (TD) and a central image (central). The black markers
are for tests that did not include the stellar mass as a lower bound constraint, while the red markers indicate where the stellar mass has been included. Error
bars show the 1σ range of the model ensemble.

mass bound, it is straightforward to add errors as the stellar-mass
constraint remains linear: κn = κdm, n + εκ s, n, where ε ∼ 1 is an
additional error parameter.

With the stellar mass lower bound, there is a significant improve-
ment of the reconstruction quality shown in Figs 6 and 7 for the
doubles in the steepest mock galaxies (STAR1.0-DMCUSP and STAR1.5-
DMCUSP). This is because these models are dominated by stars in the
inner region. By contrast, the other two galaxies – where the stars
contribute negligibly to the potential – are largely unaffected.

5.4 Stellar kinematics

As outlined in Section 3, GLASS can also run post-processing routines
on the model ensemble which can be used to apply non-linear
constraints. As an example, we consider here constraints from stellar
kinematics. The models in the GLASS ensemble are processed as
described in Section 3.7. To illustrate the power of stellar kinematic
constraints, in Fig. 9, we plot the projected velocity dispersion
calculated for one model (extracted from the full ensemble) of the
STAR1.5-DMCUSP quad with time delays and no stellar mass (left), and
the same but with stellar mass (middle). In both cases, we calculate
curves for two extrema velocity anisotropies: β = 0 (green) and
β = 1 (red). Overplotted is the correct answer for the STAR1.5-DMCUSP

model (black). The stellar half-mass radius (yellow) and Einstein
radius (black) are marked by vertical lines. For this configuration,
these two radii are well-separated.

Without even sweeping through the model ensemble and formally
accepting/rejecting models, Fig. 9 already illustrates what we can
obtain from stellar kinematics. The left-hand plot shows the radially
averaged projected velocity dispersion σ p(R) (equation 12) for a
single quad from the STAR1.5-DMCUSP galaxy without the stellar-
mass constraint. The blue data points show the 1σ distribution from
the ensemble assuming β = 0 (solid) and β = 1 (dashed); the
grey bands show the full distributions. Also marked are the σ p(R)
calculated from the mock data assuming β = 0 (solid purple) and
β = 1 (dashed purple), and the true σ p(R) measured directly from the
stars (black). This latter has a non-constant β(r) (right-hand panel)
and differs also from the purple and blue curves in that these all
assume spherical symmetry, whereas the stellar distribution is really
triaxial. Such triaxiality and varying β(r) explains why the purple
curves do not match the black one. However, they do largely bracket
the correct solution. More interestingly, the curves approximately
cross for β = 0 at the stellar half-light radius (yellow vertical line).
This demonstrates, as has previously been reported in the literature,
that σ p(R) gives a good estimate of the mass enclosed within ∼ the
half-light radius M1/2 (e.g. Walker et al. 2009; Wolf et al. 2010). The
mass profile, however, depends on β which is poorly constrained
by these data. If we add stellar-mass constraints (middle panel), the
situation is improves very little. The true answer already lay close
to the bottom of the ensemble distribution; it now is forced to lie
right at the edge.

From Fig. 9, it is clear that σ p(R) provides two useful pieces
of information. First, it is a powerful probe of M1/2. Given a
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Figure 7. Similar to Fig. 6 but for the fractional error in the pixel-wise recovery (equation 20) of all models. The colours and labels are the same as previously.
Error bars show the 1σ range of the model ensemble.

measurement of σ p(r1/2) ∼ 150 km s−1, we could usefully reject
many models in the ensemble as being overly steep in the centre.
We would not, however, obtain a strong constraint on β(r1/2). We
could rule out β(r1/2) = 1 (blue dashed line), but since our β = 0
model crosses the true β ∼ 0.5 line at r1/2 it is clear that many β(r)
profiles will be consistent with the data. On the other hand, if we
have a situation where r1/2 ∼ rE (i.e. the vertical yellow and black
lines in Fig. 9 overlap), then we will obtain tight constraints on β

since we then have two strong constraints on M(r1/2) that become
redundant. This latter situation of redundancy is also exactly what
we would like to constrain cosmological parameters. In this case,
we require a third piece of redundant information – in this case
in the form of strong lensing time delays. We will discuss such
cosmological constraints in a forthcoming paper.

