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ABSTRACT
We perform a series of high-resolution N-body simulations of cosmological structure for-
mation starting from Gaussian and non-Gaussian initial conditions. We adopt the best-fitting
cosmological parameters from the third- and fifth-year data releases of the Wilkinson Mi-
crowave Anisotropy Probe, and we consider non-Gaussianity of the local type parametrized
by eight different values of the non-linearity parameter f NL. Building upon previous work
based on the Gaussian case, we show that, when expressed in terms of suitable variables,
the mass function of friends-of-friends haloes is approximately universal (i.e. independent
of redshift, cosmology and matter transfer function) to good precision (nearly 10 per cent)
also in non-Gaussian scenarios. We provide fitting formulae for the high-mass end (M >

1013 h−1 M�) of the universal mass function in terms of f NL, and we also present a non-
universal fit in terms of both f NL and z to be used for applications requiring higher accuracy.
For Gaussian initial conditions, we extend our fit to a wider range of halo masses (M > 2.4 ×
1010 h−1 M�) and we also provide a consistent fit of the linear halo bias. We show that, for
realistic values of f NL, the matter power spectrum in non-Gaussian cosmologies departs from
the Gaussian 1 by up to 2 per cent on the scales where the baryonic-oscillation features are
imprinted on the two-point statistics. Finally, using both the halo power spectrum and the
halo-matter cross spectrum, we confirm the strong k-dependence of the halo bias on large
scales (k < 0.05 h Mpc−1) which was already detected in previous studies. However, we find
that commonly used parametrizations based on the peak-background split do not provide an
accurate description of our simulations which present extra dependencies on the wavenumber,
the non-linearity parameter and, possibly, the clustering strength. We provide an accurate fit
of the simulation data that can be used as a benchmark for future determinations of f NL with
galaxy surveys.

Key words: methods: N-body simulations – galaxies: clusters: general – galaxies: haloes –
cosmology: theory – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

The detection of temperature anisotropies in the cosmic microwave
background (CMB) provided evidence that large-scale structure
formation in the Universe was seeded by small density fluctuations
generated at early times. The statistical properties of these seeds are
usually modelled with a Gaussian random field. Historically, the
Gaussian approximation was introduced for mathematical conve-
nience. In the absence of a solid model for the generation of density
fluctuations, the Gaussian hypothesis was accepted on the basis of
the central limit theorem (e.g. Bardeen et al. 1986 and references
therein). The advent of inflationary models provided further support

�E-mail: annalisa@phys.ethz.ch

for Gaussianity. Small-amplitude curvature perturbations generated
during a standard inflationary phase (single field, slow roll) are very
nearly Gaussian distributed (e.g. Bartolo et al. 2004 and references
therein).

However, many variants of the inflationary scenario predict
appreciable levels of primordial non-Gaussianity. In terms of
Bardeen’s gauge-invariant potential, �, most of these models (but
not all, see e.g. Creminelli, Senatore & Zaldarriaga 2007) can be
reduced to the form:

� = φ + fNL(φ2 − 〈φ2〉) , (1)

where φ is an auxiliary Gaussian random field and f NL quantifies
the amount of primordial non-Gaussianity. On subhorizon scales,
� = −�, where � denotes the usual peculiar gravitational po-
tential related to density fluctuations via Poisson’s equation. The
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parameter f NL thus has the same sign as the skewness of the
density probability distribution function. This local form of non-
Gaussianity (note that equation 1 applies in configuration space)
can be obtained from a truncated expansion of the effective infla-
ton potential (Salopek & Bond 1990; Falk, Rangarajan & Srednicki
1993; Gangui et al. 1994). The parameter f NL thus encodes infor-
mation about the inflaton physics. Standard inflation gives |f NL| �
1 (Salopek & Bond 1990; Maldacena 2003). However, even in
this case, the non-linear evolution of perturbations on superhori-
zon scales yields an observable f NL of order unity (which, in reality,
should be scale and redshift dependent; Bartolo, Matarrese & Riotto
2005; see also Pyne & Carroll 1996). Large values of |f NL| naturally
arise in multifield inflation models (e.g. Linde & Mukhanov 1997;
for an extensive review see Bartolo et al. 2004) and even in cyclic
or ekpyrotic models of the universe with no inflation (Creminelli
& Senatore 2007; Buchbinder, Khoury & Ovrut 2008; Lehners &
Steinhardt 2008).

Observational constraints on f NL have been derived study-
ing three-point statistics of temperature fluctuations in the CMB
(Komatsu & Spergel 2001). The recent 5-yr data from the Wilkin-
son Microwave Anisotropy Probe (WMAP) give −9 < f NL < 111
at the 95 per cent confidence level (Komatsu et al. 2008). Paral-
lel studies on the same data set give −178 < f NL < 64 using
Minkowski functionals (Komatsu et al. 2008) and −8 < f NL <

111 from wavelet decomposition (Curto et al. 2008). Some recent
re-analyses of earlier 3-yr WMAP data claim substantial evidence
for positive f NL: 27 < f NL < 147 from the bispectrum of tempera-
ture fluctuations (Yadav & Wandelt 2008) and 23 < f NL < 75 from
their one-point distribution function (Jeong & Smoot 2007). On the
other hand, a study of Minkowski functionals on the 3-yr data gives
−70 < f NL < 91 (Hikage et al. 2008). Higher quality data are
needed to improve these constraints. The upcoming Planck satellite
should be able to reduce the uncertainty in f NL to ∼5 (Komatsu &
Spergel 2001).

Alternatively, one might use observational signatures of primor-
dial non-Gaussianity imprinted in the large-scale structure (LSS) of
the Universe (e.g. Moscardini et al. 1991). Ideally, one would like to
use high-redshift probes as the non-linear growth of density fluctu-
ations quickly superimposes a strong non-Gaussian signal on to the
primordial one so that the latter might then be difficult to recover.
For instance, the large-scale distribution of neutral hydrogen in
the era between hydrogen recombination and reionization encodes
information on f NL (Pillepich, Porciani & Matarrese 2007). This
could be probed by detecting the redshifted hyperfine 21-cm transi-
tion with very low-frequency radio arrays from space. In principle,
an experiment of this kind can limit f NL to �f NL < 1 (Pillepich
et al. 2007, see also Cooray 2006). However, it is not clear yet
whether such an experiment will ever be possible due to technical
complexity and problematic foreground subtraction. At lower red-
shifts, f NL can be constrained probing the statistics of rare events, as
like as the mass function of galaxy groups and clusters (Matarrese,
Lucchin & Bonometto 1986; Matarrese, Verde & Jimenez 2000;
Koyama, Soda & Taruya 1999; Robinson & Baker 2000; Robinson,
Gawiser & Silk 2000; LoVerde et al 2008). Early attempts of using
cluster counts to constrain f NL have been rather inconclusive due
to low-number statistics (see e.g. Willick 2000; Amara & Refregier
2004 and references therein). Even though cluster-mass estimates
are still rather uncertain and massive objects are very rare, the ob-
servational perspectives look very promising. A number of galaxy
surveys encompassing large fractions of the observable Universe
are being planned [e.g. ground-based surveys as Dark Energy Sur-
vey (DES), Panoramic Survey Telescope & Rapid Response System

(PanSTARRS) and Large Synoptic Survey Telescope (LSST), and
the satellite missions EUCLID and Advanced Dark Energy Physics
Telescope (ADEPT)] and could potentially lead to solid measure-
ments of f NL (e.g. Carbone, Verde & Matarrese 2008; Dalal et al.
2008).

Primordial non-Gaussianity is also expected to modify the clus-
tering properties of massive cosmic structures forming out of rare
density fluctuations (Grinstein & Wise 1986; Matarrese et al. 1986;
Lucchin, Matarrese & Vittorio 1988; Koyama, Soda & Taruya
1999). Also in this case, however, the non-linear evolution of the
mass density generally superimposes a stronger signal than that gen-
erated by primordial non-Gaussianity on to the galaxy three-point
statistics. The galaxy bispectrum is thus sensitive to f NL only at high
redshift (Verde et al. 2000; Scoccimarro, Sefusatti & Zaldarriaga
2004; Sefusatti & Komatsu 2007).

