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SUMMARY

Inferences related to the second-order properties of functional data, as expressed by covari-
ance structure, can become unreliable when the data are non-Gaussian or contain unusual obser-
vations. In the functional setting, it is often difficult to identify atypical observations, as their
distinguishing characteristics can be manifold but subtle. In this paper, we introduce the notion
of a dispersion operator, investigate its use in probing the second-order structure of functional
data, and develop a test for comparing the second-order characteristics of two functional sam-
ples that is resistant to atypical observations and departures from normality. The proposed test
is a regularized M-test based on a spectrally truncated version of the Hilbert–Schmidt norm of
a score operator defined via the dispersion operator. We derive the asymptotic distribution of the
test statistic, investigate the behaviour of the test in a simulation study and illustrate the method
on a structural biology dataset.

Some key words: Covariance operator; Karhunen–Loève expansion; M-estimation; Resistant test; Spectral truncation;
Two-sample testing.

1. INTRODUCTION

The second-order structure of a random function is key to understanding the nature of the
functional observations that it induces, as it is inextricably linked with the smoothness properties
of the stochastic fluctuations of the function. Given a suitable random function in a separable
Hilbert space, e.g., L2[0, 1], these second-order properties are encapsulated in the covariance
operator. The link with the smoothness properties of the random function is then given by the
Karhunen–Loève expansion (e.g., Adler, 1990), which provides an optimal Fourier represen-
tation of the random function, using a basis comprised by the eigenfunctions of this operator.
Consequently, a significant part of functional data analysis has concentrated on estimating the
covariance operator, and employing its spectral decomposition in order to probe the smoothness
properties of the functional data; see Bosq (2000), Dauxois et al. (1982), Hall & Hosseini-Nasab
(2006), Ramsay & Silverman (2005), Gervini (2006), Hall et al. (2006) and Yao & Lee (2006),
to name but a few. A natural inference problem is that of comparing the covariance structures of
two samples of functional data, in order to decide whether they share the same fluctuation proper-
ties. Aspects of this problem were considered in Benko et al. (2009), who employed a bootstrap
procedure to compare subsets of eigenfunctions or eigenvalues of the two samples in a finan-
cial context. The more global problem of testing whether two samples share the same covari-
ance operator was investigated in the Gaussian case by Panaretos et al. (2010), motivated by
the study of mechanical properties of DNA, and subsequently by Boente et al. (2011) through
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a simulation-based approach. In a slightly different setting, Gabrys & Kokoszka (2007) and
Horváth et al. (2010) investigated second-order tests to detect the presence or change of serial
correlation in functional data. The goal of this paper is to study the problem of second-order
inference in a more general setting. We focus on situations where the data are not Gaussian, and
indeed may be characterized by the presence of influential observations. That we do not use the
word outlier is deliberate: in the functional case, observations can significantly impact the empir-
ical covariance operator, though they may not be outlying. The infinite-dimensional nature of the
data means that an observation can be atypical in many ways, the deviation from the mean being
only one; observations close to the mean may contain unusual frequency components. Detection
of such observations via exploratory techniques may be nontrivial (Sun & Genton, 2011).

Such influential observations might significantly influence the estimation of the covariance,
and, even more profoundly, the quality of the estimators of its spectrum. For these reasons, robus-
tified estimates of the spectrum have been proposed, based on the spectra of robust estimators
of the covariance operator. Locantore et al. (1999) proposed the use of the spectrum of the so-
called spherical covariance operator in a discretized setting (Boente & Fraiman, 1999). Gervini
(2008) introduced the functional median and further studied the properties of the spherical covari-
ance spectrum for functional data concentrated on an unknown finite-dimensional hyperplane.
Bali et al. (2012) adapted the projection-pursuit method of Li & Chen (1985) in the functional
case. The sensitivity of the empirical covariance operator and its spectrum to the presence of
influential observations can have an impact on testing procedures for the covariance operator.
This is already observed in the finite-dimensional case (Layard, 1974; Olson, 1974), where
deviations from a Gaussian assumption, or the presence of influential observations, can com-
pletely ruin a testing procedure even in one dimension (Box, 1953; Hampel et al., 1986). Finite-
dimensional robust or resistant tests for covariance matrices cannot be directly extended to the
functional case, as they often depend on the assumption of an invertible empirical covariance,
which will by default be violated in the functional case for all sample sizes (Tiku & Balakrishnan,
1985; O’Brien, 1992; Zhang et al., 1991; Anderson, 2006). Even if a pseudo-inverse operator is
employed, one immediately runs into the problem of ill-posedness.

To cope with these issues, this paper introduces a class of operators that we term dispersion
operators that are implicitly defined through a variational problem, motivated by M-estimators
of location for the tensor product of the centred functional observations. It is then proposed
that these operators be used as proxies for the covariance operator, when inferences on the
second-order structure are to be drawn for non-Gaussian and potentially contaminated functional
samples. The implicit definition of a dispersion operator gives rise to a score equation, as the
dispersion operator is a zero of the Fréchet derivative of the variational problem with respect to
the operator argument. This functional score equation is then used as a basis to construct a test
for the second-order comparison of two functional samples. The test is based on the distance of
the functional score equation under the null hypothesis from zero, measured by an appropriately
renormalized Hilbert–Schmidt distance.

2. SECOND-ORDER INFERENCE BASED ON THE DISPERSION OPERATOR

2·1. Covariance operators

To describe the second-order properties of a random element X in a separable Hilbert space
of functions H, often taken to be L2[0, 1], with norm ‖·‖ and inner product 〈·, ·〉, one typically
considers the covariance operator of X , C : H→H, defined as

C ( f )= E{〈 f, X − μ〉(X − μ)};
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here μ= E(X) represents the mean of the function X . For example, in the case H≡ L2[0, 1],
with inner product 〈 f, g〉 = ∫ 1

0 f (t)g(t) dt , the covariance operator is represented as an inte-
gral operator

C ( f )=
∫ 1

0
r(·, s) f (s) ds,

where r(s, t)= E[{X (s)− μ(s)}{X (t)− μ(t)}] stands for the covariance kernel of the process
X . For the purposes of this paper, it will be more fruitful to think of the covariance operator as an
operator related to tensor products on H, rather than through the sample path perspective based
on the covariance kernel. In particular, we will think of the covariance operator as

C = E{(X − μ)⊗ (X − μ)},

where ⊗ stands for the tensor product on H: for f, g ∈H, f ⊗ g defines an operator on H
through ( f ⊗ g)(h)= 〈g, h〉 f , where h ∈H. In this setting, and provided that E(‖X‖2) <∞,
the covariance operator C can itself be thought of as an element of a Hilbert space, the space
HS(H,H) of Hilbert–Schmidt operators acting on H. This is the space of linear operators R on
H such that

‖R‖HS =
( ∞∑

k=1

‖Rek‖2

)1/2

<∞,

where {ek} is any orthonormal basis of H. Here, ‖·‖HS defines a norm on HS(H,H), correspond-
ing to the inner product 〈R1,R2〉HS =∑∞

k=1〈R1ek,R2ek〉. In what follows, we will usually omit
the subscript HS, as the nature of the norm or inner product employed, whether it is an operator
or an element norm, will be clearly implied from the space where its argument belongs.

In this Hilbert–Schmidt setting, the covariance operator can be seen as the operator C ∈
HS(H,H) that solves the variational problem

min
R∈HS(H,H)

E{‖(X − μ)⊗ (X − μ)− R‖2}.

