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S U M M A R Y
Seismic attenuation and dispersion in layered sedimentary structures are often interpreted
in terms of the classical White model for wave-induced pressure diffusion across the layers.
However, this interlayer flow is severely dependent on the properties of the interface separating
two layers. This interface behaviour can be described by a pressure jump boundary condition
involving a non-vanishing interfacial impedance. In this paper, we incorporate the interfacial
impedance into the White model by solving a boundary value problem in the framework
of quasi-static poroelasticity. We show that the White model predictions for attenuation and
dispersion substantially change. These changes can be attributed to petrophysically plausible
scenarios such as imperfect hydraulic contacts or the presence of capillarity.
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1 I N T RO D U C T I O N

Nearly 40 years ago White et al. (1975) presented a model for
seismic P-wave attenuation and dispersion for a periodically strat-
ified medium with alternating gas–water layers. The underlying
attenuation mechanism is controlled by pressure diffusion as a
consequence of wave-induced pressure gradients across the lay-
ers. Not only because of the relevance of partially saturated sed-
iments for exploration seismology, but also because of the in-
sightful physical arguments they used, their work continues to
trigger research into wave propagation in porous media. The
White model has been reproduced within the framework of Biot’s
theory of poroelasticity (Biot 1962) using a different approach
(Norris 1993). It has been subsequently specialized in order to anal-
yse the effects of random layering (Gurevich & Lopatnikov 1995;
Müller & Gurevich 2004), inhomogeneous rock properties
(Carcione & Picotti 2006) and embedded fractures with variable
infill (Kong et al. 2013). The White model has been generalized
to account for dissipation associated with pressure diffusion at the
wavelength scale (Kudarova et al. 2013) and obliquely incident P
and SV waves (Krzikalla & Müller 2011).

Key to the White model is the definition of a representative
elementary volume (REV) encompassing the gas–water interface
(Fig. 1). At this interface the continuity of the fluid pressure is as-
sumed to hold throughout the fluid pressure equilibration process,
that is, from the onset of wave-induced fluid pressure gradients to
the final constant pressure once equilibrium is reached. This inter-
face condition is chosen in accordance with the open-pore boundary

condition of Deresiewicz & Skalak (1963). The latter is, however, an
end-member of a more general, sometimes called natural boundary
condition, wherein the pressure jump across the interface is pro-
portional to the relative fluid–solid velocity (Bourbié et al. 1987).
This pressure jump boundary condition can be related to petrophys-
ically plausible scenarios (Dutta & Odé 1979). One is associated
with a perturbed hydraulic contact across the interface, as it may
arise in the presence of non-load-bearing clay minerals clogging the
pore throats (Fig. 1). A second scenario is related to the presence
of macroscopic capillarity, thereby creating a permanent pressure
jump (Nagy & Blaho 1994). Therefore, the question arises how
this pressure jump boundary condition alters the predictions of the
White model. From analogous problems in thermal diffusion it is
known that this kind of jump boundary conditions can significantly
alter the effective conductivity of heterogeneous structures (Cheng
& Torquato 1997). Given that the White model is heavily used to
interpret seismic attenuation estimates (e.g. Morgan et al. 2012),
any significant changes may possibly entail important implications.
Indeed, previous works indicate that the pressure jump boundary
condition associated with capillary action reduces seismic attenua-
tion (Tserkovnyak & Johnson 2003; Markov & Levin 2007; Qi et al.
2014).

The aim of this paper is to incorporate the pressure jump bound-
ary condition into the White model in a general fashion so that
both aforementioned scenarios (and possibly other scenarios) can
be modelled. To do so, we argue that the proportionality coeffi-
cient of the pressure jump boundary condition can be interpreted as
an interfacial impedance. This interfacial impedance captures the
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Figure 1. Schematic representation of a homogeneous sandstone alterna-
tively saturated by water and gas layers. The sketch at pore scale shows two
possible interface scenarios: (a) clay minerals are clogging the hydraulic
contact and (b) menisci unevenly distributed due to capillarity.

particular interface properties that cannot be assigned to the gas- or
water-saturated layer. We then solve the modified boundary value
problem for the double layer geometry within the framework of
quasi-static poroelasticity.

