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ABSTRACT

Motivation: Most of the available tools for transcription factor

binding site prediction are based on methods which assume no

sequence dependence between the binding site base positions. Our

primary objective was to investigate the statistical basis for either a

claim of dependence or independence, to determine whether such a

claim is generally true, and to use the resulting data to develop

improved scoring functions for binding-site prediction.

Results: Using three statistical tests, we analyzed the number of

binding sites showing dependent positions. We analyzed transcrip-

tion factor–DNA crystal structures for evidence of position depen-

dence. Our final conclusions were that some factors show evidence

of dependencies whereas others do not. We observed that the

conformational energy (Z-score) of the transcription factor–DNA

complexes was lower (better) for sequences that showed depen-

dency than for those that did not (P50.02). We suggest that where

evidence exists for dependencies, these should be modeled to

improve binding-site predictions. However, when no significant

dependency is found, this correction should be omitted. This may

be done by converting any existing scoring function which assumes

independence into a form which includes a dependency correction.

We present an example of such an algorithm and its implementation

as a web tool.

Availability: http://promoterplot.fmi.ch/cgi-bin/dep.html

Contact: edward.oakeley@fmi.ch

Supplementary information: Supplementary data (1, 2, 3, 4, 5, 6,

7 and 8) are available at Bioinformatics online.

1 INTRODUCTION

The transcription of genes is controlled by transcription factor

proteins (TFs) which bind to short DNA sequences known as

transcription factor binding sites (also known as DNA-binding

motifs or cis-regulatory sequences). TF-binding sites are usually

very short and highly degenerate, and such short sequences are

expected to occur at random every few hundred base pairs. This

makes their prediction extremely difficult. An important task in

the computational prediction of TF-binding sites is reducing

the false positive rate while still retaining a high sensitivity.

Currently, predictions rely on either scanning or ab initio

methods. Scanning methods infer binding sites from known,

experimentally verified binding sequences. Example tools

include ConSite (Sandelin et al., 2004a), Match (Kel et al.,

2003), Mapper (Marinescu et al., 2005), Patser

(Hertz et al., 1990), and rVista (Loots and Ovcharenko, 2004;

Loots et al., 2002). Ab initio approaches infer specificities

without any prior knowledge of binding sites, based on

sequence homology. Example tools include Gibbs sampler

(Lawrence et al., 1993), MEME (Bailey and Elkan, 1994),

Bioprospector (Liu et al., 2001), Yeast motif finder (Sinha and

Tompa, 2003) and ANN-Spec (Workman and Stormo, 2000).

Until recently, the most popular way of modeling binding sites

was to assume that each base in the site occurs independently,

e.g. consensus sequence (Day and McMorris, 1992), matrix

profiles (Stormo et al., 1982) and sequence logos (Schneider

and Stephens, 1990); for a review see (Wasserman and

Sandelin, 2004). Methods based on the assumption of

independence between positions are simple with small numbers

of parameters, making them easy to implement. These methods

are widely used and often considered as acceptable models for

binding-site predictions (Benos et al., 2002a). However, recent

experimental evidence (Benos et al., 2002b; Bulyk et al., 2002;

Man and Stormo, 2001; Udalova et al., 2002; Wolfe et al., 1999)

has prompted the development of models which incorporate

position dependencies. The related methods include Bayesian

networks (Barash, 2003), permuted Markov models (Zhao

et al., 2005), Markov chain optimization (Ellrott et al., 2002),

hidden Markov models (Marinescu et al., 2005), non-para-

metric models (King and Roth, 2003), and generalized weight

matrix models (Zhou and Liu, 2004). Methods based on

position-dependency models usually have better binding site

prediction accuracy with lower false positive rates. But these

methods require more complicated mathematical tools, with

more parameters to estimate, and require more experimental

data than are typically available (Barash, 2003; Ellrott et al.,

2002; King and Roth, 2003; Marinescu et al., 2005; Zhao et al.,

2005; Zhou and Liu, 2004). The purpose of this work is to

investigate whether or not TFs show position dependencies in

their binding sites. We suggest a rigorous statistical approach

for testing dependencies. Our findings indicate that there is no

universal answer. Some factors seem to show dependencies

whereas others do not. We, therefore, decided to allow both

possibilities within our model. Our method for modeling

dependencies is simply an extension of methods which assume

position independencies. It does not require complex*To whom correspondence should be addressed.
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mathematical tools or training data sets (and thus more data),

and we will show that it performs much better than existing

tools when dependencies are found and no worse when they are

not. We also analyzed available structural data to see if any of

the observed position dependencies can be explained by 3D

structures. We found that dependencies may be partially

explained by the 3D structure of TF–DNA complexes. TFs

with dependent positions also appear to fit their target

sequences better than those without dependencies.