Recently, Dalal et al. (2008) have shown analytically that pri-
mordial non-Gaussianity of the local type is expected to generate
a scale-dependent large-scale bias in the clustering properties of
massive dark-matter haloes. This is a consequence of the fact that
large and small-scale density fluctuations are not independent when
f NL �= 0. Similar calculations have been presented by Matarrese &
Verde (2008), Slosar et al. (2008), Afshordi & Tolley (2008) and
McDonald (2008). Numerical simulations by Dalal et al. (2008) are
in qualitative agreement with the analytical predictions confirm-
ing the presence of a scale-dependent bias. Using these analytical
models for halo biasing to describe the clustering amplitude of lu-
minous red galaxies (LRGs) and quasars from the Sloan Digital
Sky Survey (SDSS), Slosar et al. (2008) obtained −29 < f NL <

69 at the 95 per cent confidence level. This shows that LSS stud-
ies are competitive with CMB experiments to constrain primordial
non-Gaussianity but also calls for more accurate parametrizations
of the mass function and clustering statistics of dark-matter haloes
arising from non-Gaussian initial conditions.

Most of the analytic derivations of the non-Gaussian halo mass
function (e.g. Matarrese et al. 2000; LoVerde et al 2008) are based
on the extended Press–Schechter model (Press & Schechter 1974;
Bond et al. 1991) which, in the Gaussian case, is known to pro-
duce inaccurate estimates of halo abundance (Sheth & Tormen
1999; Jenkins et al. 2001). Similarly, the scale-dependent bias is
obtained either using the peak-background split model (Slosar et al.
2008) or assuming that haloes form from the highest linear den-
sity peaks (Matarrese & Verde 2008). Both techniques have lim-
ited validity in the Gaussian case (Jing 1998; Porciani, Catelan &
Lacey 1999; Sheth & Tormen 1999). In this paper, we test the ac-
curacy of the excursion-set model and the peak-background split in
the non-Gaussian case. This extends the previous studies of Kang,
Norberg & Silk (2007), Grossi et al. (2007) and Dalal et al. (2008)
for the halo mass function and of Dalal et al. (2008) for the halo bias
by exploring more realistic values for f NL with simulations of better
quality. In practice, we run a series of high-resolution N-body sim-
ulations where we follow the process of structure formation starting
from Gaussian and non-Gaussian initial conditions. The halo mass
function and bias extracted from the simulations are then compared
with the existing analytical models and used to build accurate fitting
formulae. These will provide a benchmark for future determinations
of non-Gaussianity with galaxy surveys.

The paper is organized as follows. In Section 2, we describe our
N-body simulations. In Sections 3–5, we present our results for
the halo mass function, the matter power spectrum and the halo
bias, respectively. In Section 6, we discuss the implications of our
results for the analysis by Slosar et al. (2008). Our conclusions are
summarized in Section 7.
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Table 1. Specifics of the N-body simulations.

Name f NL Npart Lbox Mpart Lsoft zstart Cosmology
(h−1 Mpc) (h−1 M�) (h−1 kpc)

1.750 +750 10243 1200 1.246 × 1011 20 50 WMAP5
1.500 +500 10243 1200 1.246 × 1011 20 50 WMAP5
1.250 +250 10243 1200 1.246 × 1011 20 50 WMAP5
1.80 +80 10243 1200 1.246 × 1011 20 50 WMAP5
1.27 +27 10243 1200 1.246 × 1011 20 50 WMAP5
1.0 0 10243 1200 1.246 × 1011 20 50 WMAP5

1.-27 -27 10243 1200 1.246 × 1011 20 50 WMAP5
1.-80 -80 10243 1200 1.246 × 1011 20 50 WMAP5

2.0 0 10243 1200 1.072 × 1011 20 50 WMAP3
2.750 +750 10243 1200 1.072 × 1011 20 50 WMAP3

3.0 0 10243 150 2.433 × 108 3 70 WMAP5
3.250 +250 10243 150 2.433 × 108 3 70 WMAP5

Table 2. Assumed cosmological parameters.

Name h σ 8 ns �m �b �	

WMAP3 0.73 0.76 0.95 0.24 0.042 0.76
WMAP5 0.701 0.817 0.96 0.279 0.0462 0.721

2 N- B O DY SI M U L AT I O N S

2.1 Specifics of the simulations

We use the lean version of the tree-PM code GADGET-2 (Springel
2005) kindly made available by Volker Springel to follow the for-
mation of cosmic structure in a flat 	 cold dark matter cosmology.
We run three different series of simulations (each containing 10243

collisionless particles) that differ in the adopted cosmology, box size
(and thus force softening length, Lsoft) and initial redshift (details
are summarized in Table 1). The assumed cosmological parameters
are listed in Table 2. For our series 1 and 3, they coincide with the
5-yr WMAP best estimates (Komatsu et al. 2008). The combined
3-yr WMAP+LSS results by Spergel et al. (2007) are instead used
for series 2.

We produce non-Gaussian initial conditions directly applying
equation (1) after having generated the Gaussian random field φ

with standard Fourier techniques. We consider eight values for the
parameter f NL: −80, −27, 0, +27, +80, +250, +500 and +750.
The first five are within the current constraints from CMB data
(Komatsu et al. 2008), while the three largest values are useful to
compare with previous work. Within each series of simulations,
we use the same set of random phases to generate the Gaussian
potential φ. This facilitates the comparison between different runs
by minimizing sample variance.

The linear matter transfer function, T(k), is computed using the
LINGER code (Bertschinger 2001) and is applied after creating the
non-Gaussian potential � in equation (1). Particle displacements
and velocities at zstart are generated using the Zel’dovich approx-
imation (Zel’dovich 1970). A critical discussion of this choice is
presented in the Appendix.

Particle positions and velocities are saved for 30 time-steps loga-
rithmically spaced in (1 + z)−1 between z = 10 and 0. Dark-matter
haloes are identified using the standard friends-of-friends (FOF)
algorithm with a linking length equal to 0.2 times the mean inter-
particle distance. We only considered haloes containing at least 100
particles.

Our first two series of simulations only include large periodic
boxes covering a volume of (1200 h−1 Mpc)3 where we can study
haloes with masses ranging from 1013 up to 1015 h−1 M�. These
simulations will be used to analyse both the mass function and
the bias of dark-matter haloes. On the other hand, the third series
includes simulations covering a volume of (150 h−1 Mpc)3. They
will be used to study the mass function and the bias of low-mass
haloes with 1010 < M < 1013 h−1 M�.

2.2 A note on the definition of f NL

The definition of f NL given in equation (1) depends on the cosmic
epoch at which it is applied. The reason for this time dependence
is that both potentials � and φ decay with time proportionally
to g(a) = D(a)/a with D(a) the linear growth factor of density
fluctuations and a the Robertson–Walker scale factor.

In this paper, we define f NL by applying equation (1) at early
times, namely at z = ∞. Other authors have adopted different
conventions. Grossi et al. (2007) use the linearly extrapolated fields
at z = 0 to define f NL. Therefore, their values of the f NL parameter
need to be divided by the factor g(∞)/g(0) to match ours. In the
WMAP5 cosmology, g(∞)/g(0) 
 1.3064. On the other hand, Dalal
et al. (2008) apply equation (1) at zstart, the redshift at which they
generate the initial conditions for the simulations. This agrees with
our definition to better than 0.01 per cent.

The sign convention for the non-linearity parameter might possi-
bly generate further ambiguity. In our simulations, positive values
f NL correspond to positive skewness of the mass-density probabil-
ity distribution function. The same convention has been adopted by
Grossi et al. (2007), Kang et al. (2007) and Dalal et al. (2008).

3 THE HALO MASS FUNCTI ON

One of the long-standing efforts in cosmology is to determine the
mass function of dark matter haloes dn/dM(M , z) – i.e. the number
of haloes per unit volume per unit mass at redshift z – from the
statistical properties of the linear density field. Analytical work
has suggested that, when expressed in terms of suitable variables,
the functional form of dn/dM should be universal to changes in
redshift and cosmology (Press & Schechter 1974; Bond et al. 1991;
Sheth & Tormen 1999). N-body simulations have shown that this is
approximately true when structure formation is seeded by Gaussian
perturbations (Jenkins et al. 2001; Evrard et al. 2002; White 2002;
Warren et al. 2006; Tinker et al. 2008).

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 191–206



194 A. Pillepich, C. Porciani and O. Hahn

Figure 1. The universal mass function in our Gaussian simulations Run
1.0 (triangles), Run 2.0 (squares) and Run 3.0 (circles) is compared with a
number of fitting formulae listed in Table 3. Data are equispaced in ln σ−1

and only bins containing more than 30 haloes are shown. The vertical dotted
lines indicate the upper mass limits used in Jenkins et al. (2001), Reed et al.
(2003), and Warren et al. (2006). The corresponding low-mass limits are all
equal or smaller than ln σ−1 = −1.2. The lower panel shows the residuals
�f /f = [ (data − fit)/data ] between our data points and the different
fitting functions. Here, we only show data with a Poisson uncertainty better
than 5 per cent. For clarity only outputs from Run 1.0 (triangles, ln σ−1 >

−0.3) and Run 3.0 (circles, ln σ−1 < −0.3 ) are plotted.