2 T H E O RY

2.1 Background: White model and interfacial impedance

White et al. (1975) determine the effective, frequency-dependent
P-wave modulus H̃ (ω) for a periodically layered system composed
of porous layers alternately saturated with gas and water. Their ap-
proach consists in solving a boundary value problem for the REV
with spatial semi-period l = (da + db), as illustrated in Fig. 1.
Therein the action of the P wave is simulated through a harmoni-
cally oscillating compression Peeiωt . The resulting ratio of vertical
component of the average strain to stress is (White et al. 1975; their
eq. 14)

1

H̃
= 1

H nf
+ 1

H̃ ff
. (1)

Herein Hnf is the P-wave modulus when fluid exchange between
consecutive layers is not permitted (hence the superscript ‘nf’ for
no-flow), as is the case when there is not enough time for the fluid
pressure to equilibrate. Thus, Hnf can be interpreted as the high-
frequency, or unrelaxed, limit. It is obtained from Backus averag-
ing with the individual, undrained P-wave moduli calculated using
Gassmann’s equation (Gelinsky & Shapiro 1997)

1

H nf
=

〈
1

H

〉
. (2)

The angle brackets denote the volumetric, or saturation-weighted,
average 〈x〉= (daxa + dbxb)/l. According to the Biot–Gassmann the-
ory the undrained P-wave modulus is given by H = L + α2M, where
L = K0 + 4μ/3 is the drained P-wave modulus, α = 1 − K0/Ks the
Biot–Willis coefficient, and M = [(α − φ)/Ks + φ/Kf]−1 the fluid
storage modulus. Ks and K0 denote the bulk moduli of the solid
grains and of the dry frame. The porosity is φ and the frame shear
modulus is μ.

The second term of the right-hand side (RHS) of eq. (1) accounts
for fluid pressure diffusion across the layers, thereby reducing the

overall stiffness of the medium. As this is a transient process, H̃ ff

turns out to be complex-valued and frequency-dependent,

1

H̃ ff
= 1

iωl

(Ba − Bb)2

Za − Zb
≡ 1

iωl

(�B)2

�Z
. (3)

This interlayer flow term has a simple interpretation. The (uni-
axial) Skempton coefficient B quantifies the fluid pressure built-up
induced by the external loading Pe under undrained condition, that
is, when the fluid increment ξ is zero

B = ∂pnf
f

∂ Pe

∣∣∣
ξ=0

= αM

H
. (4)

Only if there is a contrast in the induced fluid pressures, or equiva-
lently �B �= 0, fluid pressure diffusion can take place. This diffusion
process is also controlled by the impedance contrast �Z. Herein,
the diffusional impedance is defined as the ratio of the fluid pressure
associated with Biot slow P wave and the normal component of the
relative fluid–solid velocity vn at the interface

Z = pff
f

vn

∣∣∣
x=0

= ± coth (ksd)

κks
. (5)

We assume that the unit normal points from layer ‘b’ to layer ‘a’.
Thus, the sign of the diffusional impedance is positive for layer
‘a’ and negative for layer ‘b’. The impedance entails the pressure
diffusion wave number associated with Biot’s slow P-wave number.
In the quasi-static approximation this wave number is ks ≡ √

iω/Dp

with the diffusivity Dp = κN. Herein κ is the hydraulic conductivity
given by the ratio of permeability and fluid shear viscosity and
N = M(1 − αB). It is important to notice that eq. (5) is independent
of the properties of the interface, that is, the condition of fluid
pressure continuity across the boundary is not used.

From the above considerations it becomes clear that the induced
fluid pressure difference across the interface is central to initiate
interlayer flow. It also means that interlayer flow is sensitive to
the continuity of the pressure at the interface. In Biot ’s theory of
poroelasticity the pressure at the interface is generally described by
(Deresiewicz & Skalak 1963; Bourbié et al. 1987)

pfa|x=0 − pfb|x=0 = −ZIvn|x=0 . (6)

It relates the pressure jump across the interface with the relative
fluid–solid velocity. The proportionality coefficient ZI is called the
resistance coefficient. If there is no resistance, ZI = 0, the layers are
in perfect hydraulic contact. Then, the so-called ‘open-pore bound-
ary condition’ is satisfied and the pressure is continuous across
the interface. Conversely, for any finite ZI �= 0 there exists a pres-
sure jump, whereas for ZI → ∞ no pressure equilibration can take
place. In general, ZI can be interpreted as an interfacial impedance
assigning a particular property to the interface. It may even have a
reactance term (Im{ZI} �= 0), as discussed further below. In the next
section, we show how this interfacial impedance can be incorporated
in the derivation of an effective P-wave modulus.