The sample counterpart of the covariance operator, the empirical covariance operator,

Ĉn = 1

n

n∑
i=1

(Xi − X̄)⊗ (Xi − X̄),

can be represented as the solution to the problem

min
R∈HS(H,H)

1

n

n∑
i=1

‖(Xi − X̄)⊗ (Xi − X̄)− R‖2,

where X1, . . . , Xn is a collection of independent and identically distributed copies of X , and
X̄ = n−1∑n

i=1 Xi stands for their empirical mean. This being essentially a least squares prob-
lem, both the empirical covariance operator and methods based on it will be sensitive to the
presence of atypical observations in the dataset X1, . . . , Xn . In fact, it can also be seen that the
empirical covariance operator admits a Gaussian maximum likelihood estimator interpretation,
in a Cramér–Wold sense: if X is assumed Gaussian, then Ĉn is the unique element of HS(H,H)
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such that, for every f ∈H, 〈 f, Ĉn f 〉 is the unique maximum likelihood estimator of the variance
of 〈 f, X〉. The law of X is completely determined by the laws of the collection {〈 f, X〉 : f ∈H},
and of course 〈 f, X〉 is Gaussian with mean 〈 f, μ〉 and variance 〈 f,C f 〉.

The basic strategy of this paper will be to obtain procedures pertaining to the second-order
structure of X that are more resistant to departures from normality and to the presence of influen-
tial observations by replacing the squared norm in the variational problem defining the covariance
by a less sensitive loss function. This gives rise to a new class of second-order characteristics,
which we call dispersion operators.

2·2. Dispersion operators

Let P be a distribution on the separable Hilbert space H and let X be a random element with
this distribution. The usual covariance is the integral of the operator

P(x;μ)= (x − μ)⊗ (x − μ), x ∈H,
with respect to P. This suggests that a dispersion operator could be defined as an M-estimator of
the location of P(X;μ). Let ρ be a nonnegative, differentiable, strictly increasing and convex
function on R+

0 with ρ(0)= 0. We define the ρ-dispersion operator of the distribution P as

R(P)= arg min
R∈HS(H,H)

M(P; R, μ), (1)

where

M(P; R, μ)= EP[ρ{‖P(X;μ)− R‖} − ρ{‖P(X;μ)‖}]

=
∫

[ρ{‖P(x;μ)− R‖} − ρ{‖P(x;μ)‖}] dP(x).
(2)

In the definition of the dispersion operator, μ is chosen to be some suitable element of H with
the interpretation of a location parameter. It is natural to use μ equal to the ρ-centre

μ(P)= arg min
μ∈H

L(P;μ),

where

L(P;μ)= EP{ρ(‖X − μ‖)− ρ(‖X‖)} =
∫

{ρ(‖x − μ‖)− ρ(‖x‖)} dP(x).

Equivalently, one may define μ(P) and R(P) as solutions to score equations. The objective
functionals L(P;μ) and M(P; R, μ) are real-valued functionals defined on the Hilbert spacesH
and HS(H,H), respectively. The corresponding scores are their Fréchet derivatives, that is, linear
functionals on the corresponding Hilbert space that can be uniquely identified with an element
of that Hilbert space. Specifically, the centre μ(P) is the solution to the functional equation

G(P;μ)= 0,

where the element

G(P;μ)= ∂

∂μ
L(P;μ)= EP

{
ρ′(‖X − μ‖)

‖X − μ‖ (μ− X)

}
=
∫
ρ′(‖x − μ‖)

‖x − μ‖ (μ− x) dP(x)
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of H determines the Fréchet derivative of L with respect to μ. The dispersion operator is defined
as the solution to the operator equation

G (P; R, μ)= O, (3)

where O is the zero operator on H and the operator

G (P; R, μ)= ∂

∂R
M(P; R, μ)= EP

[
ρ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ {R − P(X;μ)}
]

=
∫
ρ′{‖P(x;μ)− R‖}

‖P(x;μ)− R‖ {R − P(x;μ)} dP(x)

determines the Fréchet derivative of M with respect to R.
The empirical dispersion operator based on the sample X1, . . . , Xn is the dispersion operator

of the empirical distribution P̂ of the sample, that is, R(P̂). The empirical dispersion operator can
be in general computed around any element μ ∈H; in practice, one naturally uses the empirical
centre μ(P̂), i.e., the centre of the empirical distribution.

PROPOSITION 1. Let P be a distribution on the separable Hilbert space H that is not concen-
trated on a line in H or on four points of H. Assume that ρ is nonnegative, strictly increasing
on [0,∞) and convex. Then, the objective function M(P; R, μ) as a functional of R is strictly
convex for any μ ∈H and thus the ρ-dispersion operator around μ exists and is unique.

Proposition 1 holds without any moment assumptions because the subtraction of
ρ{‖P(X;μ)‖} and ρ(‖X‖) in the definition of M(P; R, μ) and L(P;μ), respectively, guar-
antees the existence and finiteness of the objective functions. Under fairly weak further assump-
tions, we may also deduce that the empirical dispersion operator is well defined and consistent.

COROLLARY 1. Let X1, . . . , Xn be independent random elements with law P that has no dis-
crete component and is such that the probability that X1, . . . , Xn be collinear is zero (n � 3).
Then, for n � 5, the empirical ρ-dispersion operator corresponding to X1, . . . , Xn exists and is
almost surely unique. Moreover, if μ̂ is consistent for a location parameter μ, then the empirical
dispersion operator around μ̂ is itself consistent for the dispersion operator around μ.

We remark, for example, that the empirical functional median, i.e., the empirical centre cor-
responding to ρ(u)= u, was proven to be consistent for its theoretical counterpart in Gervini
(2008). In fact, in the setting of Corollary 1, this result can be extended to location parameters
corresponding to strictly increasing convex ρ-functions.

It is seen from (1) or (3) that the ρ-dispersion operator is self-adjoint. Moreover, from the
spectral decomposition found in Proposition 2, it will follow that the ρ-dispersion operator is
positive semidefinite. Although many results derived in this paper are valid for a wide class of
functions ρ, the choice ρ(u)= uq for some q > 0 is especially attractive as the resulting centre
is scale invariant and the dispersion is scale equivariant. For general ρ, it would be more appro-
priate to use a suitably studentized version of the objective functions; to this end, one can insert
a preliminary estimator of the trace into the objective function.

We now provide explicit formulae for two main choices of the ρ-function.
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When choosing ρ(u)= u2, the score determining the ρ-dispersion operator equals
G (P; R, μ)= EP[2{R − P(X;μ)}]. Thus, R(P) can be found explicitly as R(P)=
EP{P(X;μ)}. As the score for the ρ-centre is G(P;μ)= EP{2(μ− X)}, the solution isμ(P)=
EP(X). Hence, the dispersion operator is the usual covariance operator.

The choice ρ(u)= u is expected to place less emphasis on influential observations and result
in more resistant procedures. The corresponding score operators for the dispersion and centre are

G (P; R, μ)= EP

{
R − P(X;μ)

‖R − P(X;μ)‖
}
, G(P;μ)= EP

(
μ− X

‖μ− X‖
)
.