Following these studies, we describe the halo abundance in our
simulations through the following functional form

dn

dM
(M, z) = f (σ )

ρ̄m

M

d ln[σ−1(M, z)]

dM
. (2)

where ρ̄m is the mean background matter density today, and σ 2(M ,
z) is the variance of the linear density field

σ 2(M, z) = 1

2π2

∫ ∞

0
k2 Plin(k, z) W 2(k, M) dk, (3)

with P lin(k, z) the corresponding power spectrum and W 2(k, M)
some window function with mass resolution M (here top-hat in real

space). The validity of equation (2) has been widely tested against
numerical simulations and useful parametrizations for f (σ ) have
been provided starting from Gaussian initial conditions (Sheth &
Tormen 1999; Jenkins et al. 2001; Warren et al. 2006). These fitting
functions have an accuracy ranging from 5 to 20 per cent depend-
ing on redshift, cosmology and the exact definition of halo masses.
Recently, Tinker et al. (2008) have detected deviations from univer-
sality in f (σ ): redshift-dependent corrections are needed to match
the mass function in simulations with an accuracy of 5 per cent. This
result is based on haloes identified with the spherical overdensity
algorithm. It is well known that the mass function of FOF haloes
shows a more universal scaling even though other halo finders might
be more directly linked to actual observables (Jenkins et al. 2001;
Tinker et al. 2008). Deviations from universality for FOF haloes
will be further discussed in Section 3.3. One should anyway keep
in mind that baryonic physics can cause 30 per cent deviations in
dn/dM with respect to the pure dark-matter case (Stanek, Rudd &
Evrard 2008).

3.1 Halo mass function from Gaussian initial conditions

The halo mass functions extracted from our Gaussian simulations
– Run 1.0 (triangles), Run 2.0 (squares) and Run 3.0 (circles) – are
presented in Fig. 1. The combination of different box sizes allows
us to cover the very wide range −1.2 < ln σ−1 < 1.1 which roughly
corresponds to the mass interval 2 × 1010 < M < 5 × 1015 h−1 M�
at z = 0. Fig. 1 has been obtained by combining data from snapshots
at redshifts z < 1.6. Note that, at a fixed redshift, larger values of
σ−1 correspond to higher masses. On the other hand, with increasing
the redshift, larger values of σ−1 are associated with a given halo
mass. Even though data points correspond to different redshifts and
cosmologies, they all form a well-defined sequence. This indicates
that the function f (σ ) is universal to good approximation. For
a given σ , outputs at a fixed redshift scatter around the universal
sequence by 10–15 per cent. A number of fitting formulae have been
proposed in the literature to parametrize this sequence. In Fig. 1,
we compare some of them (summarized in Table 3) with our data
points. Fractional deviations between models and data are shown
in the bottom panel. Barring the classical Press–Schechter result,
all the fitting formulae describe our data to better than 20 per cent.
The best agreement is found all over the mass range with Warren
et al. (2006) followed by Jenkins et al. (2001) which both show
deviations from our data at the 10 per cent level. The Sheth &
Tormen (1999) model also provides an accurate description of the
data for small halo masses, but tends to overestimate the abundance
of the most massive objects. On the other hand, the fit by Reed
et al. (2003) tends to underestimate the high-mass tail of the mass

Table 3. Widely used parametrizations for the halo mass function deriving from Gaussian initial conditions.

Acronym Reference Functional form Parameters

PS Press & Schechter (1974) fPS(σ ) =
√

2
π

δc
σ

exp
(
− δ2

c

2σ 2

)
δc = 1.686

ST Sheth & Tormen (1999) fST(σ ) = A

√
2a
π

δc
σ

exp
(
− a δ2

c

2σ 2

) [
1 +

(
σ 2

a δ2
c

)p]
A = 0.322, a = 0.707, p = 0.3

J Jenkins et al. (2001) fJ(σ ) = A exp
(−|ln σ−1 + B|p) A = 0.315, B = 0.61, p = 3.8

R Reed et al. (2003) fR(σ ) = fST(σ ) exp
(

−a

σ (cosh 2σ )b

)
a = 0.7, b = 5

W Warren et al. (2006) fW(σ ) = A
(
σ−a + b

)
exp

(
− c

σ 2

)
A = 0.7234, a = 1.625, b = 0.2538, c = 1.1982

T Tinker et al. (2008) fT(σ ) = A
[(

σ
b

)−a + 1
]

exp
(
− c

σ 2

)
Vary with halo overdensity
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function. Overall our findings are in good agreement with Heitmann
et al. (2006) and Lukić et al. (2007).

Following Warren et al. (2006) and Tinker et al. (2008), we fit
the outcome of the simulations with the function

f (σ ) =
[

D + B

(
1

σ

)A
]

exp

(
− C

σ 2

)
. (4)

The best-fitting parameters have been determined through χ 2 min-
imization using the Markov Chain Monte Carlo method, and read

A = 1.868 ± 0.019,

B = 0.6853 ± 0.0035,

C = 1.2266 ± 0.0049,

D = 0.2279 ± 0.0022 .

(5)

In terms of the parametrization given in Warren et al. (2006) and
reported in Table 3, this corresponds to (A, a, b, c) = (0.6853, 1.868,
0.3324, 1.2266). The fit in equation (5) describes our data set up to
deviations of a few per cent over the entire mass and redshift ranges
for Run 1.0 and Run 2.0, while it shows larger deviations (up to
nearly 10 per cent) towards the high-mass end of Run 3.0, (see
Fig. 1). It is important to remember, however, that Run 3.0 covers
a much smaller volume than the others and thus is more severely
affected by sample variance.

3.2 The universal halo mass function from non-Gaussian
initial conditions

Is the function f (σ−1) universal also in the non-Gaussian case?
This question is addressed in Fig. 2, where we show the output
of our main series of simulations at four redshifts (z = 0, 0.5, 1,
1.6) to test the scaling of the mass function in terms of σ−1. Only
bins containing at least 20 haloes are considered. Within a certain
tolerance, the halo mass functions at different masses and redshifts
all lie on the same curve for a given f NL. The scatter of the points at

Figure 2. Universality of the mass function arising from non-Gaussian
initial conditions. Colours refer to simulations with different values of f NL

as indicated by the labels. Symbols identify the redshift of the simulation
output from which the mass function has been calculated, namely z = 0
(triangles), 0.5 (circles), 1 (squares) and 1.6 (diamonds).

a fixed redshift around this curve roughly amounts to 10 per cent,
and it becomes smaller towards our largest values of f NL.

We thus generalize equation (2) to non-Gaussian initial condi-
tions by assuming that

dn

dM
(fNL,M, z) = f (fNL, σ )

ρ̄m

M

d ln[σ−1(M, z)]

dM
, (6)

and we provide a fitting formula for f (f NL, σ ). Given the similarity
to the Gaussian case, we still adopt the functional form given in
equation (4) but let the parameters A, B, C, D vary with f NL. The
best-fitting values have been determined in two steps. We first used
a Markov Chain Monte Carlo method to determine A, B, C, D at
fixed f NL through χ 2 minimization. The results suggest that the
f NL dependence for each parameter of the mass function can be
accurately described by polynomials of different orders. Eventually,
we used the data to derive the coefficients of these polynomials.

The degree of complexity required to fit the simulation data grows
considerably with increasing f NL. For −80 ≤ f NL ≤ 250 (a range
that fully encloses the values currently allowed by CMB studies),
the mass-function parameters in equation (4) are well approximated
by the linear relation

P(fNL) = p1 + p2fNL, for P = A, B, C, D. (7)

Table 4 lists the corresponding best-fitting parameters. The quality
of this fitting formula is assessed in the left-hand panel of Fig. 3,
where the mass function for the simulations with f NL = −80, −27,
0, +27, +80 and +250 is compared with the corresponding fit.
Residuals (shown in the bottom panel) are smaller than 5 per cent
all over the range −0.2 < ln σ−1 < 0.8 corresponding to the mass
interval 2 × 1013 < M < 2 × 1015 h−1 M� at z = 0.