2 METHODS

2.1 Testing dependencies

In this section, we describe methods to test dependencies in binding

sites.

Let us suppose that we have n binding sites of length k for a given TF:

b11 b12 . . . b1k

. . .

bn1 bn2 . . . bnk

ð1Þ

where bji � {a, c, g, t}, and 1� i� k, and 1� j� n. We introduce the

notation: Bi and Bj to represent random variables which can take values

from the set {a, c, g, t}, indices i and j represent positions in the binding

sites and 1� i, j� k and i 6¼ j,

Bi:
a c g t

Pða, iÞ Pðc, iÞ Pðg, iÞ Pðt, iÞ

� �
ð2Þ

and likewise for Bj.
Let N(i) be a vector of the frequencies N(i)¼ [N(a, i), N(c, i), N(g, i),

N(t, i)] where, N(a, i) is the frequency of base a at position i and so on.

Similarly, for column j we introduce a frequency vector N( j). Using a

maximum likelihood approach and the method of Lagrange multipliers,

we can estimate probabilities:

Pðb, iÞ ¼
Nðb, iÞ

n
, Pðb, jÞ ¼

Nðb, jÞ

n
ð3Þ

where b is one of the bases {a, c, g, t}.
First, we can calculate mutual information (Chiu and Kolodziejczak,

1991), a quantitative measure of pairwise sequence covariation. The

mutual information between positions i and j is given by:

Mij ¼
X
bi , bj

Pðbi, bj, i, jÞ log2
Pðbi, bj, i, jÞ

Pðbi, iÞPðbj, jÞ
ð4Þ

where, the probability P(bi, bj, i, j) can be estimated using the maximum-

likelihood method and the method of Lagrange multipliers:

Pðbi, bj, i, jÞ ¼
Nðbi, bj, i, jÞ

n
ð5Þ

where, N(bi, bj, i, j) is the frequency of base pairs bibj at positions i and j.

This is a descriptive measure of divergence from independence of i

and j. Mij varies between 0 and 2 bits. It is maximal when i and j are

perfectly correlated. If i and j are uncorrelated, the mutual information

is zero. Very often we do not have extreme values of Mij, and we cannot

deduce if i and j are independent using only the value of Mij. In order to

identify positions that may not be highly correlated as measured by Mij,

but are as correlated as they can be given the limited variability of the

individual positions, we can calculate two other values (Gutell et al.,

1992):

R1ði, jÞ ¼
Mij

Hi
, R2ði, jÞ ¼

Mij

Hj
ð6Þ

where Hi and Hj are entropies for positions i and j, respectively.

Hi ¼ �
X
b

Pðb, iÞ log2Pðb, iÞ, Hj ¼ �
X
b

Pðb, jÞ log2Pðb, jÞ ð7Þ

Both R values vary between 0 and 1 and, in general, they are not

equal. Therefore, if we use only Mij we may miss some correlated

positions, but some of these may be detected using R-values. However,

it should be emphasized that we cannot easily estimate the significance

of R-values. So, we will have false positives as well as true correlated

positions. R-values are also descriptive measures of dependencies

between two positions. A more formal way to test dependencies is

hypothesis testing:

H0: positions i and j are independent

H1: otherwise:
ð8Þ

To test this hypothesis, we can use a �2-test of independence (Ellrott

et al., 2002) on each pair of positions i and j:

X2 ¼
X
bi , bj

ðPðbi, bj, i, jÞ � Pðbi, iÞPðbj, jÞÞ
2

Pðbi, iÞPðbj, jÞ
ð9Þ

The distribution of X2 statistics is close to a �2 distribution with

(|bi|� 1)� (|bj|� 1) degrees of freedom, where |bi| is the number of

bases for which P(bi, i) is not zero, and likewise for |bj|. So, using X2

statistics and �2 distributions we can test the hypothesis at a given

significance level e.g. 0.05. This hypothesis may also be tested using a

G-test of independence (log-likelihood ratio test) (Sokal and Rohlf,

2003). For each pair of positions i and j, we can calculate G statistics:

G ¼ 2
X
bi , bj

Pðbi, bj, i, jÞ ln
Pðbi, bj, i, jÞ

Pðbi, iÞPðbj, jÞ

� �
ð10Þ

The distribution of G statistics is close to �2 with (|bi|� 1)� (|bj|� 1)

degrees of freedom where |bi| is the number of bases for which P(bi, i) is

not zero, and likewise for |bj|. Mij corresponds to a G-statistics value if

we log transform it. A general problem with both �2 and G-tests is small

sample sizes, i.e. small expected frequencies (in our notation these are

the values nP(bi, i) and nP(bj, j)). This is because the number of known

binding sites is usually small. Cochran (Cochran, 1954) suggested that

independence may be tested so long as we have more than one degree of

freedom. A minimum expected value of 1 is allowed, provided that no

more than 20% of the categories have expected values below 5. Here,

X2 statistics have been shown to be valid with fewer samples and more

sparse tables than G statistics. The G-statistic distribution is usually

a poor approximation to �2 when expected frequencies are55 (Agresti,

1990; Koehler, 1986; Koehler and Larntz, 1980; Larntz, 1978).

William’s correction for G (Williams, 1976) partially addresses this:

Gadj ¼
G

q
, q ¼ 1þ

ða2 � 1Þ

6nv
ð11Þ

where, a¼ (|bi|� 1)� (|bj|� 1)� 1, and v¼ a� 1 as this provides a

better approximation to the �2 distribution. Conahan found that if

expected frequencies are higher than 10, G statistics approximate well to

the exact multinomial probability distribution (Conahan, 1970). She

found that G statistics were adequate and better than X2 statistics,

where there are more than five degrees of freedom and expected

frequencies greater than or equal to 3. In all other cases she

recommends the exact test. Larantz, in his comparison of G and X2

statistics, did not consider the corrections of G statistics when drawing

his conclusion that X2 statistics fits the theoretical chi-squared

distribution better than G statistics do (Larntz, 1978). Sokal et al.

(Sokal and Rohlf, 2003) showed that G statistics with William’s

correction approximates to the �2 distribution more closely than they

do without the correction. It is very difficult to find a single rule to

cover all cases when the observed distributions of G statistics and X2

statistics are close to real �2 distributions, if we have small expected
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frequencies (Agresti, 1990). A safer way to test the hypothesis of

dependence is, therefore, to use exact methods like the exact

randomization (nonparametric) test (Sokal and Rohlf, 2003).

The problem with this test is that, even though we have small sample

numbers, there are a large number of possible outcomes, and their

complete enumeration is impractical. Because of this, we have to use a

Monte Carlo randomization test (Davison and Hinkley, 1997; Manly,

1997), in which the problem is solved by random sampling from

a simulated population. Monte Carlo randomization tests can be

performed using X2 or G statistics. We used X2 statistics with 10 000

replications in the statistics package R (GNU software).

Two random variables bi and bj are independent if

PðBi,BjÞ ¼ PðBiÞPðBjÞ: ð12Þ

Thus we can test the following hypotheses for dependence/indepen-

dence (instead of hypothesis testing (9)):

H0: distributions PðBi,BjÞ and PðBiÞPðBjÞ are the same

H1: otherwise:
ð13Þ

This form of hypothesis testing corresponds to a multinomial

goodness-of-fit test. As in (Bejerano, 2003, 2006; Bejerano et al.,

2004), we can test for a correlation between TF-binding site positions

using exact P-values (for hypothesis testing (13)). This approach gives

more accurate results than either �2 or G-tests (Bejerano, 2003, 2006;

Bejerano et al., 2004). The only problem with this approach is that it is

computationally expensive. However, a recent publication (Keich and

Nagarajan, 2006) has shown that grid approximations yield almost

identical results for the P-values but in far less time (Bejerano, 2006).

The final method we have used to test dependencies is a Bayesian

approach (Minka, 2003; Zhou and Liu, 2004). We can calculate the

Bayes factor BF(H0;H1) for hypothesis testing as follows (full

derivation of formula (4) can be found in Supplemental Material 1—

derivation 1)

BFðH0;H1Þ ¼
�

P
bi , bj

�bibj

� �

� nþ
P

bi , bj
�bibj

� �Y
bi

� Nðbi, iÞ þ �bi
� �

� �bi
� �

�
Y
bj

� Nðbj, jÞ þ �bj
� �

� �bj
� � Y

bi , bj

� �bibj
� �

� Nðbi, bj, i, jÞ þ �bibj
� � ð14Þ

We choose �bibj ¼ 1 and �bi ¼
P

bj
�bibj and the calculation should

include only bases bi, bj for which N(bi, i) 6¼ 0 and N(bj, j) 6¼ 0.

Using Stirling’s approximation (log�ðxþ 1Þ � x logx� x) it can be

shown that (Supplemental Material 1—derivation 2)

log2ðBFðH0;H1ÞÞ � �nMij ð15Þ

This gives us the relationship between BF and mutual information

(Minka, 2003). The relationship between these two values is better when

the sample size n is higher (due to the use of Stirling’s approximation).