The parameter μ(P) has been studied by a number of authors under different names in the mul-
tivariate as well as functional settings. In the multivariate context Chaudhuri (1996) calls μ(P)
the geometric median; other authors (Serfling, 2004; Sirkiä et al., 2009) use the name spatial
median and some authors (Huber & Ronchetti, 2009; Fritz et al., 2012) use the term L1-centre
or L1-median. In the functional setting, μ(P) was studied by Locantore et al. (1999) and by
Gervini (2008), who calls it the functional or spatial median. We use the term spatial median for
μ(P) and, similarly, we call R(P) the spatial dispersion operator. To clarify the terminology, we
recall that

S (P)= EP

{
(X − μ)⊗ (X − μ)

‖X − μ‖2

}

is called the spherical covariance operator (Locantore et al., 1999). Unlike the parameters under
the L2-type loss function, the spatial median and spatial dispersion are not available explicitly.
Their empirical counterparts μ̂=μ(P̂) and R̂ = R(P̂) can, however, be obtained numerically,
employing a Newton–Raphson algorithm, as explained in the Appendix.

The score function ρ′(u)= quq−1 corresponding to ρ(u)= uq is unbounded unless q = 1.
Therefore, the estimator of the spatial dispersion operator, q = 1, is resistant, whereas other
choices are nonresistant due to the effect of outliers, q > 1, or inliers, q < 1.

Although the dispersion operator is in general different from the covariance operator unless
ρ(u)= u2, it carries useful information on second-order properties of the distribution. There
is an interesting link between the spectra of the dispersion and covariance operator. Let X
admit the Karhunen–Loève expansion X =μ+∑∞

k=1 λ
1/2
k βkϕk, where β1, β2, . . . are zero-

mean unit-variance uncorrelated random variables, {λk : k � 1} are the nonincreasing nonneg-
ative eigenvalues and {ϕk : k � 1} are the complete orthonormal eigenfunctions of the covariance
operator C (P)= EP{(X − μ)⊗ (X − μ)} =∑∞

k=1 λkϕk ⊗ ϕk . We now investigate the eigen-
decomposition of the theoretical ρ-dispersion operator R(P) defined via M-estimation as the
solution to (3). The main result is as follows.

PROPOSITION 2. Assume that the Fourier coefficient sequence {βk}∞k=1 has a joint distribution
that is invariant under the change of the sign of any component. Then, the dispersion operator
R(P) has the same eigenfunctions as the covariance operator C (P), i.e., there exists a non-
negative sequence {δk}∞k=1 such that R(P)=∑∞

k=1 δkϕk ⊗ ϕk . Furthermore, the eigenvalues
δ1, δ2, . . . satisfy the conditions

δk = λk

E

(
ρ′[{∑i (δi −λiβ

2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2]

{∑i (δi −λiβ
2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2 β2

k

)

E

(
ρ′[{∑i (δi −λiβ

2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2]

{∑i (δi −λiβ
2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2

) (k = 1, 2, . . .).
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A similar result relating the covariance operator and the spherical covariance operator S (P)
was obtained by Gervini (2008, Theorem 3) who showed that, under the assumption of exchange-
ability of the coefficient sequence, both operators have the same eigenfunctions in the same
order; see also Marden (1999) and Boente & Fraiman (1999). Our proposition shows that the
ρ-dispersion operator also has the same set of eigenfunctions. We conjecture that, potentially
under further assumptions, the order of the eigenfunctions is also the same; computational exper-
iments back this conjecture. Gervini (2008) assumed that the Karhunen–Loève expansion has
only finitely many terms, i.e., that the distribution is concentrated on a finite-dimensional sub-
space, whereas our results hold even for processes with infinite series expansions. On the other
hand, Gervini (2008) needed no moment assumptions, whereas we need to assume finite second
moments: without moment assumptions the convergence of an infinite Karhunen–Loève series
is not guaranteed, while a finite sum is always well defined regardless of the properties of the
random summands.

2·3. The two-sample test

Having defined the notion of a dispersion operator, we now construct a two-sample second-
order test based upon it. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples
from distributions P1,P2 on H, whose ρ-centres are μ(P1), μ(P2) and ρ-dispersion operators
are R(P1),R(P2). The goal is to test the null hypothesis H0: R(P1)= R(P2) against the general
alternative H1: R(P1) |= R(P2). Note that μ(P1), μ(P2) can be equal or different, as neither H0
nor H1 specifies their relation. We propose to employ the general idea of score tests, that is, to
base the test on the estimating score for the general model, without assuming H0, evaluated at
the null estimate of the parameter.

As the centresμ(P1),μ(P2) are not restricted under the null hypothesis, they can be estimated
separately by minimizing L(P̂1;μ1), L(P̂2;μ2), i.e., by solving G(P̂1;μ1)= 0, G(P̂2;μ2)=
0, respectively. Denote μ(P̂ j ) by μ̂ j ( j = 1, 2). On the other hand, the null estimator of the
dispersion is based on both samples. As we now have two samples, we need to extend our notation
to cover situations with two distributions, empirical or theoretical, mixed at proportions a and
1 − a for a ∈ (0, 1). We denote

M(P1,P2, a; R1,R2, μ1, μ2)= aM(P1; R1, μ1)+ (1 − a)M(P2; R2, μ2).

The common null value R of the dispersion operator is estimated by R̂, which mini-
mizes M(P̂1, P̂2, an; R,R, μ̂1, μ̂2) where an = n1/n with n = n1 + n2. Equivalently, R̂ solves
G (P̂1, P̂2, an; R, μ̂1, μ̂2)= O, the null estimating equation, where G (P1,P2, a; R, μ1, μ2)=
aG (P1; R, μ1)+ (1 − a)G (P2; R, μ2).

Using the reparameterization R = (R1 + R2)/2, T = (R1 − R2)/2, we have R1 = R + T ,
R2 = R − T and we need to test H0: T = O against H1: T |= O . For the test, we need the score
in the general model

∂

∂(R,T )T
M(P̂1, P̂2, an; R + T ,R − T , μ̂1, μ̂2)=

(
G (P̂1, P̂2, an; R, μ̂1, μ̂2)

B(P̂1, P̂2, an; R, μ̂1, μ̂2)

)

where B(P1,P2, a; R, μ1, μ2)= aG (P1; R, μ1)− (1 − a)G (P2; R, μ2). The score test is
based on this general score at the null estimator. When evaluated at (R,T )= (R̂,O), the
score is zero in the first component. Thus, the test can be based on the second component
B(P̂1, P̂2, an; R̂, μ̂1, μ̂2).
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When the null hypothesis holds, the score operator B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) is expected to
be close to the zero operator, otherwise it should be far from the zero operator. To perform the
test, we need to measure the distance of B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) from the zero operator and
assess the significance of the resulting test statistic.

One way to measure the distance of the score operator from zero is to use its Hilbert–Schmidt
norm. A drawback of this approach is that the resulting statistic does not have a tractable asymp-
totic distribution. The score operator turns out to be asymptotically Gaussian, but its Hilbert–
Schmidt norm is not asymptotically distribution-free. In the context of comparison of covariance
operators, Boente et al. (2011) use a simulation procedure to approximate the distribution of the
statistic.

Another idea is to mimic the standard procedure from settings where the parameter of interest
is Euclidean. In such settings, the difference of the score vector from zero is measured with the
help of a quadratic form involving the score vector and the inverse of its covariance matrix. The
quadratic statistic is usually asymptotically chi-square distributed and the null hypothesis is then
rejected when the value of the statistic is significantly large. In the functional context, the score
B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) is infinite dimensional. Due to the noninvertibility of its covariance
operator, one cannot construct a quadratic statistic. We overcome this problem by regularizing
the score operator using spectral truncation.