2.2 Effective strain for finite interfacial impedance

We base the derivation on the quasi-static poroelasticity equations
(Biot 1962). In the space–frequency domain they are given by

∂τxx

∂x
= 0, (7)

∂pf

∂x
= − iω

κ
w , (8)
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where τ xx is the total stress, pf the fluid pressure and w = v/iω the
average relative fluid displacement per unit volume of bulk mate-
rial. Eqs (7) and (8) represent stress equilibrium and Darcy’s law,
respectively. They are coupled through the constitutive relations

τxx = H
∂u

∂x
+ B H

∂w

∂x
, (9)

pf = −B H
∂u

∂x
− M

∂w

∂x
, (10)

with u being the average displacement of the solid phase.
For a homogeneous medium, eqs (7)–(10) can be combined such

that the governing equation for w becomes

∂2 w

∂ x2
= iω

Dp
w. (11)

This means that the out-of-phase movement between the fluid and
solid phases, which is associated with the Biot slow P wave, is
governed by diffusion. The solution for the considered REV can be
written as

wi =
2∑

γ=1

Ai,γ exp{(−1)γ ksi x}, i = a, b, (12)

with Ai, γ being complex constants. Since the equation of equilib-
rium (7) implies that the stress is constant throughout the REV and
equal to the applied compression, τ xx =−Pe, we write the remaining
poroelastic fields as

ui = −Biwi − Pe

Hi
x + Ei , (13)

pfi = Bi Pe − Ni
∂wi

∂x
, i = a, b, (14)

where Ei are two additional unknowns. For the REV under uni-axial
deformation, the resulting overall strain and the effective plane wave
modulus are defined by

ẽxx = (ua|x=da − ub|x=−db )/ l , (15)

H̃ (ω) = −Pe/ẽxx . (16)

To uniquely determine the overall strain, another five equations
are needed. These equations are obtained by choosing appropriate
boundary conditions. Due to symmetry, we impose no-flow condi-
tions at the boundaries of the REV

va|x=da = vb|x=−db = 0 . (17)

In addition, we require continuity of solid displacement and relative
fluid–solid velocity at the interface

ua|x=0 = ub|x=0 , (18)

va|x=0 = vb|x=0 . (19)

The fifth boundary condition is provided by the partially open
boundary condition (6). It can be written in decomposed form as

pnf
fa

+ pff
fa

= pnf
fb

+ pff
fb

− ZIvn, (x = 0), (20)

where we interpret the pressure as pf = pnf
f

+ pff
f

.
The first term on the RHS of eq. (14) quantifies the fluid pressure

when fluid flow across the interface is not permitted, that is, pnf
fi =

Bi Pe. The second term describes the effect of diffusion on the
fluid pressure, that is, pff

fi = −Ni
∂wi
∂x . The associated diffusional

impedance can be computed from the definition (5) by applying
boundary condition (17).

Next, we compute the overall effective strain by substituting
eq. (13) into (15) and making use of boundary conditions (18)
and (19). We obtain

ẽxx = −
(

da

Ha
+ db

Hb

)
Pe

l︸ ︷︷ ︸
enf

+ Ba − Bb

iωl
vn|x=0︸ ︷︷ ︸

ẽff

. (21)

Eq. (21) for the overall strain can be understood if, similarly to
the pressure decomposition, the strain is represented as the sum
ẽ = enf + ẽff . If solid and fluid phases move in-phase or, equiva-
lently, v = 0, then the second term on the RHS of eq. (21) vanishes,
and thus the remaining term corresponds to the effective strain as-
sociated with no-flow condition, enf = −〈H−1〉Pe. If v �= 0, the
overall effective strain consists of two terms, wherein the second
term corresponds to the additional strain in presence of pressure
diffusion, ẽff .

Employing eqs (5), (19) in eq. (20) yields the relative fluid-solid
velocity at the interface

vn|x=0 = − Ba − Bb

Za − Zb + ZI
Pe . (22)

This equality shows that the presence of resistance coefficient ZI

reduces the relative fluid–solid velocity. Making use of the extended
relative fluid–solid velocity (22) in eq. (21), we obtain the effective
strain associated with the diffusion process

ẽff = − (Ba − Bb)2

iωl(Za − Zb + ZI)
Pe. (23)

The overall effective strain can now be computed via summation
of the component related to no flow across the interface, enf, and
the contribution produced by fluid pressure diffusion between the
layers, ẽff .