On the other hand, equation (7) is not suitable to account for
values of f NL substantially larger than 250. To obtain an accurate fit
of the universal halo mass function over the range −80 ≤ f NL ≤
750, we had to consider polynomials up to fourth order in f NL,

P(fNL) = p1 + p2fNL + p3f
2

NL, for P = A, C (8)

and

P(fNL) = p1 + p2fNL + p3f
2

NL + p4f
3

NL + p5f
4

NL, for P = B, D.

(9)

The best-fitting values of the parameters above are listed in Table 5
while the corresponding functions are compared with the simulation
data in the right-hand panel of Fig. 3. Also in this case residuals are
smaller than 5 per cent for ln σ−1 < 0.8.

The universality of the fitting formula in equation (6) has been
further tested against our non-Gaussian simulation of the WMAP3
cosmology, Run2.750, which has not been used to determine the
best-fitting parameters. This blind check shows that, in the range
−0.27 < ln σ−1 < 0.94 (roughly corresponding to 1.6 × 1013 <

M < 2.2 × 1015 h−1 M� at z = 0), the provided fit reproduces the
mass function with an accuracy of 5 per cent.

We warn the readers against extending our fitting formulae be-
yond their range of validity, in particular at low halo masses. The
simulations of our main series resolve 1013 h−1 M� haloes with
100 particles. For f NL �= 0, our analytical formulae for the mass
function have been derived using only haloes that are more massive
than this limit. Moreover, since the high-mass tail of the mass func-
tion is enhanced (suppressed) for positive (negative) values of f NL

with respect to the Gaussian case, mass conservation requires that
the opposite effect is seen at lower masses. We have directly tested
the goodness of our fit towards the smaller masses using Run3.250
(which has a box size 8 times smaller than for the simulations in the
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Figure 3. Comparison between the halo mass function from our main series of simulations (triangles) and the corresponding fitting functions (lines). Values
−80 ≤ f NL ≤ 250 and the fit in equation (7) are considered in the left-hand panel. All the simulations and the polynomial fit in equations (8) and (9) are
shown in the right-hand panel. The lower panels show residuals �f /f = [(data − fit)/data] for data points with a statistical uncertainty which is smaller than
5 per cent.

Table 4. Best-fitting values for the linear co-
efficients of the universal mass-function pa-
rameters given in equation (7). The quoted
values are truncated at the first digit which is
affected by the statistical errors. This provides
an accurate description of our simulations for
−80 ≤ f NL ≤ 250.

Parameter p1 p2

A 1.694 −0.00199
B 0.566 −0.00029
C 1.151 −0.00071
D 0.287 −0.00030

main series but the same number of particles) and indeed found that
the fitting formulae in equations (8) and (9) systematically overes-
timate the abundance of small mass haloes by 10–30 per cent. We
will address the low-mass tail of the mass function for f NL �= 0 in
future work.

On the other hand, for Gaussian initial conditions, we combined
simulations with different box sizes to derive the fitting function in
equations (4) and (5). This allowed us to extend the validity of our fit
to the much wider mass range 2.4 × 1010 < M < 5 × 1015 h−1 M�.

Our fitting formulae give three different approximations for the
universal mass function in the Gaussian case. In general, the fit given
in equations (4) and (5) has to be preferred as it has been obtained
from a richer data set spanning a much wider range of halo masses.
However, for masses above 1013 h−1 M� at z= 0, the fit in equations
(4) and (7) and Table 4 provides the most accurate representation
of our data. In any case, the different fitting functions never deviate
by more than 3–4 per cent. Also note that our two fitting functions
for the non-Gaussian simulations agree by better than 1 per cent for
−27 ≤ f NL ≤ 80 and by a few per cent for f NL = −80 and +250.

3.3 The limit of universality: redshift dependence

Regardless of the value of f NL, we have found that the halo mass
function is universal, when written in terms of σ−1, with an accuracy
of roughly 10 per cent. If one is interested in giving analytical
approximations for the halo mass function which are more accurate
than the universal fit, it is necessary to introduce redshift-dependent
corrections (see also Tinker et al. 2008 for the Gaussian case). In the
left-hand panel of Fig. 4, we show how well the universal fit (whose
parameters are listed in Table 5) describes the simulation outputs at
z = 0, 0.5, 1 and 1.61. At z = 0 and for masses M ≥ 4–5 · 1014 M�,
the fitting formula deviates for the data by more than 10 per cent.
The smaller the redshift, the worse is the agreement between the
data points and the universal fit. The bigger the f NL, the less critical
is the comparison.

In this section, we provide a non-universal fit which is very
accurate at low redshift. In particular, we write

dn

dM
(fNL,M, z) = f (fNL, σ0, z)

ρ̄m

M

d ln[σ−1
0 (M)]

dM
, (10)

where σ 0 = σ (z = 0) = σ (z)/D+(z) is the rms deviation of the
linear density field at z = 0. We approximate f with the functional
form given in equation (4) but now let the parameters A, B, C,
D vary with both f NL and z. Markov Chain Monte Carlo fitting
suggests that each parameter A, B, C, D of the mass function can
be accurately described as follows:

P(z, fNL) = p1 [1 + p2z + p3z
2] [1 + p4fNL] . (11)

The best-fitting parameters for −80 ≤ f NL ≤ 80 and 0 ≤ z ≤
0.5 are listed inTable 6, while the quality of the fitting formula is
assessed in the right-hand panel of Fig. 4. Residuals are smaller
than 5 per cent all over the mass range, indicating that for −80 ≤
f NL ≤ 80 and 0 ≤ z ≤ 0.5 the fit of equations (10), (4) and (11) has
to be preferred to the universal fit given in the previous section. On
the other hand, for higher values of |f NL| and for higher redshifts,
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Figure 4. Left-hand panel: mass function residuals of Run1.−80, Run1.80, Run1.250, Run1.750 with respect to the universal fit given in equations (8) and (9)
at redshift z = 0, 0.5, 1, 1.61 (indicated by the symbols and colours). Only data points with a statistical error smaller than 10 per cent are shown. Right-hand
panel: as in the left-hand panel but for the non-universal fit given in equation (11). In this case, only data points with an accuracy better than 5 per cent are
shown.

Table 5. As in Table 4 but for the fitting formula in equations (8) and
(9). This accurately describes the mass function in all our non-Gaussian
simulations (−80 ≤ f NL ≤ 750).

Parameter p1 p2 p3 p4 p5

(10−3) (10−7) (10−9) (10−12)

A 1.708 −2.07 3.1 0 0
B 0.560 −0.46 +12.46 −2.36 +2.65
C 1.150 −0.76 +2.7 0 0
D 0.293 −0.16 −14.07 +3.88 −3.94

Table 6. Best-fitting values for the mass-function parameters given in equa-
tion (11). This provides an accurate description of the data for 0 ≤ z ≤ 0.5
and −80 ≤ f NL ≤ 80. The universal function of equations (6), (4), (8) and
(9) should be used otherwise.

Parameter p1 p2 p3 p4

(10−1) (10−1) (10−4)

A 1.82 2.85 4.53 −5.92
B 0.578 5.30 7.53 −7.73
C 1.15 9.52 9.08 −4.42
D 0.294 4.92 4.67 −3.80

the universal fit gives a better and more economic (in terms of
parameters) description of the data.

3.4 Comparison with theoretical models

The halo mass function arising from mildly non-Gaussian initial
conditions can be modelled by generalizing the Press–Schechter
formalism. Using the saddle-point approximation to evaluate the
probability for the linear density field to be above a given threshold
value, Matarrese et al. (2000) have derived a model for dn/dM .
More recently, LoVerde et al (2008) presented another expression
for the mass function by using the Edgeworth asymptotic expan-

sion for the probability density function of the linear density field.
In both cases, only leading-order corrections in f NL have been ac-
counted for. In absolute terms, these models are not expected to be
accurate as they should suffer from the same shortcomings as the
Press–Schechter model in the Gaussian case. However, they can be
used to compute the fractional non-Gaussian correction f (M , z,
f NL)/f (M , z, f NL = 0) (Verde et al. 2000; LoVerde et al 2008). In
Fig. 5, we use this quantity to test the models against our simula-
tions. Data points with errorbars show the N-body output at z = 0,
0.5 and 1, while the dotted lines indicate the models of Matarrese
et al. (2000) and LoVerde et al (2008) as indicated in equations
(B.6)1 and (4.19) of LoVerde et al (2008), respectively. It is ev-
ident that the models overestimate the non-Gaussian correction.
Following the indications in Carbone et al. (2008), we also show
a modified version of the models which is obtained by lowering
the critical threshold for halo collapse as δc 
 1.5 (solid lines in
Fig. 5). Such a correction vastly improves the agreement with the
simulations.