The test object B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) is an element of the space of operators HS(H,H).
Recall that HS(H,H) is a Hilbert space with inner product defined as

〈A1,A2〉 =
∞∑

k=1

〈A1ek,A2ek〉 =
∞∑
j=1

∞∑
k=1

〈e j ,A1ek〉〈e j ,A2ek〉, A1,A2 ∈ HS(H,H),

where {ek : k = 1, 2, . . . } is an arbitrary complete orthonormal basis of H. For any complete
orthonormal basis {Ek : k = 1, 2, . . . } of HS(H,H), an operator A ∈ HS(H,H) and the square
of its Hilbert–Schmidt norm can be written as

A =
∞∑

k=1

〈A ,Ek〉Ek, ‖A ‖2 =
∞∑

k=1

〈A ,Ek〉2.

Instead of this infinite series, one can use a truncated version. If U ⊂ HS(H,H) is a suitably
chosen finite-dimensional linear subspace with an orthonormal basis {U1, . . . ,UL}, then instead
of ‖B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)‖2 one can use

‖πU B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)‖2 = ‖B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)πU ‖2

=
L∑

l=1

〈B(P̂1, P̂2, an; R̂, μ̂1, μ̂2),Ul〉2,

where πU is the projection onto the subspace U . That is, the test can be based on a score vector
with components

Sl = 〈B(P̂1, P̂2, an; R̂, μ̂1, μ̂2),Ul〉 (l = 1, . . . , L). (4)

One particular way of choosing the basis elements Ul is to derive them from a basis of the Hilbert
space H. If U is a K -dimensional linear subspace of H with an orthonormal basis {u1, . . . , uK },
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then one may use the L = K (K + 1)/2 orthonormal operators of the form

U jk =
{

u j ⊗ u j ( j = k),

(u j ⊗ uk + uk ⊗ u j )/21/2 ( j < k).
(5)

There is yet another way of motivating the above truncation. Instead of measuring the
difference of B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) from zero on the entire Hilbert space H, we can
measure how it differs from the zero operator when attention is restricted to the linear
subspace U . More precisely, instead of B(P̂1, P̂2, an; R̂, μ̂1, μ̂2), we use the operator
πU B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)πU , where πU is the projection operator on U . Its squared Hilbert–
Schmidt norm

‖πU B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)πU ‖2 =
K∑

j=1

K∑
k=1

〈u j ,B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)uk〉2

is a truncated version of

‖B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)‖2 =
∞∑
j=1

∞∑
k=1

〈e j ,B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)ek〉2,

where {e j : j = 1, 2, . . . } is any complete orthonormal basis of H. The resulting scores

S jk = 〈u j ,B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)uk〉 (1 � j � k � K )

are equivalent to (4) with Ul of the form (5).
It is natural to use the basis operators of the form (5) with u1, . . . , uK being the first K eigen-

functions of the dispersion operator R because, in light of Mercer’s theorem, they carry the
main portion of information about the dispersion operator. In practice, the eigenfunctions of R

are not known, so one uses the eigenfunctions of the pooled sample estimator R̂. The number
of components K can be selected as the minimal number for the cumulative proportion of dis-
persion explained by the subspace to exceed a certain threshold, e.g., 80% of the trace of the
corresponding pooled sample dispersion operator. The proportion of dispersion, corresponding
to the eigenvalues of the dispersion operator, is in general not equivalent to the proportion of
variability, corresponding to the eigenvalues of the covariance operator.

To construct the test statistic, instead of simply summing squares of the terms Sl of the
form (4), one combines them in a quadratic form reflecting their covariance structure.

The formal test will be based on the asymptotic distribution of the test statistic. Let n1,
n2 be such that n1 → ∞, n2 → ∞ and an = n1/n → a ∈ (0, 1). Assume that ‖G(P j ;μ)‖2,
‖G (P j ; R, μ)‖2 ( j = 1, 2) are finite. Let the function ρ: R+

0 → R+
0 be twice differentiable,

strictly increasing, and convex with ρ(0)= 0. Assume that the laws P1, P2 satisfy the con-
ditions of Corollary 1 and the expectations EP j {ρ′(‖X − μ‖)2}, EP j [ρ

′{‖P(X;μ)− R‖}2],
EP j {ρ′′(‖X − μ‖)}, EP j [ρ

′′{‖P(X;μ)− R‖}] and

EP j

{
ρ′(‖X − μ‖)

‖X − μ‖
}
, EP j

[
ρ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖
]

( j = 1, 2)

are finite. Assume that the derivatives D(P j ;μ), D(P j ; R, μ), D(P j ; R, μ) given in (A1)–
(A3) in the Appendix exist for j = 1, 2.

Let S be a score vector of length L of the form (4) for some linearly independent opera-
tors Ul = U (n)

l . Let the operators Ul be either nonrandom, independent of n, or convergent in
probability to some nonrandom limits, up to a possible sign ambiguity in the sense that there
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exist some operators U ∞
l such that |〈U (n)

l ,U ∞
l 〉| converges to 1. In this set-up, we have the

following theorem.

THEOREM 1. Under the null hypothesis H0 : R(P1)= R(P2), the score
n1/2B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) converges weakly to a mean zero Gaussian random opera-
tor with covariance operator, which can be consistently estimated by W(P̂1, P̂2, an; R̂, μ̂1, μ̂2)

given in (A5) in the Appendix. The asymptotic distribution of the score vector n1/2S is L-variate
zero-mean Gaussian with a covariance matrix that is consistently estimated by a matrix W
with entries W j,l = 〈U j ,W(P̂1, P̂2, an; R̂, μ̂1, μ̂2)Ul〉 ( j, l = 1, . . . , L). The test statistic
T = nSTW −1S asymptotically follows a χ2 distribution with L degrees of freedom.

We now deal with the two main cases, spatial and L2-type, explicitly. In the spatial case, ρ(u)=
u, we test the null hypothesis that the spatial dispersion operators are equal in both samples. The
score operator takes the form

B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)= 1

n

n1∑
i=1

R̂ − P(Xi ; μ̂1)

‖R̂ − P(Xi ; μ̂1)‖
− 1

n

n2∑
i=1

R̂ − P(Yi ; μ̂2)

‖R̂ − P(Yi ; μ̂2)‖
.

The Fréchet derivatives D(P;μ), D(P; R, μ) involved in the covariance operator of the score
are

D(P;μ)= EP

[
1

‖X − μ‖
{

I − (X − μ)⊗ (X − μ)

‖X − μ‖2

}]
,

D(P; R, μ)= EP

(
1

‖P(X;μ)− R‖
[
I − {P(X;μ)− R} ⊗ {P(X;μ)− R}

‖P(X;μ)− R‖2

])
,

and the derivative D(P; R, μ) evaluated at f ∈H is

D(P; R, μ) f = EP

[ −Q(X;μ) f

‖P(X;μ)− R‖ + 〈P(X;μ)− R,Q(X;μ) f 〉
‖P(X;μ)− R‖3

{P(X;μ)− R}
]
.