We used formula (20) to calculate BF, and report that when

BF(H0;H1)50.1 there is strong evidence against the null hypothesis.

Thus, in this article we used three distinct methods for dependence

testing between the TF site base positions. These methods were:

(i) Monte Carlo randomization test with X2 or G statistics

(ii) Exact multinomial goodness-of-fit test

(iii) Bayesian hypothesis testing.

There is always a danger of type I errors (rejecting the null

hypothesis when in fact it is true) when applying multiple tests to

data. These may be minimized with Bonferroni’s correction or its

extensions/variants (e.g. Dunn–Šidák, Holm’s, Simes–Hochberg or

Hommel’s method). The Bonferroni adjustment of P-value (0.05/k,

where k is the number of tests) is very stringent and can introduce

type II errors, which are also important. The use of Bonferroni is much

debated (Perneger, 1998).

As a compromise, in the case of the Bayesian test, we propose that a

more stringent BF factor BF(H0;H1)50.1 could be used to report

stronger evidence against the null hypothesis.

2.2 New scoring function

Any existing scoring function which works with models that assume

independence between positions within binding sites, can easily be

modified to incorporate dependencies. These new functions do not have

dramatically more parameters, and do not require additional data or

complex mathematical approaches.

If we have n binding sites of length k for a given TF and sequence l

with length k, then to determine if a putative-binding site is for a given

TF we will follow the notation of (Wasserman and Sandelin, 2004)

where, wb,i is a position weight matrix (PWM) value of base b in

position i, calculated by:

Wb, i ¼ log2
Pðb, iÞ

PðbÞ
ð16Þ

where P(b) is the background probability of base b (P(b)¼ 0.25) and

P(b, i) is a corrected probability of base b at position i, and is

calculated by:

Pðb, iÞ ¼
Nðb, iÞ

n
þ aðbÞ ð17Þ

where a(b) is smoothing parameter (a(b)¼ 0.01).

The fit of any given DNA sequence can be quantitatively scored by

summing all the values of Wb,i for every base in the sequence (hereafter,

we will refer to this ‘old’ scoring function as Sold):

Sold ¼
Xk
i¼l

wli , i ð18Þ

For a large set of well-characterized binding sites, these scores are

proportional to the factor-binding energies (Stormo, 2000).

To incorporate position dependencies, we will extend this function

and this model for the representation of the TF-binding sites in the

following way.

First, we will introduce a corrected probability for the bases

b1b2 . . . bm in i1i2 . . . im dependent positions.

Pðb1, . . . , bm, i1, . . . , imÞ ¼
Nðb1, . . . , bm, i1, . . . , imÞ

n
þ aðb1, . . . , bmÞ ð19Þ

a(b1, . . . , bm) is a smoothing parameter and can be calculated by:

aðb1, b2, . . . , bmÞ ¼ aðb1Þ . . . aðbmÞ ð20Þ

Then we can calculate values which correspond to PWM values:

Wb1 ,..., bm , i1 ,..., im ¼ log2
Pðb1, . . . , bm, i1, . . . , imÞ

Pðb1Þ . . .PðbmÞ
ð21Þ

Finally, the new scoring function (Snew), which incorporates dependen-

cies, can be expressed thus:

Snew ¼
Xk1
i¼l

Wli , i þ
Xk2
i¼1

Wlji , ljiþ1
, ji , jiþ1

þ � � �þ

þ
Xkm
i¼l

Wlji ,..., ljiþm�1
, ji ,..., jiþm�1

ð22Þ

where, k1 is the number of independent positions, k2 is the number of

dependent positions order 2 (nucleotides at positions ji and jiþ1) and km
the number of dependent positions order m (nucleotides at positions ji,

jiþ1, . . . , jiþm�1). Higher-order dependencies can be constructed from
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the second-order dependencies in the following way: if we analyze three

positions i1, i2 and i3, and if every two combinations (i1� i2, i1� i3 and

i2� i3) are dependent, then we can claim that positions i1, i2 and i3 show

third-order dependencies. This approach may be extended to find mth-

order dependencies between km positions of a binding site. For the new

scoring function (22), higher order dependencies can be constructed in a

less stringent way: if we find when analyzing three positions i1, i2 and i3
that only two combinations (i1� i2, i2� i3 or i1� i3) are dependent, we

can say that there are third order dependencies among positions i1, i2
and i3. This will not have any influence on the final results (because of

equation (12)) and the logarithm property (log(P(Bi,Bj)) will tend

towards log(P(Bi))þ log(P(Bj))). Small differences may be observed

because of the smoothing parameters, but this helps in the practical

implementation of new scoring function.