Dalal et al. (2008) proposed to fit the halo mass function in
terms of the convolution between dn/dM(f NL = 0, M , z) and a
Gaussian kernel in M with a f NL-dependent mean and variance.
Fig. 5 shows that their fit tends to overestimate the non-Gaussian
corrections especially for large, positive values of f NL and masses
M < 1014 h−1 M�. On the other hand, for |f NL| < 100 it has a
similar accuracy as the formulae derived from the Press–Schechter
formalism corrected with the reduced threshold.

The good agreement between the fractional non-Gaussian cor-
rections derived from the modified PS models and from the sim-
ulations is not enough to derive f NL from future observations of
galaxy clusters. In fact the ratio f (z, f NL)/f (z, f NL = 0) is not
an observable: the only quantity that we can hope to compare with
observations is the mass function. In order to make predictions for
dn/dM , the models for the fractional non-Gaussian correction need

1 This fixes a typo in equation (68) of Matarrese et al. (2000).
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Figure 5. Comparison between the halo mass functions from our simulations and from the models by Matarrese et al. (2000), LoVerde et al (2008) and the fit
by Dalal et al. (2008) for different values of f NL (different panels) and for z = 0, 0.5, 1 (triangles, circles, squares, respectively). The quantity which is plotted
is the ratio f (z, f NL)/f (z, f NL = 0,). The dotted lines indicate the models of Matarrese et al. 2000 (green) and LoVerde et al 2008 (magenta), as they appear
in equations (B.6) and (4.19) of LoVerde et al (2008), respectively. The corresponding solid lines indicate the same models with a reduced threshold for halo
collapse: δc 
 1.5. The blue solid lines are obtained by convolving the f NL-dependent kernel given in Dalal et al. (2008) with the mass-function fit for the
Gaussian case by Warren et al. (2006).

to be multiplied by a Gaussian mass function. This step might in-
troduce relatively large systematic errors (see Fig. 1) which could
degrade any measurement of f NL based on the cluster mass func-
tion. We address this issue in Fig. 6 where we plot the fractional
deviation of some model predictions for the function f with respect
to the simulation output (results are very similar for different values
of f NL). We consider the model by LoVerde et al (2008) corrected
with the factor N and multiplied by three different Gaussian mod-
els: Sheth & Tormen (1999), Warren et al. (2006) and our fit with
f NL = 0. Note that some of the final outcomes systematically dif-
fer by 10–20 per cent over the entire mass range covered by the
simulations. This clearly shows that a careful measurement of the
Gaussian mass function is necessary to avoid a biased estimation of
the non-linearity parameter. Note that, for |f NL| < 100, the models
by Matarrese et al. (2000) and LoVerde et al (2008) (both with the
reduced collapse threshold) combined with our Gaussian fit are in
rather good agreement with the numerical mass functions (similar
results are obtained using the Gaussian fit by Warren et al. (2006)
for masses below a few × 1014 h−1 M�). Perhaps not surprisingly,
no model describes the simulation data for all the values of f NL

as well as our fitting formulae for the non-Gaussian mass function
given in Sections 3.2 and 3.3.

3.5 Summary of accuracy and range of validity of the mass
function fits

In order to facilitate the use of our fitting formulae for the halo mass
function, we summarize here their accuracy and range of validity.

(i) For −80 ≤f NL ≤ 80 and 0 ≤ z≤ 0.5, the best description (with
5 per cent accuracy) of our numerical data is given by equations
(10), (4) and (11).

(ii) For larger values of f NL and z (but with f NL ≤ 750 and z ≤
1.6) or whenever an accuracy of 10 per cent is enough, the universal
fits of Section 3.2 should be used:

(iii) universal fit for −80 ≤ f NL ≤ 250: equations (4), (7) and
Table 4;

(iv) universal fit for −80 ≤ f NL ≤ 750: equations (4), (8), (9)
and Table 5.
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Figure 6. Residuals between the simulated mass functions and various model prescriptions, for Run1.80 (left-hand panels) and Run1.500 (right-hand panel)
at z = 0, 0.5, 1. The models have been obtained multiplying the formula for f (z, f NL)/f (z, f NL = 0,) by LoVerde et al (2008) (with the reduced δc as the
solid lines in Fig. 5) with different Gaussian mass functions: Sheth & Tormen 1999 (magenta), Warren et al. 2006 (red) and our Gaussian fit (green). The black
lines show residuals with respect to our fitting formula given in Sections 3.2 and 3.3. Only data with errors smaller than 10 per cent are shown.

Figure 7. Ratio between the matter power spectra of non-Gaussian and
Gaussian simulations at redshift z = 1 (bottom) and z = 0 (top). Data are
extracted from the N-body simulations in our main series where identical
random phases have been used to generate φ for all values of f NL.

4 MATTER POWER SPECTRU M

In this section, we study how non-Gaussian initial conditions influ-
ence the power spectrum of the mass density field. At tree level, the
power spectrum does not depend on f NL in Eulerian perturbation the-
ory. However, one-loop corrections make the power spectrum f NL-
dependent. Qualitatively, theoretical expectations are that positive
(negative) values of f NL tend to enhance (suppress) the amplitude of
the power spectrum on non-linear scales. In Fig. 7, we plot the ratio

of power spectra P (k, f NL)/P (k, f NL = 0) extracted from the simu-
lations of our main series at redshifts z = 0 and 1. The matter power
spectrum of non-Gaussian models appears to deviate already by a
few per cent at k = 0.1 h Mpc−1. As expected, deviations become
more severe with increasing the wavenumber k. Our results are in
agreement with the perturbative calculations by Taruya, Koyama
& Matsubara (2008). We note, however, that Grossi et al. (2008)
found smaller deviations between the non-Gaussian and Gaussian
power spectra at larger values of k and f NL.

Our results have two important practical implications. First, the
widespread habit of using the Gaussian matter power spectrum to
determine non-Gaussian bias parameters leads to scale-dependent
systematic errors that might become severe when high-precision is
required. Secondly, primordial non-Gaussianity modifies the power-
spectrum on the scales where baryonic oscillations (BAOs) are
present. Reversing the argument, two-point statistics could be also
used to constrain the value of f NL. Note, however, that all probes
based on galaxy clustering will suffer from uncertainties in the bias
parameter (and its scale dependence) that might hinder a measure
of f NL based on the study of BAOs. On the other hand, weak lensing
studies will directly measure the matter power spectrum. The target
of many future wide-field missions is to provide estimates at the per
cent level. For parameter estimation, a comparable accuracy will
be required on model spectra within a wide range of wavenumbers
centred around k ∼ 1 h Mpc−1 (Huterer & Takada 2005). Therefore,
even values of f NL within the current CMB constraints could imprint
detectable effects in the matter power spectrum at the scales of
interest. The key question is whether one can discern the effect of
f NL and, consequently, how much primordial non-Gaussianity will
affect the estimate of the other cosmological parameters. We will
get back to this in future work.

5 H ALO C LUSTERI NG

The clustering of dark-matter haloes is biased relative to that of the
underlying mass distribution by an amount which depends on halo
mass, redshift, and the scale at which the clustering is considered
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(see e.g. Mo & White 1996; Catelan et al. 1998; Smith, Scoccimarro
& Sheth 2007). For Gaussian initial conditions, this has been widely
tested against numerical simulations (e.g. Sheth, Mo & Tormen
2001; Seljak & Warren 2004; Tinker et al. 2005).

In general, the halo bias can be quantified using either the power
spectrum of the halo density field, Phh, or the cross-spectrum be-
tween the halo and the underlying matter density field, Phm. In the
two cases, the bias reads

bhh(k, M, z) =
√

Phh(k,M, z)

P (k, z)
(12)

or

bhm(k,M, z) = Phm(k, M, z)

P (k, z)
, (13)

where P (k, z) is the matter power spectrum. If the bias due to
halo formation is local and deterministic then bhh = bhm apart from
measurement errors. However, in the presence of a stochastic com-
ponent that does not correlate with the density field bhh ≥ bhm. In
practice, however, the measurement of all power spectra is affected
to some level by shot noise due to the discrete nature of dark-matter
haloes and N-body particles. If the distribution of the tracers can be
approximated as the Poisson sampling of an ideal density field, then
the measured power spectrum corresponds to that of the underlying
field plus the mean volume per particle (Peebles 1980). Discreteness
effects are thus expected to be negligible for P and Phm due to the
large number density of particles in the simulations. On the other
hand, massive haloes are rare and, being extended objects, cannot
be modelled as the Poisson sampling of a continuous distribution
(Mo & White 1996, Magliocchetti & Porciani 2003, Porciani in
preparation). It is not clear then how to correct for the discreteness
effect in their power spectrum (Smith et al. 2009). For these reasons,
we use bhm in our analysis and we adopt bhh (without performing
any discreteness correction) only to verify the results (see Fig. 8).