When the L2 approach, ρ(u)= u2, is employed, the hypothesis to be tested states that the
covariance operators in both samples are equal. The null estimator of R takes the form R̂ =
anR̂1 + (1 − an)R̂2, that is, the pooled covariance estimator. The test score operator equals

B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)= an2(R̂ − R̂1)− (1 − an)2(R̂ − R̂2)= 4an(1 − an)(R̂2 − R̂1),

which is a multiple of the difference of the empirical covariance operators. So, the test is equiv-
alent to a Wald-type test proposed by Panaretos et al. (2010). This is different from the spatial
test for which the score does not simplify to the difference of the spatial dispersions, so the score
test differs from the Wald test. To compute the covariance operator of the test score, we first
notice that D(P; R, μ)= −2 EP{Q(X;μ)} equals zero at μ=μ(P)= EP(X); see (A4) in the
Appendix. Consequently, the fact that the centres of the two distributions must be estimated does
not affect the asymptotic distribution, as could be expected. Also, D(P; R, μ)= 2I. Hence, after
straightforward calculations, the estimator of the covariance operator of the test operator is

W(P̂1, P̂2, an; R̂, μ̂1, μ̂2)= 4an(1 − an){(1 − an)J(P̂1; R̂, μ̂1)+ anJ(P̂2; R̂, μ̂2)}
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= 16an(1 − an)

×
[
(1 − an)

1

n1

n1∑
i=1

{P(Xi ; μ̂1)− R̂1} ⊗ {P(Xi ; μ̂1)− R̂1}

+ an
1

n2

n2∑
i=1

{P(Yi ; μ̂2)− R̂2} ⊗ {P(Yi ; μ̂2)− R̂2}
]
.

In Panaretos et al. (2010), the limiting covariance of the L2 score for the Wald-type test was
investigated in the special case of Gaussian data and a simpler formula was found.

3. A SIMULATION STUDY

In order to investigate the performance of the testing procedure introduced in § 2·3, we generate
random samples of size n1, n2 of curves of the form

X (t)=μ1(t)+
10∑

k=1

λ
1/2
1k a1k21/2 sin{2πk(t + γ1k)} +

10∑
k=1

ν
1/2
1k b1k21/2 cos{2πk(t + δ1k)},

Y (t)=μ2(t)+
10∑

k=1

λ
1/2
2k a2k21/2 sin{2πk(t + γ2k)} +

10∑
k=1

ν
1/2
2k b2k21/2 cos{2πk(t + δ2k)},

where the coefficients a jk, b jk are mutually independent random variables with zero-mean and
unit variance. Three symmetric coefficient distributions are considered: normal, uniform and t5,
all scaled to have unit variance. As the test procedures are invariant with respect to the location
shift of one or both samples, we set μ1(t)=μ2(t)= 0. Unless stated otherwise, we set γ jk =
δ jk = 0 in all situations. We perform the nonresistant L2 test and the proposed spatial dispersion
test at the nominal level α = 0·05. The sample sizes are n1 = n2 = 50. The basis of the subspace
for dimension reduction consists of several leading eigenfunctions of the pooled sample estimator
of the dispersion operator; that is, the pooled sample empirical covariance for the L2 test and the
pooled sample empirical spatial dispersion for the spatial test. The number of components K
included in the basis is selected as the minimal number needed to explain at least 80% of the
dispersion.

We first study the behaviour of the test procedures under the null hypothesis. We set λ1k =
λ2k = k−3 and ν1k = ν2k = (1/3)k .

We begin with uncontaminated samples to verify that the tests maintain the prescribed nominal
level. The first row of Table 1 shows that, in general, the asymptotic distribution approximates
the distribution of both test statistics reasonably well. The asymptotic approximation for the L2

method is slightly less accurate and tends to be liberal for distributions with light tails, i.e., normal
and uniform.

Next we simulate datasets contaminated by atypical observations. Mean contamination, i.e.,
observations whose mean is different from the mean of the central distribution, usually impacts
the level more seriously than pure covariance contamination, i.e., observations with the same
mean but different covariance structure. Thus, we focus on mean contamination, i.e., outliers, in
the study of the resistance of the level. In one or both samples, mj out of nj observations were
replaced by observations that have mean function μcont

j instead of μj and the same covariance
structure as the original distribution. We consider various distances of the contamination distribu-
tion from the central distribution and various contamination proportions, as indicated in Tables 1
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Table 1. Empirical rejection probabilities (%) at the nominal level α = 5% under the null
hypothesis. Samples of size n1 = n2 = 50 are contaminated by m1, m2 observations with
mean functions μcont

1 , μcont
2 , respectively, and the same covariance structure as the central

distribution. Estimates are based on 2000 simulation runs
Normal t5 Uniform

m1 μcont
1 (t) m2 μcont

2 (t) L2 Spatial L2 Spatial L2 Spatial

0 0 7·1 5·0 5·4 5·3 7·8 4·6
5 1 5 1·5 − 3 sin(π t) 9·2 6·6 8·2 6·4 10·0 4·6
5 1·5 5 1·5 − 3 sin(π t) 14·4 6·4 14·6 6·8 14·6 4·6
5 2·5 5 1·5 − 3 sin(π t) 22·9 6·0 23·0 7·2 23·0 5·1
5 1 5 2 − 4 sin(π t) 11·2 7·2 10·3 7·7 11·7 5·2
5 1·5 5 2 − 4 sin(π t) 18·8 7·2 19·8 7·8 20·0 5·4
5 2·5 5 2 − 4 sin(π t) 30·4 7·2 32·4 8·2 30·8 6·4
5 1 5 2·5 − 5 sin(π t) 14·1 8·2 14·0 8·0 15·0 6·4
5 1·5 5 2·5 − 5 sin(π t) 25·9 8·2 25·4 8·4 27·8 6·5
5 2·5 5 2·5 − 5 sin(π t) 41·8 8·3 46·4 9·0 42·4 7·2
5 1 0 7·4 6·0 6·4 5·4 8·6 5·0
5 1·5 0 12·6 5·9 11·2 5·7 13·4 4·6
5 2·5 0 19·0 6·1 17·8 6·0 17·8 4·7
0 5 1·5 − 3 sin(π t) 9·0 6·0 7·2 6·6 9·8 5·6
0 5 2 − 4 sin(π t) 12·3 6·8 10·8 7·7 13·0 6·6
0 5 2·5 − 5 sin(π t) 16·4 7·6 14·4 8·7 16·8 7·6

Table 2. Empirical rejection probabilities (%) at the nominal level
α = 5% under the null hypothesis. Samples of size n1 = n2 = 50
are contaminated by m1, m2 observations with mean functions
μcont

1 (t)= 1·5, μcont
2 (t)= 2 − 4 sin(π t), respectively, and the same

covariance structure as the central distribution. Estimates are based
on 2000 simulation runs

m1 = m, m2 = 0 m1 = 0, m2 = m m1 = m2 = m
m L2 Spatial L2 Spatial L2 Spatial

0 7·1 5·0 7·1 5·0 7·1 5·0
1 7·0 5·4 6·7 5·1 7·2 5·6
2 6·8 5·0 7·5 5·4 7·8 5·6
3 6·9 5·3 8·7 5·6 8·4 6·2
4 8·4 6·2 10·7 6·2 11·2 6·4
5 12·6 5·9 12·3 6·8 18·8 7·2
6 24·8 6·5 14·8 7·5 39·2 8·1
7 57·8 7·4 17·2 8·6 71·6 10·2
8 89·2 7·9 20·8 9·2 93·0 17·6
9 99·0 11·9 24·7 11·4 99·0 28·2

10 99·8 18·4 28·2 13·6 100·0 42·7

and 2. We consider only atypical observations that are not very far from the central distribution.
These are the most insidious because they are often hidden in the main, apparently typical part
of the dataset, do not stand out and thus are not easily identified visually, yet they often have a
devastating impact on the behaviour of the nonresistant test. To illustrate this, we plot in Fig. 1 typ-
ical simulated samples with m1 = 5, μcont

1 (t)= 1·5 and m2 = 5, μcont
2 (t)= 2 − 4 sin(π t). When

looking at the plots, one would be unable to identify atypical observations, if they were not high-
lighted. Visually, many of them do not seem to be very different from most curves, whereas some
curves from the central distribution could be considered unusual.
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Fig. 1. Simulated contaminated samples. (a) Samples with m1 = 5 atypical observations with
μcont

1 (t)= 1·5; (b) Samples with m2 = 5 atypical observations with μcont
2 (t)= 2 − 4 sin(π t).