The results for stellar kinematics match our expectations from
Section 2.3. Where the lens data already constrain the mass distri-
bution at r ∼ r1/2, stellar kinematics provide valuable information
about the velocity anisotropy of the stars, β (see Fig. 9). Where
the lens data poorly constrain the mass distribution at r1/2, we may
‘integrate out’ the effect of unknown β to obtain a robust measure
of M(r1/2) from the stellar kinematics. This latter is robust to both
uncertainties in β(r) and to our assumption of spherical symmetry
in the kinematic models (Agnello & Evans 2012).

6 C O N C L U S I O N S

We have introduced a new gravitational lens modelling tool – GLASS –
and used it to test the recovery of the mass profile and shape of mock
strong lensing galaxies. Our key findings are as follows.

(i) For pure lens data, multiple sources with wide redshift sepa-
ration give the strongest constraints as this breaks the well-known
mass-sheet or steepness degeneracy.

(ii) A single quad with time delays also performs well, giving a
good recovery of both the mass profile and its shape.

(iii) Stellar masses – for lenses where the stars dominate the
central potential – can also break the steepness degeneracy, giving
a recovery for doubles almost as good as having a quad with time-
delay data, or multiple source redshifts.

(iv) If the radial density profile is well-recovered, so too is the
shape of a lens.

(v) Stellar kinematics provide a robust measure of the mass at the
half-light radius of the stars M(r1/2) that can also break the steepness
degeneracy if r1/2 �= rE – the Einstein radius.

(vi) If rE ∼ r1/2, then stellar kinematic data can be used to probe
the stellar velocity anisotropy β – an interesting quantity in its own
right.

Where information on the mass distribution from lensing and/or
other probes becomes redundant, this opens up the possibility of
using strong lensing to constrain cosmological models. We will
study this, and present the first results from GLASS applied to real
data, in forthcoming papers.
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Figure 8. Here, we demonstrate our ability to recover the shape of the lensing mass. The shape ratio λ1/λ2 is measured from the principal components λ1, λ2

of the mass up to the outermost image. We plot the distribution of fractional error compared with the shape of the mock galaxies (equation 23).

Figure 9. Estimated projected radially averaged velocity dispersion σ p (equation 12) for a single quad from the STAR1.5-DMCUSP mock galaxy without stellar
mass (left) and with stellar mass (middle) assuming an anisotropy β = 0 (black triangles) and β = 1 (black squares). Error bars are 1σ and two overlapping
hatched areas indicate the full range of models. The equivalent curves are also shown for the projected mock data after using the same analysis routines (green).
The solid blue line is the actual cylindrically averaged velocity dispersion of the original mock particle data. The stellar half-mass radius (orange) and Einstein
radius (black) are marked by vertical lines. For this configuration, these two radii are well-separated. The actual variation in β(r) is also shown (right).
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Gilmore G., 2009, ApJ, 704, 1274

Walsh D., Carswell R. F., Weymann R. J., 1979, Nature, 279, 381
Weymann R. J. et al., 1980, Nature, 285, 641
Wilkinson M. I., Kleyna J., Evans N. W., Gilmore G., 2002, MNRAS, 330,

778
Williams L. L. R., Saha P., 2000, AJ, 119, 439
Wolf J., Martinez G. D., Bullock J. S., Kaplinghat M., Geha M., Muñoz R.
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APPENDI X A : IMPLEMENTATI ON DETA ILS

Since we want to model the density distribution with a computer it is
convenient to choose units that make the relevant quantities of order
unity. We therefore measure lengths in light years, time in years,
positions in arcseconds, and choose c = 1 and 4πG = N2, where
N2 ≡ 206 265 arcsec rad−1. The mass unit is then 11.988 M�. It
will also be useful to define a proxy to the Hubble constant ζ ≡
N2H0. We now express the equations from Section 2 in terms of
these new units and introduce some other useful quantities.