Figure 8. The halo bias from the halo–halo power spectrum (with no dis-
creteness corrections) is plotted against the halo bias from the halo-matter
cross-spectrum. Whenever the density of haloes is high enough, the two
estimates are very close showing that little stochasticity between mass and
halo overdensities is present on the scales of interest (indicated in h Mpc−1

in the label). The excess in bhh for rare, massive haloes is likely due to shot
noise. Note that large positive values of f NL correspond to more massive
haloes and thus allow more accurate measures of high bias parameters.

Figure 9. Linear halo bias from the Gaussian simulations Run 1.0 (trian-
gles), Run 2.0 (squares) and Run 3.0 (circles), as a function of σ−1. Only
bins containing more than 1000 haloes are shown. The solid lines corre-
spond to the functions listed in Table 7 as indicated by the labels. The four
hexagons correspond to the data at z = 10 by Cohn & White (2008). The
vertical dotted lines indicate the maximum and minimum σ−1 considered
by Tinker et al. (2005) (red) and Seljak & Warren (2004) (cyan, in this case
the minimum σ−1 coincides with the frame of the figure).

5.1 Halo bias from Gaussian initial conditions

It is well known that the halo bias factor from Gaussian initial
conditions is approximately scale independent for small values of
the wavenumber k. We will refer to this asymptotic value on large
scales as the ‘linear bias’ and denote it by b0. Similarly to the
halo mass function, when expressed in terms of σ−1, the linear
bias assumes a universal form which, within a given accuracy, is
independent of redshift and just weakly dependent on cosmology
(e.g. Sheth & Tormen 1999; Seljak & Warren 2004).

We measure the linear bias for the haloes in our simulations as
follows. We first determine the functions bhh and bhm by directly
applying equations (12) and (13). Within the statistical uncertain-
ties, both functions approach asymptotically to a constant on large
scales (k < 0.05 h Mpc−1). We use the average of the bias function
measured in the range 0.01 < k < 0.05 h Mpc−1 (4 k-bins) as our
estimate of the linear bias. The standard error of the mean is used
to quantify the corresponding statistical uncertainty.2

In Fig. 9, we show the linear bias obtained from Run 1.0 (trian-
gles), Run 2.0 (squares) and Run 3.0 (circles) as a function of σ−1.
Simulation data from snapshots between z = 0 and 2 are compared
with the commonly used parametrizations listed in Table 7. Our
results are in good agreement with the fit by Sheth et al. (2001)
for large masses and with that by Tinker et al. (2005) for smaller

2 Consistently, in what follows, we use the rms value as the error on b(k, M ,
z, f NL = 0). For f NL �= 0, we assume that the relative error is the same as
in the Gaussian case.
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Table 7. Commonly used parametrizations for the linear bias arising from Gaussian initial conditions.

Acronym Reference Functional form Parameters and Variables

MW Mo & White (1996) bMW = 1 + δc
σ 2 − 1

δc
δc = 1.686

ST Sheth et al. (2001) bST = 1 + 1√
aδc

[
√

a
(
a

δ2
c

σ 2

)
+ √

ab
(
a

δ2
c

σ 2

)1−c

− δc = 1.686

−
(

a
δ2
c

σ2

)c

(
a

δ2
c

σ2

) c

+b(1−c)(1−c/2)

]
a = 0.707, b = 0.5, c = 0.6

SW Seljak & Warren (2004) bSW = 0.53 + 0.39(x0.45) + 0.13
(40x+1) + 5 × 10−4x1.5 x = M

M�
with σ (M∗) = 1.686

T Tinker et al. (2005) bT = bST δc = 1.686, a = 0.707, b = 0.35, c = 0.80

masses. Note that by combining simulation boxes we are able to
explore a larger interval of σ−1 than previous studies.

Given that no existing model for the linear bias accurately re-
produces our results over the entire mass range spanned by the
simulations, we decided to derive a new fitting formula. In particu-
lar, we parametrized the outcome of our simulations as

b0 = B0 + B1 σ−1 + B2 σ−2 , (14)

and used χ 2 minimization to find

B0 = 0.647 ± 0.010,

B1 = −0.540 ± 0.028,

B2 = 1.614 ± 0.019 .

(15)

This fit (which reproduces the numerical data with great accuracy in
the range −1.1 < ln σ−1 < 0.8) should be considered as the linear
bias naturally associated with the mass function given in equations
(4) and (5).

5.2 Halo bias from non-Gaussian initial conditions

Recent analytical models have suggested that the halo bias arising
from non-Gaussian initial conditions of the local type does not tend
to a constant on large scales. Rather, the deviation from the Gaussian
case should follow

�b = b(k, M, z, fNL) − b(k, M, z, fNL = 0) =

= 3 fNL [b0(M, z) − 1]
δc

D(z)

g(∞)

g(0)

H 2
0

c2

�m

k2 T (k)
,

(16)

where δc = 1.686, c/H 0 = 2997.9 h−1 Mpc is the Hubble radius,
T(k) is the matter transfer function, and D(z) is the linear growth
factor of matter perturbations normalized to unity at z = 0 (Dalal
et al. 2008; Matarrese & Verde 2008; Slosar et al. 2008; Afshordi
& Tolley 2008; McDonald 2008).3 The numerical simulations by
Dalal et al. (2008) have indeed shown that the halo bias is scale-
dependent even for small values of k in non-Gaussian cosmologies
(with |f NL| = 100, 500) and found qualitative agreement with equa-
tion (16). In Fig. 10, we show how the bias depends on scale in our
simulations which also consider smaller values of |f NL|. Our results
confirm the presence of a strongly scale-dependent bias. Larger val-
ues of |f NL| correspond to a more marked scale dependence. Note,
however, that for k > 0.05 h Mpc−1 the non-Gaussian deviation �b

changes sign. On these scales, the halo-matter and halo–halo spectra

3 The factor g(∞)/g(0) is needed since Dalal et al. (2008) and Slosar et al.
(2008) normalize the growth factor D(z) to be (1 + z)−1 during matter
domination.

Figure 10. Scale-dependent halo bias arising from non-Gaussian initial
conditions. Results are shown in terms of the ratio between the bias functions
measured from a simulation with a given f NL and with f NL = 0 at fixed halo
mass (indicated by the label in units of h−1 M�). Note that in the Gaussian
case the bias keeps nearly constant for k < 0.05 h Mpc−1.

emerging from non-Gaussian perturbations has actually less power
than in the Gaussian case. The opposite happens with the matter
power spectrum (even to a larger degree) and the net effect is a
negative �b. This result implies that equation (16) can only hold
asymptotically on very large scales. This is not surprising if in-
terpreted within the peak-background-split formalism, where the
large-scale bias is linked to the first derivative of the mass function
with respect to σ−1. In the non-Gaussian case, the bias is composed
of two parts, a scale independent term and the correction given in
equation (16). Since the halo mass function changes shape when f NL

is varied, also the constant bias should depend on f NL for a fixed halo
mass. Increasing f NL corresponds to a larger abundance of massive
haloes and to a slightly smaller constant bias with respect to the
Gaussian case. Likely, this is what makes the �b in the simulations
negative for positive f NL. To proceed with a detailed analysis of our
simulations, we find it convenient to rewrite equation (16) as

�b = fNL (b0 − 1)



α(k, z)
, (17)
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Figure 11. The non-Gaussian bias correction �b as a function of the linear Gaussian bias b0 for f NL = 750. Data from the simulations are indicated by
symbols with errorbars and correspond to different redshifts as indicated in the label. The dashed line marks the prediction of the model in equation (16). The
wavenumber in the labels is given in units of h Mpc−1. Horizontal errorbars are not drawn to improve readability.

where 
 = 3 δc �m H 2
0/c

2 and α(k, z) = k2 T (k) D(z) g(0)/g(∞).
In Fig. 11, we test the scaling of �b with redshift, linear bias and
wavenumber for f NL = +750 (where we have the best signal-
to-noise ratio at high halo mass). Similar results are obtained with
different values of f NL. The quantity shown is �b α/
 which should
correspond to f NL(b0 − 1) if the analytical model provides a good
description of the data. This quantity is indicated by a dashed line.
The following two trends clearly emerge from the data. For small
values of k, the model overestimates the data by 20–70 per cent
increasing with b0 and independently of z. On smaller scales, dis-
crepancies become more and more severe. At k ∼ 0.05 h Mpc−1,
the model is systematically a factor of 5 higher than the data. The
k-dependence of �b is therefore different from in equation (16).