Atypical obsevations plotted in bold.

Table 1 shows that the proposed spatial test is much more resistant to contamination than the
L2-type test. For instance, notice that for m1 = m2 = 5, i.e., 10% contamination of both samples,
the level of the spatial test in all situations considered is only slightly inflated, while the actual
level of the L2-type test exceeds 40%. Similarly, if one of the samples contains five atypical
observations and the other is not contaminated, i.e., 10% contamination of one sample with 5%
contamination overall, the spatial test rejects with probability close to the nominal level, while the
level of the L2-type test is as high as 19%. As the magnitude of atypical observations increases,
the true level of the L2 test, unlike that of the spatial one, increases dramatically. Comparing
the behaviour of the tests across the various coefficient distributions, we observe no important
differences. The higher resistance of the spatial method is also documented in Table 2, where the
dependence of the level on the amount of contamination is studied for Gaussian data. The spatial
procedure can tolerate much more contamination than can the L2-type method.

Now we focus on the behaviour of the tests under alternatives. We consider five alternative
scenarios. Under all of them, the parameters of the distribution of the first sample are λ1k = k−3

and ν1k = (2/5)k . The parameters of the second sample are as follows. Under scenario I, we have
λ2k = 1·6λ1k and ν2k = 1·6ν1k (k = 1, . . . , 10), so the samples differ only in scale, their covari-
ance structure is otherwise the same. Under scenario II, we use λ21 = 1·5, ν21 = 0·8 and λ2k = λ1k

and ν2k = ν1k (k = 2, . . . , 10), so the covariance operators differ in the two leading eigenvalues,
which however correspond to the same eigenfunctions. Scenario III has λ2k = λ1k (k = 1, . . . , 10)
and ν21 = 0·2, ν22 = 0·35 and ν2k = ν1k (k = 3, . . . , 10); here the difference is on the second and
third eigenvalues whose corresponding eigenfunctions are the same but in the opposite order.
Under scenario IV, we set λ22 = λ13, λ23 = λ12, ν22 = ν13, ν23 = ν12 and λ2k = λ1k , ν2k = ν1k

(k /∈ {2, 3}), so the difference occurs further down in the spectrum; eigenfunctions with indices
3, 4, 5, 6 are permuted, the leading two eigen-elements do not differ. Under scenario V, we use
λ2k = λ1k , ν2k = ν1k and γ2k = δ2k = 0·15 (k = 1, . . . , 10); in this case, the whole eigenbases are
different but the eigenvalues remain the same in both samples.

First, we compare the power of the proposed spatial method with the L2-type method for sam-
ples without contamination. Table 3 shows that in most cases the power of the spatial test is lower
than the power of the L2-type test for distributions with light tails. The lower efficiency of the
spatial method is the price we pay for its increased resistance. Both methods have comparable
power in the heavy tailed case under most scenarios. Under scenario IV the spatial method outper-
forms the L2-type method. This is due to the automatic selection of K : for instance in the normal
case, for the L2-type test K equals 3 in 91 percent of cases while, for the spatial test, K equals 4
in 96 percent of cases; as the covariance operators differ on the third to sixth eigen-elements, K
equal to 4 captures more of the difference.
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Table 3. Empirical rejection probabilities (%) at the nom-
inal level α = 5% under various alternative scenarios for
samples of size n1 = n2 = 50 without contamination. Esti-

mates are based on 1000 simulation runs
Normal t5 Uniform

L2 Spatial L2 Spatial L2 Spatial

I 55 40 28 30 93 62
II 53 29 28 22 92 48
III 74 53 36 38 99 85
IV 38 61 24 53 49 73
V 76 58 53 51 96 72

Table 4. Empirical rejection probabilities (%) of the spatial test
at the nominal level α = 5% under various alternative scenarios
for samples of size n1 = n2 = 50 contaminated by m1,m2 atypical

observations. Estimates are based on 1000 simulation runs
Contamination m1 m2 I II III IV V
configuration

0 0 40 29 53 61 58

A 5 5 12 16 57 64 59
5 0 34 25 54 62 58
0 5 15 16 56 63 61

B 5 5 29 22 36 39 55
5 0 33 28 46 74 55
0 5 40 28 49 34 57

C 5 5 24 18 34 39 52
5 0 32 22 43 50 62
0 5 31 24 43 49 48

Next, we investigate the impact of contamination on the power of the spatial test; we do not
study the L2-type test as we have seen before that its level is unreliable for contaminated data. The
goal is to study if and how contamination can decrease the power. Similarly to the null scenario,
here we also observed that mean contamination usually increases the rejection probability. There-
fore, it is more interesting to contaminate data with curves with atypical covariance structure. We
experimented with many configurations of atypical observations such that it is difficult to identify
them visually and found that often even covariance contamination increases the rejection proba-
bility. Nevertheless, we were able to find some configurations for which we observed a decrease
of the power in some situations. The central distributions follow the same scenarios I–V as before
with normally distributed coefficients. Contamination configurations are as follows. Under con-
figuration A, the contamination distribution has λcont

1k = 1·4λ1k , νcont
1k = 1·4ν1k , λcont

2k = 0·25λ2k

and νcont
2k = 0·25ν2k (k = 1, . . . , 10), other parameters of the contamination distribution are the

same as for the central distribution. Under configuration B, we set λcont
1k = 0·3λ1k and λcont

2k =
0·3λ2k (k = 1, . . . , 10), νcont

1k = 0·3ν1k and νcont
2k = 0·3ν2k (k = 3, . . . , 10), and νcont

11 = νcont
21 = 1

and νcont
12 = νcont

22 = 0·9, while other parameters remain unchanged. Under configuration C, atyp-
ical observations in the first sample follow the central distribution of the second sample and
atypical observations in the second sample follow the central distribution of the first sample.

The simulation results are presented in Table 4. We report only configurations with some
detrimental effect on the power, while many configurations not reported here do not have such
an effect. Under configuration A, we can see a decrease of the rejection probability for scenar-
ios I and II. Configuration A was specifically designed to decrease the power under scenario I:
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Fig. 2. Projection of DNA minicircle curves on the first principal plane spanned by the second
and third principal axis of inertia. Atypical observations plotted in bold.

atypical observations deviate from the central distribution against the direction of the alterna-
tive; specifically, both the central and contamination distributions have proportional covariance
operators but in the opposite direction. A similar phenomenon is seen for scenario II, where the
directions of the alternative and of the contamination distribution are in a similar relationship.
On the other hand, we observe no important effect of contamination of type A under scenarios
III–V because in these cases atypical observations do not go against the alternative. Under con-
figuration B, the power decreases mainly for scenarios III and IV. Configuration B downweights
components other than the first and second cosine component, where it puts higher weight equal
for both samples. As these are components carrying an important part of the difference between
the covariances, one expects some decrease of the rejection probability, especially under sce-
narios III and IV. Under configuration C, the two samples are partly mixed, i.e., one sample
contaminates the other sample and vice versa. This blurs the difference and somewhat decreases
the power under some of the scenarios.