The lens equation in its complete form becomes

N2ct(θ) = (1 + zL)
DLDS

DLS

1

2
|θ − β|2

−(1 + zL)
4GD2

L

c2

∫
�(θ ′) ln |θ − θ ′|d2θ ′, (A1)

where the factor of D2
L in the second term comes from the fact that

� has units of M� lyr−2. We can clean this up by first writing down
a dimensionless time delay

τ = [(1 + zL)dL]−1 ζ t (A2)

in terms of our previous definitions and defining DL ≡ (c/H0)dL.
We further define a dimensionless density

κ∞ = 4πG

c2

c

H0
dL� = dL

ζ
� (A3)

and a lensing potential

ψ(θ ) = 1

π

∫
κ∞(θ ′) ln |θ − θ ′|d2θ ′. (A4)

Now we can express equation (A1) very compactly as

τ (θ ) = 1

2
ξ |θ − β|2 − ψ(θ ), (A5)

where ξ = dS/dLS. We explicitly write κ∞ to remind ourselves that
there is no source distance factor involved. This is useful when we
consider multiple sources.

APPENDI X B: D ERI VATI ON O F PI XELAT ED
DENSI TY C OEFFI CI ENTS

When the lens plane is pixelized we need a discrete form of the
integral∫

κ(θ ′) ln |θ − θ ′|d2θ ′.

In particular we want∑
n

κnQn(θ ),

MNRAS 445, 2181–2197 (2014)

http://arxiv.org/abs/e-prints
http://arxiv.org/abs/e-prints
http://arxiv.org/abs/e-prints


Lens recovery with GLASS 2195

where Qn is the logarithm evaluated over the nth pixel at position
θn = (xn, yn). Let the pixel side length be a. Instead of working
with a position vector θ we work in Cartesian coordinates where
|θ | = r =

√
x2 + y2. The integral now becomes

Qn(x, y) = 1

2

∫ y+

y−

∫ x+

x−
ln(x ′2 + y ′2)dx ′dy ′,

where x± = x + xn ± (a/2) and similarly for y±. Using the identity∫
ln(x2 + y2)dx = x ln(x2 + y2) − 2x + 2y arctan(x/a),

we can express Qn as the sum of four parts

Qn(x, y) = 1

2
[Q̃n(x+, y+) + Q̃n(x−, y−)

−Q̃n(x−, y+) − Q̃n(x+, y−)],

where

Q̃n(x, y) = xy(ln r2 − 3) + x2 arctan(y/x) + y2 arctan(x/y).

A P P E N D I X C : N O R A D I A L S Y M M E T RY PR I O R

In this appendix, we explore the effect of the radial symmetry prior.
Fig. C1 shows results for a single quad (top two rows) and an
extended double (bottom two rows) without the radial prior; in

both cases, we do not use the stellar-mass constraints. The bottom
row of each group uses time-delay data. Without time-delay data
or the radial symmetry prior, the results for the quad are poor –
particularly the shape recovery. Including time delays, the results
are similar to the case with the radial prior (Figs 3 and 5). Similarly,
for the extended double the results without time delays are poor.
Even with time delays, the shape is not well-recovered without the
radial prior, as expected.

A P P E N D I X D : PI X E L R E S O L U T I O N
C O N V E R G E N C E T E S T

In this appendix, we present a convergence test of our results with
the grid resolution – pixrad. By default, this is set to 8 pixels
from the centre of the mass map to the edge. As can be seen from
Fig. D1, our results are typically well-converged for pixrad > 5.
The results for pixrad = 5 become systematically biased away
from the central regions (where we have the higher resolution adap-
tive mesh), because our regularization prior combined with a low
pixrad biases us towards shallow models. This effect diminishes
with increasing resolution and is already negligible by pixrad = 7.
Notice that the mass increases in size with decreasing resolution.
This is because we always demand that there are four pixels beyond
the outermost image.
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Figure C1. Results for a single quad (upper two rows) and an extended double (lower two rows) without the radial symmetry prior; the bottom row of each
group uses time-delay data. The stellar-mass constraint has not been used in any of these examples. Figures and symbols are as in Figs 3 and 5.
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Figure D1. The effect of changing the grid resolution parameter pixrad. From top to bottom, the panels show results for a single quad with time delays and
with stellar-mass constraints using pixrad = 10, 7, 6, 5, respectively. We always demand that there are four radial bins outside the outermost image, which
causes the total mass to increase with decreasing pixrad, and the plot to shrink with increase in pixel size. In this paper we have used pixrad = 8 in all the
tests.
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