Binding scores calculated by the scoring functions Sold and Snew can

be normalized according to (Bucher, 1990; Tsunoda and Takagi, 1999):

S0
old ¼

Sold � Smin
old

Smax
old � Smin

old

, S 0
new ¼

Snew � Smin
new

Smax
new � Smin

new

ð23Þ

where Smin
old ,Smax

old are the hypothetical minimum and maximum for Sold

and Smin
new, S

max
new are the hypothetical minimum and maximum for Snew

(analytic formula for their calculation is given in Supplemental

Material 1).

For the final implementation of the function (22), it is useful to

construct sequence dependency corrected matrices of TFs. However, in

practice, this can be very inefficient because the dimensions of these

matrices can be very high with a lot of zeros. Because of this, we provide

a database (available at http://www.fmi.ch/members/andrija.tomovic/

database.txt) with sequences and dependent positions written below

(estimated using a Monte Carlo randomization test with X2 without

Bonferroni’s correction or exact multinomial goodness-of-fit without

Bonferroni’s correction or Bayesian hypothesis testing with

BF(H0;H1)50.1 and higher order of dependencies in less stringent

variant). This is a compact and readable format of sequence

dependency corrected matrices of TFs from the JASPAR database

(Lenhard and Wasserman, 2002; Sandelin et al., 2004b). For the

identification of TF-binding sites by scoring function (22), we suggest

using the all-atom model, like it is used with function (18). In

combination with databases of good quality binding sites (such as

JASPAR) all-atom methods give better accuracy. If we cut the length of

binding sites, there may be dependent positions in this region which will

be lost to our function (22). Both the new (22) and old (18) scoring

functions are linear in complexity, so cutting would not improve

performance much.

3 RESULTS AND DISCUSSION

3.1 Distributions of transcription factors with

dependent positions

To determine the distributions of TFs with dependent

positions, we used the public database JASPAR (Lenhard
and Wasserman, 2002; Sandelin et al., 2004b) which contains

experimentally determined, high-quality binding sites. The

JASPAR database represents a curated and non-redundat
data-set (Lenhard and Wasserman, 2002; Sandelin et al.,

2004b). We selected all TFs for which there were binding
sequences (not only matrix profiles) and the final data set

contained 107 TFs with 3239 binding sites. We applied three

different tests (Section 2.1) to each of these binding sites to
establish how many factors showed position dependencies

(Table 1). We also show the effect of either applying

Bonferroni’s corrections or using the more stringent

BF(H0;H1)50.1 cut off. Rows A, B and C of Table 1 may

include some false positives, but rows D, E and F have a false

negative problem. A complete list of every pair of positions for

each TF is given in Supplemental Material 2. We also report

values of Mij, R1 and R2, as well as G-statistic values with their

degrees of freedom and P-values. In addition, we report the

adjusted G-statistic values with their degrees of freedom and

adjusted G-test P-values; the X2 statistics together with their

degrees of freedom and P-values; and also the average value of

expected frequencies and the percentage of expected values

smaller than 5 and smaller than 3. Finally, in this table we

report the P-values of the Monte Carlo randomization test with

X2 statistics, the exact multinomial ‘goodness-of-fit’ test and the

Bayesian factor (BF) values. From this analysis, we observe

that the sample sizes are not appropriate for either chi-squared

or G-tests of independence (column H in Supplemental

Material 2). As discussed previously (Section 2.1), this implies

that these two tests will give poor probability estimates. The

values of Mij, R1 and R2 may be used as descriptive measures of

position associations. There is good agreement between results

produced using the three ‘statistically correct’ tests we

attempted. The most stringent is the exact multinomial good-

ness-of-fit test, and the least stringent is the Monte Carlo

randomization test. Almost every pair of dependent positions

predicted by the exact multinomial goodness-of-fit test is also

reported by the other two tests. The Monte Carlo randomiza-

tion test gives more precise probabilities than either the chi-

squared or G-tests, but with low power because of the lack of

experimental data (small sample size).

In addition, we looked to see if the length and number of

known binding sites were different between the groups of TFs

with and without dependent positions (Table 2). The variances

of these two groups are not statistically different (tested by

Bartlett’s test). Using Student’s t-test, we tested the null

hypothesis that mean length and number of binding sites

between the two groups are equal against a one-tailed

alternative hypothesis that TFs without dependent positions

have shorter lengths and smaller numbers of known binding

sites. In each case, we obtained P-values less than 0.05 and thus

we should reject the null hypothesis and accept the alternative.