4. AN ILLUSTRATION: DNA MINICIRCLE DATA

We illustrate the proposed methods on a dataset consisting of reconstructed three-dimensional
electron microscope images of loops called minicircles obtained from short strands of DNA
(Amzallag et al., 2006). The dataset contains 99 DNA minicircles of two types, TATA, 65 obser-
vations, and CAP, 34 observations, with identical base-pair sequences, except for a short sub-
sequence where they differ. The main question is whether this difference affects the flexibility
properties of the DNA minicircles. One way to formalize the flexibility properties is through the
fluctuation pattern around the mean minicircle shape. This naturally leads one to consider two-
sample second-order functional comparisons. DNA minicircles are closed curves in R3. In the
original dataset, each curve was randomly rotated and shifted in R3 and had no starting point and
no orientation. In Panaretos et al. (2010), an alignment procedure based on the moment of inertia
tensor was used as a means of alignment of the curves in a common coordinate system. Figure 2
shows projections of aligned curves on the plane spanned by the two principal axes of inertia.

Using inverse weights induced by Gervini’s (2008) spatial median, Panaretos et al. (2010)
identified five unusual curves, possible outliers, and removed them from the analysis of the
covariance structure. These atypical curves, plotted in thick lines in Fig. 2, are visibly differ-
ent from the remaining curves. Panaretos et al. (2010) analysed the data without the atypical
observations using a test comparing empirical covariance operators under the assumption that
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the curves are Gaussian. Under this assumption, they observed significant differences at the 5%
level. These differences were highly significant with a numerically zero p-value, when the com-
parison was restricted to the eigenvalues of the covariance operators; the corresponding empirical
eigenfunctions suggested that the eigenfunction structure of the two operators was very similar.

Taking advantage of the results in the present paper, we may run an L2-type test without
assuming normality. When doing so, with the atypical observations still removed, the p-value of
the L2-type score test of the equality of covariance operators equals 0·023 with the dimension
of the subspace on which the test operator is projected equal to K = 6, suggesting persistence
of the effect, independently of a Gaussian assumption. Instead of removing apparently atypical
observations manually, one might also wish to run an analysis on the complete dataset. However,
the performance of L2-type procedures was seen to be highly unstable in the presence of atypical
observations, such as the ones in the present dataset, see Tables 1 and 2. By contrast, the spa-
tial dispersion test was seen to maintain a level close to nominal in our simulations, especially
in outlier scenarios similar to the one in the minicircle data. There may be further influential
observations lurking in the sample. For this reason, we applied the score test based on the spa-
tial dispersion operator, using the full minicircle dataset. In contrast to the other procedures, this
yielded the p-value 0·353 indicative of a lack of significant differences in the spatial dispersions.
The value of K was selected as the minimal number of components needed to explain 80% of
the trace of the underlying null dispersion estimator. No further outliers were detected by the
resistant test. The discordance between the L2 and spatial tests is probably due to the reduced
efficiency of the resistant procedure when the two samples share common eigenfunctions, as
seems to be the case in the minicircle dataset; recall that the dispersion operator shares the same
eigenfunctions with the covariance operator, possibly up to order. It was seen in our simulations
that, in general, though the level of the spatial test was conserved, in the presence of influential
observations its power was appreciably reduced when differences were only in the eigenvalues,
i.e., under scenarios I and II in Table 4, as compared to scenarios where differences exist between
the eigenfunctions, too, i.e., scenarios III–V in Table 4. Moreover the present framework does
not immediately yield a special version of the test that would concentrate only on the eigenvalue
structure; the complete structure of the operator is taken into account.
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APPENDIX

Computation

Assume that the observations Xi ∈H are represented as linear combinations of some known fixed basis
elementsψ j , that is, Xi =∑p

j=1 ξi jψ j . This representation is usually obtained by a least squares procedure,
possibly with smoothing, from some form of discrete original observations of Xi . The exact form of the
original data depends on the particular application. For instance, when H is a functional, L2, space indexed
by one-dimensional time, the original data usually consist of observations Xi (tk) (k = 1, . . . ,m) for a grid
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of points t1 < · · ·< tm . Now suppose that the original data are observed discretely but exactly, i.e., without
noise; later we explain how to handle noisy discrete observations.

The methods proposed in this paper have the advantage that all required quantities and operations can
be expressed in terms of basis coefficients; thus, from the computational point of view the task is mul-
tivariate. To estimate the centre, it is enough to find the vector of coefficients mj in its basis expansion
μ=∑p

j=1 mjψ j . Similarly, for the dispersion operator, we need to find the matrix of coefficients R j j ′ in
the expansion

R =
p∑

j=1

p∑
j ′=1

R j j ′ψ j ⊗ ψ j ′ .

For simplicity, we first assume that the basis ψ1, . . . , ψp is orthonormal. Then, the norm in the objective
function for μ is simply the norm of the coefficient vector, i.e., ‖Xi − μ‖2 = ‖ξi − m‖2 =∑p

j=1(ξi j−
mj )

2, and the score operator G(P̂;μ) is equivalent to the p-vector

1

n

n∑
i=1

ρ ′(‖ξi − m‖)
‖ξi − m‖ (m − ξi ).

The Hilbert–Schmidt norm in the objective function for R is the Frobenius norm of the coefficient matrix,
i.e.,

‖P(Xi ;μ)− R‖2 = ‖(ξi − m)(ξi − m)T − R‖2 =
p∑

j=1

p∑
j ′=1

{(ξi j − mj )(ξi j ′ − m j ′)− R j j ′ }2,

and the score operator G (P̂;R, μ) is equivalent to the p × p matrix

1

n

n∑
i=1

ρ ′{‖(ξi − m)(ξi − m)T − R‖}
‖(ξi − m)(ξi − m)T − R‖ {R − (ξi − m)(ξi − m)T}.

For the two-sample test, the operator B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) and the basis elements Ul for dimension
reduction are equivalent to matrices, and the score components Sl are computed as their inner products.
Similarly, all quantities involved in the covariance matrix of the score vector are computed in a multivariate
setting. When the basis ψ1, . . . , ψp is not orthonormal, one simply multiplies each coefficient vector ξi by
the matrix A1/2 where A has entries a j j ′ = 〈ψ j , ψ j ′ 〉, and performs all computations, i.e., estimation of the
centre and dispersion, eigen-decomposition and the two-sample test, with these transformed multivariate
inputs. This corresponds to switching from the original basis to the orthonormal basis A−1/2(ψ1, . . . , ψp)

T.
If needed, the centre and the eigenfunctions can then be obtained in the original basis by multiplying their
coefficient vectors by A−1/2 and in the dispersion by multiplying its coefficient matrix by A−1/2 from both
sides. We refer to Ramsay & Silverman (2005, § 8.4.2) for a detailed explanation of a similar problem of
computing functional principal components from coefficients with respect to a general non-orthonormal
basis.

To estimate the centre and dispersion one solves the corresponding multivariate optimization problem.
If ρ(u)= u2, the solutions are the sample mean and covariance matrix of the coefficient vectors; other-
wise an iterative procedure is used. We use the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton method
implemented in the R package (R Development Core Team, 2012) in the function optim, initialized by the
componentwise median of ξi for the centre and the componentwise median of (ξi − m)(ξi − m)T for the
dispersion. This numerical procedure was reliable and reasonably fast in our experiments. This is in agree-
ment with a detailed study of the numerical performance of various algorithms for the spatial median
presented by Fritz et al. (2012).