2.3 Generalized White model

The undrained P-wave modulus is obtained by substituting the over-
all effective strain into eq. (16). Therefore,

1

H̃
=

〈
1

H

〉
+ 1

iωl

(�B)2

�Z + ZI
. (24)

This effective, undrained P-wave modulus is the main result of this
paper. The interfacial impedance appears in the denominator of the
interlayer flow term and adds to the impedance contrast �Z. If the
interfacial impedance vanishes, ZI = 0, then eq. (24) reduces to
the P-wave modulus given by White et al. (1975; their eq. 14).
This shows that the fluid pressure continuity boundary condition is
rooted in the White model.

This generalized White model can be used to characterize P-wave
dispersion and attenuation in partially saturated media wherein the
interface separating the two fluid phases possesses specific proper-
ties. As originally envisaged by Deresiewicz & Skalak (1963) the
partially open boundary condition (6) models a perturbed hydraulic
contact. Then the interfacial impedance is real-valued, that is, it
has the character of a resistance. It will be denoted as Zm

I . Another
scenario is related to the presence of capillary forces. The pressure
jump boundary condition is then (Nagy & Blaho 1994)

pfa|x=0 − pfb|x=0 = − W

iω
vn |x=0, (25)

where W (Pa m−1) is the so-called membrane stiffness, which
controls the capillarity reinforcement. In this representation of the
pressure jump condition, the interfacial impedance is an imaginary
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number, and is given by Z c
I = −i W

ω
. That is, it has the character of a

reactance. In the following we focus on the implications on seismic
attenuation and dispersion for these two scenarios.

3 AT T E N UAT I O N A N D D I S P E R S I O N

Attenuation and dispersion can be obtained from eq. (24) via
Q−1 = Im(H̃ )/Re(H̃ ) and VP = [Re(1/Vpc)]−1, where the com-

plex P-wave velocity is Vpc =
√

H̃/ρ̄. The effective density ρ̄ is
given by the volumetric average of the grain and fluid densities. We
restrict the analysis of the results to the two scenarios mentioned
above. In the first case the interfacial impedance has a resistance
term only, while in the second case it is given by a reactance term.
The corresponding attenuation and dispersion behaviours for a gas
saturation of S = 50 per cent are shown in Fig. 2. Here the satura-
tion is computed according to Si = di/l with l = 0.2 m. The red and
blue families of curves correspond to the resistance and reactance
scenario, respectively, and the original White’s prediction is indi-
cated by the black curves. We note that in these numerical examples
the White model predictions loose their validity at very high fre-
quencies, as then the wavelength becomes comparable to the layer
thickness. However, to illustrate the asymptotic characteristics, we
show velocity and attenuation up to a frequency of 0.1 MHz.

Two distinct behaviours can be observed. The resistance term
causes the dispersion curve to shift towards lower frequencies with
increasing resistance. The dispersion window remains unchanged
and is bounded by the Gassmann–Wood (GW) and Gassmann–Hill
(GH) predictions. Accordingly, the attenuation peak is shifted to
lower frequencies. This shifting behaviour can be understood as a
consequence of the delay the imperfect hydraulic contact imposes on
the pressure equilibration process. It is interesting to note that the
high-frequency attenuation asymptote changes from Q−1 ∝ω−1/2

for the White’s prediction to Q−1 ∝ω−1. This change in asymptotic
behaviour is attributed to the fact that, in the presence of imperfect
hydraulic contacts, the distance over which the pressure gradients
are equilibrated has effectively increased (Müller et al. 2010).

The reactance term manifests differently. In this case, the pressure
jump at the interface effectively reduces the wave-induced pressure
gradient across the layers. Accordingly, the effects of wave-induced
pressure diffusion become less pronounced so that dispersion and
attenuation are reduced. In essence, the surface tension between
two immiscible fluids perturbs the energy redistribution (or mode
conversion process) across the interface (Markov 2009), thereby
creating a change of attenuation. An increasing membrane stiffness
W increases the low-frequency limiting velocity above the GW
prediction. The capillarity-extended static (CS) limit is given by
(Qi et al. 2014)

H ∗
1D = z + T

z
HGW + T

HGH

, z =
〈

N

S2

〉
, T = Wl . (26)

We also validate the capillarity-extended model by numerically
solving a boundary value problem. The numerical results displayed
by circles coincide with the model prediction.