Table 1. Distributions of TFs with dependent positions tested

Statistical test TFs with dependent positions

A 74.77%

B 49.52%

C 62.62%

D 38.32%

E 23.26%

F 26.17%

A—Monte Carlo randomization test without Bonferroni’s correction; B—Exact

multinomial ‘goodness-of-fit’ test without Bonferroni’s correction; C—Bayesian

hypothesis testing BF(H0;H1)50.1; D—Monte Carlo randomization test with

Bonferroni’s correction; E—Exact multinomial ‘goodness-of-fit’ test with

Bonferroni’s correction; F—Bayesian hypothesis testing BF(H0;H1)50.01.
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These results imply that more factors may show dependencies

once additional binding-site data becomes available.

Based on the second-order dependencies (dinucleotide depen-

dencies), it is possible to construct higher order dependencies, as

explained in section 2. It is clear that when we have such

dependencies, there are lower order dependencies in all

combinations. Because of this, it is useful to analyze distributions

of dependencies of different orders km (2� km� 9) constructed in

a more stringent way (Supplemental Material 3). We analyzed

the distributions of TFs with dependent positions in structural

classes of TF–DNA-binding domains. We wanted to investigate

whether there is any tendency for certain folds to have position

dependencies (Supplemental Material 4). We noticed that some

structural classes contain TFswith position dependencies in their

binding sites detected by almost all statistical tests, such as:

T-BOX, P53, AP2, TRP, CAAT-box and MADS. Other classes

contain TFs without dependent positions like: ZH-FINGER-

DOF, ZH-FINGER-GATA, HOMEO/CAAT and ‘Unknown’

class. However, the major structural classes contain TFs with

and without dependent positions (bZIP, nuclear receptor, etc.).

3.2 Do position dependencies relate to 3D structures?

We wanted to investigate possible biological explanations of

the dependent positions we predicted. We investigated this by

examining 3D crystal structures when available. Possible

explanations of dependency include:

� active amino acids might interact with dependent nucleo-

tides either singly or in pairs via hydrogen bonds or salt

bridges;

� conformational changes in the structure of DNA caused by

one dependent base may alter the accessibility of the other

dependent bases to the binding site;

� something else.

We selected 32 TF–DNA co-crystal pairs of structures from

the PDB database at resolutions better than 3.0 Å (Berman

et al., 2000) corresponding to TFs with published binding sites

in JASPAR (September 2006) (Table Sup3-1 in Supplemental

Material 3). Direct contacts between bases and amino acids

were investigated (Table Sup3-2 in Supplemental Material 3).

There is no clear one-to-one correspondence between

dependent DNA-binding positions and their interactions with

TF. This is not a big surprise because these proteins recognize

specific DNA sequences not only via direct contact but also

indirectly, through specific sequence-dependent DNA confor-

mations, distortions or water-mediated contacts (Sarai and

Kono, 2005). Amino acids neighboring dependent bases may be

different from those around independent positions. In addition,

mutations in bases which do not directly contact the amino acid

may still affect the binding affinity (see references listed in Sarai

and Kono, 2005).
Next, we wanted to check whether there were any relation-

ships between dependent positions and conformational changes

of the DNA. We could calculate structural parameters to

describe the 3D nucleic acid structures using the software

package 3DNA (Lu and Olson, 2003), but there are many

parameters (shift, slide, rise, tilt, roll and twist) to describe the

structure of DNA, and because we have relatively few

sequences in our data set it is difficult to identify significant

effects. Similarly, if we want to investigate spatial distribution

patterns of neighboring amino acids around dependent posi-

tions, we will have a data-mining problem.

We decided to use the energy Z-scores (Ahmad et al., 2006;

Gromiha et al., 2004; Kono and Sarai, 1999) for TF–DNA

complexes for both ‘direct’ and ‘indirect’ readouts. The energy

Z-score for direct readouts quantifies the spatial distributions

of side chains around base pairs, and represents the base–

amino acid interaction energy. The energy Z-score for indirect

readouts quantifies DNA conformation, and represents the

conformational energy of DNA. The more negative the

Z-score, the better the target sequence fits into a given

structure (Ahmad et al., 2006). The list of all Z-score values

can be found in Supplemental Material 4. We tested the

Z-scores using a one-tailed Student’s t-test (Table 3). The

direct readout showed no difference between TFs with

dependent or independent positions (P40.1). However, the

conformational energy (indirect readout) was always signifi-

cantly lower for TFs with dependent positions (P50.02).