The data also drop a hint that, for k > 0.01 h Mpc−1, the scaling
with b0 − 1 might only persist up to a maximum value of b0,
b0,max. For b0 > b0,max, it appears that the values of �b are always
smaller than expected from the extrapolation of the trend b0 − 1
determined at smaller b0. The value of b0,max seems to depend both
on redshift and wavenumber and roughly corresponds to constant
halo mass for a given k. However, uncertainties in �b at these
high masses become very large, and it is difficult to judge how
robust the existence of b0,max really is. We note anyway that when
we tried to fit data at different redshifts (for a given f NL and k >

0.015 h Mpc−1) by adding a variable normalization constant in front

of equation (16), we systematically obtained significantly different
fits (at a confidence level of 2.5 σ ) at different redshifts. This trend
disappears when only the lowest values of b0 are considered at each
redshift for the fit.

Data from simulations with all the considered values of f NL are
shown with different symbols and colours in Fig. 12. Each panel
refers to a particular wavenumber bin (indicated by the label in
units of h Mpc−1). The model in equation (16) is again indicated by
a dashed line. Note that, in the most cases, it substantially deviates
from the simulation data. In particular, �b measured from the sim-
ulations shows a much stronger k-dependence than the analytical
formula, as already seen in Fig. 11. In general, the overall amplitude
of �b drops by an extra factor of ∼3 with respect to k2 T (k) when
moving from k ∼ 0.01 to 0.05 h Mpc−1 independently of b0 and
f NL. Also, �b does not seem to scale linearly with f NL while its
linear dependence on b0 − 1 appears to be solid, at least for b0 <

b0,max. We thus introduce a correcting factor β(f NL, k) defined by

�b = β(fNL, k) fNL (b0 − 1)



α(k, z)
, (18)

and we measure it by fitting the simulation data for b(k, M , z, f NL)
and b(k, M , z, 0) at constant values of f NL and k. We use an effective
variance weighted least squares method to simultaneously account
for errorbars on both bias parameters. The best-fitting values are
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Figure 12. As in Fig. 11 but for all the simulations of our main series and without distinguishing data from different redshifts. The continuous line corresponds
to our best-fitting values of β listed in Table 8.

Table 8. Best-fitting value and 1σ uncertainties for the multiplicative correction β(k, f NL). The first set of data corresponds to the k-interval where the
Gaussian bias is constant.

k(h Mpc−1) β(k, −80) β(k, −27) β(k, +27) β(k, +80) β(k, +250) β(k, +500) β(k, +750)

0.0117 0.97 ± 0.04 0.88 ± 0.11 0.83 ± 0.13 0.83 ± 0.05 0.71 ± 0.02 0.66 ± 0.01 0.60 ± 0.01
0.0191 0.77 ± 0.07 0.78 ± 0.21 0.69 ± 0.25 0.70 ± 0.10 0.63 ± 0.03 0.56 ± 0.01 0.51 ± 0.01
0.0303 0.65 ± 0.14 0.58 ± 0.27 0.59 ± 0.27 0.54 ± 0.16 0.50 ± 0.06 0.42 ± 0.03 0.37 ± 0.02
0.0494 0.35 ± 0.32 0.45 ± 0.19 0.40 ± 0.26 0.31 ± 0.33 0.29 ± 0.09 0.25 ± 0.05 0.20 ± 0.02

0.0804 0.01 ± 0.23 0.20 ± 0.21 −0.10 ± 0.43 −0.06 ± 0.22 −0.08 ± 0.18 −0.10 ± 0.09 −0.11 ± 0.04

reported in Table 8 and can be used to compute the function β by
interpolation. The final expression for �b, corrected with the β

factor, is shown in Fig. 12 with solid lines.
Data in Table 8 have an amazing regularity. Apart from a nor-

malization constant, each column (row) shows the same linear trend
with k (f NL). This suggests that, within the explored parameter range
(0.01 < k < 0.05 h Mpc−1 and −80 ≤ f NL ≤ 750),

β(k, fNL) = β0 (1 − β1 fNL) (1 − β2 k) . (19)

We thus use this equation to fit the original data for the halo bias
from Gaussian and non-Gaussian initial conditions and find

β0 = 1.029 ± 0.027 ,

β1 = (4.25 ± 0.33) × 10−4 ,

β2 = 14.8 ± 0.5 h−1 Mpc ,

(20)

at the 68.3 per cent confidence level. Note that we computed the
power spectra in finite-sized bins of the wavenumber, so that there
is some degree of ambiguity in associating the results with a given
value of k. Unfortunately, the choice plays a role in determining β

as α is a steep function of k on the scales of interest. In Table 8 and
equation (20), we have used the arithmetic mean of the wavenum-
bers contributing to a given bin. If one instead uses the logarithmic
centre of the bin, β0 is slightly reduced with a best-fitting value of
0.897 ± 0.024. The parameters β1 and β2 are unaltered. Therefore,
a systematic contribution 
 0.1 should be added to the error budget
of β0.

Equations (16) and (18) assume that the Gaussian bias b0 is
constant with k but this is only approximately true in the simulations.
The fit in equation (20), Table 8 and Figs 11 and 12 have been
obtained by identifying b0 with the actual bias measured in the
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Gaussian simulation at each wavenumber. If, instead, the estimate
for b0 introduced in Section 5.1 is used, one gets β0 = 0.970 ±
0.027, β1 = (4.13 ± 0.33) × 10−4 and β2 = 13.8 ± 0.7 h−1 Mpc,
slightly improving the goodness of the fit.

The quadratic dependence of �b on f NL is rather surprising as it
cannot be straightforwardly derived from the simple models listed
above. It might possibly arise from higher order terms which have
been neglected in the expansion that leads to equation (16). Any-
way, it is clearly present in the simulations as it can be seen by
looking at the variation of β along a given row in Table 8. Within
the range of f NL of physical interest, the effect is rather small: the
coefficient β1 only corresponds to a few percent correction. Note
that a quadratic term breaks the symmetry in the amplitude of �b

between non-linearity parameters with opposite sign and identical
absolute value. It is hard to directly test this against our simulations
as we just have two runs with f NL < 0 and both of them corre-
spond to rather small |f NL| where the uncertainties in β are large.
An alternative explanation for a non-vanishing β1 could be that it
artificially derives from imposing a linear relation in b0 − 1 to data
that do not scale linearly for b0 > b0,max. Indeed, just using data
points with small values of b0 we derive bigger values of β for large
f NL (more or less in line with β1 = 0). Therefore, what is robust
is that at least one of the scalings with b0 or with f NL is incorrect
in equation (16). We found that a scaling proportional to γ 0(1 +
γ 1 log b0) (with γ 0 and γ 1 two adjustable parameters) does slightly
better (in terms of reduced χ 2) than β0(b0 − 1), at least for k >

0.014 h Mpc−1. However, since the scaling with b0 − 1 has a sound
theoretical basis (Mo & White 1996; Catelan et al. 1998), we pre-
ferred to quote our results as in equation (19). From the statistical
point of view, the parameters (20) provide an acceptable descrip-
tion of the simulation data to high confidence for all values of b0.
However, they are particularly accurate for b0 > 2 − 2.5, while β1

∼ 0 (with the same β0 and β2) has to preferred for smaller values
of b0.

The linear correction in k should be thought of as the first-order
term of a series expansion in the wavenumber. We attempted to
determine the corresponding quadratic term by considering larger
values of k in the fit (one bin more, up to k = 0.0962 h Mpc−1).
However, values of �b become small compared with the numer-
ical errors, and we found that the quadratic parameter is badly
constrained by the data (β3 = 34 ± 34 h−2 Mpc2) while the other
parameters remain nearly unchanged (and get larger uncertainties).
Also note that the Gaussian bias starts to depart from b0 at k >

0.05 h Mpc−1 and it is not clear whether equation (16) should still
be expected to hold in this regime.