In functional settings one can directly use the functional values on a grid of points instead of comput-
ing with basis coefficients. The basis approach is slightly more general than the discretization approach
because it can be used for any separable Hilbert space, not only a functional space, and in the functional
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case it does not require a common grid for all functions. Standard software for functional data analysis,
such as the fda package in R, uses basis representations of data.

In many applications, the original functional values on a grid of points are observed with noise. In such
situations, some degree of smoothing is necessary for the reconstruction of the underlying functional data.
Ramsay & Silverman (2005, Chapter 5) describe how roughness penalties can be used to compute the basis
coefficients of the functions. After this preliminary step, our methods can be applied to the reconstructed
curve, i.e., their basis coefficients, as described above.

In the case of the spatial median, Gervini (2008, pp. 589–590) proposes an alternative method to deal
with noise in discretely observed functions. Rather than on denoising and reconstructing the curves, his
procedure is based on removing the bias, which is due to the errors, in the norm in the objective function
with the help of a consistent estimate of the variance of the errors. He uses this idea in connection with
numerical integration on a grid, but it can be adapted to the basis approach as well. However, this method
is less practical for second-order problems, as one would also need to estimate higher order moments of
the errors and use convoluted formulae to remove the bias from the norm in the objective functional.

Technical material

We now derive several key expressions pertaining to the assumptions, statement and discussion of
Theorem 1. We use the script font, e.g., D , J , I , for linear operators on H, i.e., linear mappings H→H,
the fraktur font, e.g., D, J, I, H, W, for linear operators on Hilbert–Schmidt operators on H, i.e., linear
mappings HS(H,H)→ HS(H,H), and the blackboard bold font, e.g., D, J, H, Q, for linear operators
from H to Hilbert–Schmidt operators on H, i.e., linear mappings H→ HS(H,H).

First, we introduce certain derivatives in the Fréchet sense as follows. Denote by I and I the identity
operators on H and HS(H,H), respectively. The derivative

D(P;μ)= ∂

∂μ
G(P;μ)= EP

[
ρ ′(‖X − μ‖)

‖X − μ‖ I +
{
ρ ′′(‖X − μ‖)

‖X − μ‖2
− ρ ′(‖X − μ‖)

‖X − μ‖3

}
P(X;μ)

]
(A1)

is a linear mapping from H to H. The derivative

D(P;R, μ)= ∂

∂R
G (P;R, μ)= EP

(
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ I

+
[
ρ ′′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖2
− ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖3

]
P(X;R, μ)

)
, (A2)

where we denote P(x;R, μ)= {P(x;μ)− R} ⊗ {P(x;μ)− R}, is a linear mapping from HS(H,H)
to HS(H,H). We define

D(P;R, μ)= ∂

∂μ
G (P;R, μ), (A3)

which is a linear mapping from H to HS(H,H). To compute it, we first compute

Q(x;μ)= ∂

∂μ
P(x;μ).

We consider its value at some f ∈H, i.e., we investigate the operator Q(x;μ) f ∈ HS(H,H). This is done
through its coordinate representation as follows. For any g1, g2 ∈H, we have

〈g1, {Q(x;μ) f }g2〉 =
〈

g1,

[{
∂

∂μ
P(x;μ)

}
f

]
g2

〉
=
{
∂

∂μ
〈g1,P(x;μ)g2〉

}
f

=
{
∂

∂μ
(〈x − μ, g1〉〈x − μ, g2〉)

}
f = −(〈x − μ, g2〉g1 + 〈x − μ, g1〉g2) f

= −〈x − μ, g2〉〈g1, f 〉 − 〈x − μ, g1〉〈g2, f 〉.

(A4)
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Then, the derivative of G (P;R, μ) with respect to μ evaluated at f ∈H is

D(P;R, μ) f = − EP

[
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ Q(X;μ) f

]

− EP

([
ρ ′′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖2
− ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖3

]

× 〈P(X;μ)− R,Q(X;μ) f 〉{P(X;μ)− R}
)
.

We set

D0(P1,P2, a;R, μ1, μ2)= aD(P1;R, μ1)+ (1 − a)D(P2;R, μ2),

D1(P1,P2, a;R, μ1, μ2)= aD(P1;R, μ1)− (1 − a)D(P2;R, μ2).

Next, using the notation f ⊗2 = f ⊗ f for f ∈H and A ⊗2 = A ⊗ A for A ∈ HS(H,H), we define

J (P;μ)= EP

[{
ρ ′(‖X − μ‖)

‖X − μ‖ (μ− X)− G(P;μ)
}⊗2

]

J(P;R, μ)= EP

([
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ {R − P(X;μ)} − G (P;R, μ)

]⊗2
)

and

J(P;R, μ)= EP

([
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ {R − P(X;μ)} − G (P;R, μ)

]

⊗
{
ρ ′(‖X − μ‖)

‖X − μ‖ (μ− X)− G(P;μ)
})

.

Next, we denote

H1(P1,P2, a;R, μ1, μ2)= I − D1(P1,P2, a;R, μ1, μ2)D0(P1,P2, a;R, μ1, μ2)
−1,

H1(P1,P2, a;R, μ1, μ2)= H1(P1,P2, a;R, μ1, μ2)D(P1;R, μ1)D(P1;μ1)
−1,

H2(P1,P2, a;R, μ1, μ2)= I + D1(P1,P2, a;R, μ1, μ2)D0(P1,P2, a;R, μ1, μ2)
−1,

H2(P1,P2, a;R, μ1, μ2)= H2(P1,P2, a;R, μ1, μ2)D(P2;R, μ2)D(P2;μ2)
−1,

where I stands for the identity operator on HS(H,H). Finally, we set

W(P1,P2, a;R, μ1, μ2)= aW1(P1,P2, a;R, μ1, μ2)+ (1 − a)W2(P1,P2, a;R, μ1, μ2), (A5)

where

W1(P1,P2, a;R, μ1, μ2)= H1(P1,P2, a;R, μ1, μ2)J(P1;R, μ1)H1(P1,P2, a;R, μ1, μ2)
∗

− H1(P1,P2, a;R, μ1, μ2)J(P1;R, μ1)H1(P1,P2, a;R, μ1, μ2)
∗

− H1(P1,P2, a;R, μ1, μ2)J(P1;R, μ1)
∗H1(P1,P2, a;R, μ1, μ2)

∗

+ H1(P1,P2, a;R, μ1, μ2)J (P1;R, μ1)H1(P1,P2, a;R, μ1, μ2)
∗

with ∗ denoting adjoint operators, and W2(P1,P2, a;R, μ1, μ2) is defined analogously with H2,H2 in
place of H1,H1, respectively, and P2 instead of P1 in J, J,J .



832 DAVID KRAUS AND VICTOR M. PANARETOS

REFERENCES

ADLER, R. J. (1990). An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes.
Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Hayward: Institute of Mathematical
Statistics.

AMZALLAG, A., VAILLANT, C., JACOB, M., UNSER, M., BEDNAR, J., KAHN, J. D., DUBOCHET, J., STASIAK, A. &

MADDOCKS, J. H. (2006). 3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-
electron microscopy. Nucleic Acids Res. 34, e125.

ANDERSON, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–53.
BALI, L., BOENTE, G., TYLER, D. E. & WANG, J.-L. (2012). Robust functional principal components: A projection-

pursuit approach. Ann. Statist. 39, 2852–82.
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