This means that TFs with dependent positions fit their target

DNA motifs better than those without. These results suggest

a possible relationship between position dependencies and the

3D structure of TFs.

Table 2. Average length and number of binding sites between a group of TFs with dependent positions and a group of TFs without dependent

positions

Statistical test Average length of TFs binding sites Average number of known binding sites

I II I II

A 11.67 8.25 32.85 22.64

B 12.15 9.43 34.66 25.77

C 11.66 9.3 35.791 20.775

D 12.19 9.89 39.15 24.61

E 11.92 10.265 45.04 25.82

F 12.00 10.34 50.96 22.91

I—group with dependent positions; II—group without dependent positions; A, B, C, D, E, F — notation the same as in Table 1.
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We investigated if DNA sequence length influences the

conformational energy. In the 32 cases we studied where we

have both a 3D crystal structure and a JASPAR matrix ID, we

performed one- and two-tailed t-tests on the lengths of

sequences found to show dependencies and those without

dependencies from each of the six dependency tests we

investigated. These results showed that five out of six of the

tests (two-tailed) and three out of six (one-tailed) do not show

significant differences in sequence length between the two

groups for which we have conformational energies

(Supplemental Material 6). If the conformation of the DNA

fragment is not sequence specific, then the conformational

energy is expected to fluctuate independently of fragment size.

But, if the conformation is sequence specific, then the total

energy should decrease with the size although the average

energy per base will not decrease if the energy distribution

is uniform (A. Sarai, personal communication). For these

reasons, we believe that sequence length is not the major factor

contributing to the significantly lower conformational energies

we found for the group of TFs with dependent positions.
We analyzed relationships between dependent position and

DNA stiffness to show the influence of DNA stiffness on

protein–DNA binding specificity (Gromiha, 2005). We calcu-

lated the average stiffness of DNA using the structure-based

sequence-dependent stiffness scale (Gromiha, 2005) for binding

sites with and without position dependencies (Supplemental

Material 7). In two cases, we found that the average stiffness

values are significantly larger (one-tailed Student’s t-test

P50.028) for sites with dependent positions (detected by

Bayesian hypothesis testing in both variants) than without

dependent positions. However, in the other four cases no

significant differences were found.

3.3 Evaluation of a new scoring function for the

prediction of TF-binding sites

The evaluation of ab initio methods for the prediction of

TF-binding sites is described in (Tompa et al., 2005). Here,

we will perform a slightly different validation. In order to

evaluate the new scoring function given by (22) and (23), we

performed a validation using both synthetic and experimentally

verified data.

First, we generated a random sequence from a third-order

Markov model background distribution using the program

RSA (van Helden, 2003). In this sequence, we planted binding

site 9 of the TF MA0006 at position 51. We had found one

dependent position in this TF. We then calculated a normalized

scoring value for each position in the sequence, using both the

old and new functions. We assigned a threshold of 0.7 as

indicating a match for a binding site (Fig. 1). The new scoring

function made one false-positive prediction and one true

positive, whereas the old scoring function made three false-

positive predictions and one true positive. We repeated this

with similar experiments (data available at http://www.fmi.ch/

members/andrija.tomovic/exp1.zip) using: MA0052 (two pairs

of dependent positions); MA0121 (four pairs of dependent

positions); and MA0041 (10 pairs of dependent positions). The

accuracy of the new scoring function improved as the number

of dependent positions increased. The so-called ‘twilight zone’

region of the plots also becomes narrower with a smaller

density. If there are no dependent positions, then the new and

Table 3. Average Z-score for direct and indirect readout for: I—a group of TFs with dependent positions; and II—a group of TFs without dependent

positions

Statistical test Average Z-score (direct readout) Average Z-score (indirect readout)

I II P-value I II P-value

A �2.5 �2.62 – �2.8 �1.791 0.00565**

B �2.67 �2.42 0.383 �3.0914 �2.01 0.0016**

C �2.667 �2.25 0.31 �2.747 �1.907 0.02*

D �3.054 �2.26 0.17 �3.22 �2.09 0.00152**

E �3.44 �2.3 0.111 �3.33 �2.29 0.0147*

F �3.1025 �2.32 0.186 �3.497 �2.147 0.0005***

*P50.05, **P50.01, ***P50.001.

A, B, C, D, E, F—notation the same as in Table 1. The variances of groups I and II are not statistically different (Bartlett’s test).