The velocity–saturation relations (VSRs) at fixed frequency
(25 Hz) for both scenarios are shown in Fig. 3(top panel). It can
be observed that both, the resistance and reactance terms, cause a
deviation from the White’s prediction towards the GH behaviour,
thereby increasing the overall stiffness of the layered system. How-
ever, this is due to different reasons. In the resistance scenario, it
is the shifting behaviour that is responsible for an increased veloc-
ity at fixed finite frequency. In the reactance scenario, the imposed

Figure 2. Phase velocity and inverse quality factor as functions of
frequency for a homogeneous rock alternately saturated with gas and water.
‘HWM’ refers to generalized White model with imperfect hydraulic con-
tact, whereas ‘CWM’ indicates the capillarity extended White model. The
values of resistance Zm

I and membrane stiffness W are given in units of
GPa · s m−1 and GPa m−1, respectively. The parameters used in this exam-
ple are: drained bulk modulus K0 = 7 GPa, shear modulus μ = 9 GPa,
grain bulk modulus Ks = 35 GPa, grain density ρs = 2650 kg m−3,
porosity φ = 15 per cent and permeability κ0 = 1E − 13 m2. The water
has a bulk modulus Kfa = 2.25 GPa, density ρfa = 990 kg m−3 and vis-
cosity ηfa = 1E − 3 Pa · s, whereas for the light gas we use Kfb = 0.1 GPa,
ρfb = 100 kg m−3 and ηfb = 3E − 5 Pa · s.

pressure jump is permanent and adds to the overall stiffness. The
attenuation–saturation relation (ASR) is shown in Fig. 3(bottom
panel).

4 D I S C U S S I O N A N D C O N C LU S I O N

A pressure jump boundary condition has been incorporated into the
expression for the effective P-wave modulus of a partially saturated
porous medium, which appears in form of an interfacial impedance
(eq. 24). This generalizes the original White model wherein conti-
nuity of the fluid pressure at the gas–water interface is implicitly
assumed.

Imperfect hydraulic contacts across fluid patches do not alter at-
tenuation and dispersion in magnitude, but only decrease the char-
acteristic frequency. Therefore, if one infers the size of fluid patches
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Figure 3. Velocity- and attenuation-saturation relations for a frequency of
25 Hz. The values of the resistance Zm

I and membrane stiffness W are given
in units of GPa · s m−1 and GPa m−1, respectively.

from attenuation estimates based on the original White model, there
will be a bias towards overestimating the patch size. Correspond-
ingly, relating a measured wave velocity to saturation can result in
substantial misinterpretation [e.g. in Fig. 3(top panel) the proximity
to the GH bound is unrelated to the fluid patch size]. This might
have important implications for understanding the role of interlayer
flow in sand-shale sequences.

The effect of capillarity on inter-layer flow can be modelled
by an imaginary interfacial impedance. This reactance term leads
to an elevated low-frequency velocity and decrease in attenua-
tion. Since capillary forces control the formation of fluid patches
(Zhang et al. 2014), the generalized White model can be useful in
the assessment of the corresponding acoustic signatures in labora-
tory settings. This is of particular interest if, in addition to fluid
saturation, aligned fractures complicate the analysis of attenuation
(Amalokwu et al. 2014).

In conclusion, the generalized White model for seismic attenua-
tion and dispersion generates new modelling choices arising in the
presence of an interfacial impedance. Although the underlying pe-
riodic double layer geometry may, in certain cases, be too simple to
resemble real sedimentary records, the generalized model provides
further insight into attenuation and dispersion due to interlayer flow.
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Bourbié, T., Coussy, O. & Zinszner, B., 1987. Acoustics of Porous Media,
Editions Technip.

Carcione, J.M. & Picotti, S., 2006. P-wave seismic attenuation by slow-wave
diffusion: effects of inhomogeneous rock properties, Geophysics, 71(3),
O1–O8.

Cheng, H. & Torquato, S., 1997. Effective conductivity of periodic arrays of
spheres with interfacial resistance, Proc. R. Soc. Lond., A: Math., Phys.
Eng. Sci., 453(1956), 145–161.

Deresiewicz, H. & Skalak, R., 1963. On uniqueness in dynamic poroelas-
ticity, Bull. seism. Soc. Am., 53(4), 783–788.
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