MA0006 Arnt-Ahr MA0052 MEF2A 
(1 pair of dependent positions) (2 pairs of dependent positions) 

MA00121 Ars MA0041 Foxd3 
(4 pairs of dependent positions) (10 pairs of dependent positions) 

Fig. 1. Comparison of old and new scoring functions with synthetic

data.
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old scoring functions are the same. We currently only apply our

correction for positions that show statistically significant

dependencies. If, instead, we factor the observed frequency

P-scores for all bases, regardless of their significance, then the

new function will tend towards the old function because of

Equation (12), and the logarithm property (log(P(Bi,Bj)) will

tend towards log(P(Bi))þ log(P(Bj)) but small differences may

be observed because of the smoothing parameters. The price for

doing this is computational time, and it does not appear to offer

any great advantage over the solution we have implemented.

To further evaluate our new scoring function, we generated

1850 random sequences sampled from a third-order Markov

model background distribution with lengths from 250 to 500.

In 50, we planted binding sites for MA0041 Foxd3, and we then

analyzed the true- and false-positive rates for different thresh-

old values using the new and old scoring functions (Fig. 2 and

Table Sup8-1 in Supplemental Material 8). Both functions have

good scores for true positives, but the new scoring function

gave better results. The biggest difference was in the false-

positive rate which was much better with the new scoring

function. Next, we generated five random sequences sampled

from a third-order Markov model background distribution

(with lengths from 400 to 600) in which we planted 0–3 binding

sites from a set of 15 (all 15 contained dependent positions).

The data set is given in Supplemental Material 8. We wanted to

measure the accuracy of prediction with the new scoring

function and compare it with other available tools and methods

(PATSER, ConSite and the old scoring function). Given that

almost all of the methods can detect true positives (i.e. they

have a high sensitivity), the accuracy of each method should

be estimated by its selectivity (false-positive rate). These results

are shown in Figure 3 and Table Sup8-2 in Supplemental

Material 8. Our new scoring function (22-23) performed best

with the smallest number of false positives per nucleotide and

per TF. Finally, we analyzed real experimental data. As

ConSite had the next best prediction results with the synthetic

data, we decided to use it for benchmark comparisons with the

experimental data as well. We used a set of genes showing

skeletal muscle-specific expression (Wasserman and Fickett,

1998). This set is an updated version from (Defrance and

Touzet, 2006) which has been used to evaluate such tools in the

past. This dataset includes upstream regions (2000 bp) of nine

genes (see Table Sup8-3 in Supplemental Material 8) and six

TFs from the JAPSAR database (MA0052, MA0055, MA0056,

MA0057, MA0079 and MA0083) which are known to be

involved in the regulation of skeletal muscle-specific expression.

MA0055’s binding sites are not listed in JASPAR, so its

detection will be unchanged from the old function (24). We

scanned the upstream sequence of the nine genes using all of the

TFs from JASPAR. There are 16 TFs (including MA0055) for

which there is no binding sequence information, only weight

matrices. These will be treated as having independent binding

(24), which will have a negative effect on the results from the

new scoring function, but is more realistic. However, even with

this limitation, the results from the new scoring function are

slightly better than those from ConSite (TableSup 8-3 in

Supplemental Material 8). The false-positive rate for all nine

sequences is smaller with the new scoring function, and the

true-positive rate is almost the same. ConSite detected one true

positive hit more (for three sequences) than our scoring

function with this data set.

4 CONCLUSIONS

In this work, we performed a detailed analysis of dependencies

within TF-binding sites. Our conclusion is that we cannot

assume that positions are either dependent or independent. This

must be tested using one of three proposed statistical tests.

Our structural analysis indicates that some of the predicted

dependencies agree with 3D structure data from TF–DNA

complexes. We propose that the dependencies we have

identified should be used in binding-site predictions. Previous

attempts at such modeling have required complex tools with

many parameters which really require more training data than

is currently available. Here, we present a simple way of

modeling these dependencies. We demonstrated how to modify

existing dependence-free scoring functions to consider depen-

dencies. Such modifications improve prediction quality for TFs

Fig. 2. ROC curves for new and old scoring functions, showing their

ability to predict binding sites. The x-axis shows the false-positive

rate (FP/(FPþTN))� 100, the y-axis shows the true-positive rate

(TP/(TPþFN))� 100.

Fig. 3. Average false-positive ratio per TF for different prediction

methods.
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with dependent positions. Our technique does not require

complex tools or more training data than scoring functions and

models which assume independence. This approach can be used

with any scoring function which assumes independence (one

such is presented here). We demonstrated this approach using

scanning methods for the prediction of TF-binding sites, but it

can be applied to work with ab initio methods and different

methods of prediction which incorporate comparative genomic

analysis (phylogenetic footprinting conservation).
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