Dalal et al. (2008) derived an expression for �b which coincides
with equation (16) but does not include the linear transfer function.
Theoretically, this is hard to understand, as non-Gaussianity is gen-
erated well before matter-radiation equality and one should account
for the linear evolution of density perturbations. Anyway, due to the
different k-dependence, their expression for �b provides a better
fit to the simulation data than equation (16) when both models are
allowed to vary in amplitude with a tunable free parameter.4 None
of them, however, provides such an accurate fit to the data as our
equations (19) and (20), which improve the χ 2 by at least a factor
of 1.7.

4 The best-fitting value for this coefficient reads 0.92 for the model of Dalal
et al. (2008) and 0.58 for the model of Slosar et al. (2008)

6 D ISCUSSION

Slosar et al. (2008) have used equation (16) to constrain f NL by con-
sidering measures of the clustering amplitude of LRGs and quasars
from the SDSS. Combining all data sets, they found −29 < f NL <

+70 at 95 per cent confidence. How would this result change based
on our simulations? Disentangling the different contributions, the
strongest constraints to f NL in Slosar et al. (2008) come from
the angular power spectrum of quasars with photometric redshifts
in the range 1.45 < z < 2.00 and a mean bias of ∼2.7. Weaker lim-
its are also contributed from the power spectrum of spectroscopic
LRGs and the angular spectrum of photometric LRGs (with a bias
of ∼2 at z ∼ 0.5). Fig. (12) and Table 8 suggest that at the scales of
interest (0.01 < k < 0.05 h Mpc−1) the model given in equation (16)
tends to overestimate the scale-dependent bias seen in the simula-
tions. Therefore, to match an observed �b, a larger value of |f NL| is
required than predicted by the analytic model. When applied to the
data by Slosar et al. (2008), our correction should thus give some-
what looser limits on f NL. Because of the strong k-dependence of
the function β it is impossible to give more precise estimates with-
out fitting the power-spectrum data. Note, however, that a steeper
k-dependence potentially makes determinations of f NL even more
competitive with respect to studies of CMB anisotropies.

7 SU M M A RY

We use a series of high-resolution N-body simulations to study the
mass function and the clustering properties of dark-matter haloes
arising from Gaussian and non-Gaussian initial conditions. In par-
ticular, we follow the formation of structure in a universe charac-
terized by the best-fitting parameters from the third- and fifth-year
WMAP data releases. We consider non-Gaussianity of the local type
and we use eight different values of f NL (−80, −27, 0, +27, +80,
+250, +500, +750) enclosing the parameter space currently al-
lowed by studies of the CMB. Our main results can be summarized
as follows.

(i) The mass function of dark-matter haloes varies with f NL.
Larger values of the non-linearity parameter correspond to higher
abundances of the most massive haloes. Analytical models based
on the Press–Schechter method (Matarrese et al. 2000; LoVerde
et al 2008) are compatible with our simulated results for the ratio of
the Gaussian and non-Gaussian mass functions only if the critical
threshold for halo collapse is lowered to δc ∼ 1.5. An accurate fit of
the Gaussian dn/dM is necessary to derive the non-Gaussian mass
function from the aforementioned ratio.

(ii) We find that, in perfect analogy with the Gaussian case (Jenk-
ins et al. 2001), the halo mass function assumes an approximately
universal form. This means that, when expressed in terms of suit-
able variables, its dependence on redshift and cosmology is erased
to good precision (nearly 10 per cent). We parametrize the f NL-
dependence of the universal mass function and provide an accurate
fit for its high-mass end. For −80 ≤ f NL ≤ 250 and for masses M >

1013 h−1 M�, the best-fitting parameters for the non-Gaussian halo
mass function in equation (4) are given in equation (7) and Table 4.
This fit reproduces the mass function of FOF haloes with an accu-
racy of 5 per cent on top of a systematic contribution (up to 10 per
cent) due to the non-perfect universality. For applications requir-
ing higher precision, an additional formula is provided: for −80 ≤
f NL ≤ 80 and 0 ≤ z ≤ 0.5, the fit in equations (10), (4) and (11)
has to be preferred to the universal fit. On the other hand, for higher
values of |f NL| and for higher redshifts, the universal fit gives a
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better and more economic (in terms of parameters) description of
the data.
In the Gaussian case, we extend the fit to a larger interval of halo
masses (M > 2.4 × 1010 h−1 M�) by combining simulations with
different box sizes – see equations (4) and (5). Our fitting function
provides a precious tool to forecast constraints on f NL from future
surveys and to analyse current data sets.

(iii) The matter power spectrum in non-Gaussian cosmologies
departs from the Gaussian one already on very large scales. For val-
ues of f NL within the current CMB constraints these scale-dependent
deviations can be as high as two per cent at k = 0.3 h Mpc−1 and
increase with wavenumber. The discrepancy is systematic: models
with positive f NL have more large-scale power than the Gaussian
case and models with negative f NL have less. This warns against
the widespread habit of using the Gaussian matter power spectrum
to determine non-Gaussian bias parameters when high-precision is
required. It also suggests that primordial non-Gaussianity modifies
the shape and amplitude of the baryonic-oscillation feature in the
two-point statistics and the convergence power spectrum in weak-
lensing studies.

(iv) We present an accurate fitting formula for the linear bias
of dark matter haloes arising from Gaussian initial conditions ex-
tending previous work to larger mass intervals. This, together with
the mass function fit mentioned above, can be used to constrain
parameters of halo-occupation models from clustering data.

(v) Finally, using the halo-matter cross-spectrum, we confirm
the strong k-dependence of the halo bias on large scales (k <

0.05 h Mpc−1) which was already detected by Dalal et al. (2008).
However, we show that commonly used parametrizations based
on the peak-background split overestimate the effect for k >

0.01 h Mpc−1. The discrepancy increases with the wavenumber and
at k > 0.05 h Mpc−1 �b in the simulations changes sign with re-
spect to the models. On top of this, the analytic model for the
scale-dependent part of the bias requires corrections which depend
on the non-linearity parameter, the wavenumber and, possibly, also
on redshift and clustering strength. equations (18) and (19) with the
best-fitting parameters listed in (20) provide a fitting formula which
accurately reproduces the outcome of the simulations for 0.01 <

k < 0.05 h Mpc−1 and −80 ≤ f NL ≤ 750. This fit should be em-
ployed to constrain f NL from future clustering data at low and high
redshift.
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Figure A1. Effect of the initial redshift zstart on the halo mass-function, for f NL = 0 (left-hand panel) and f NL = +750 (right-hand panel).

Salopek D. S., Bond J. R., 1990, Phys. Rev. D, 42, 3936
Scoccimarro R., Sefusatti E., Zaldarriaga M., 2004, Phys. Rev. D, 69, 103513
Sefusatti E., Komatsu E., 2007, Phys. Rev. D, 76, 083004
Seljak U., Warren M. S., 2004, MNRAS, 355, 129
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1
Slosar A., Hirata C., Seljak U., Ho S., Padmanabhan N., 2008, J. Cosmol.

Astropart. Phys., 08, 031
Smith R. E., 2009, MNRAS, 400, 85
Smith R. E., Scoccimarro R., Sheth R. K., 2007, Phys. Rev. D, 75, 3512
Spergel D. N. et al., 2007, ApJS, 170, 377
Springel V., 2005, MNRAS, 364, 1105
Stanek R., Rudd D., Evrard A. E., 2009, MNRAS, 394, 11
Taruya A., Koyama K., Matsubara T., 2008, Phys. Rev. D, 78
Tinker J. L., Weinberg D. H., Zheng Z., Zehavi I., 2005, ApJ, 631, 41
Tinker J. L., Kravtsov A. V., Klypin A., Abazajian K., Warren M. S., Yepes

G., Gottlober S., Holz D. E., 2008, ApJ, 688, 709
Verde L., Wang L., Heavens A. F., Kamionkowski M., 2000, MNRAS, 313,

141
Warren M. S., Abazajian K., Holz D. E., Teodoro L., 2006, ApJ, 646, 881
White M., 2002, ApJS, 143, 241
Willick J. A., 2000, ApJ, 530, 80
Yadav A. P. S., Wandelt B. D., 2008, Phys. Rev. Lett., 100, 181301
Zel’dovich Y. B., 1970, A&A, 5, 84

A P P E N D I X A : IN I T I A L C O N D I T I O N S
AND ZEL’ D OV ICH TRANSIENTS

The initial positions and velocities of the particles in our N-body
simulations have been generated using the Zel’dovich approxima-
tion. This method introduces long-lasting artificial transients in the
growth of perturbations which might alter the halo mass function
at the high-mass end even at very late epochs (Crocce, Pueblas &
Scoccimarro 2006). It is therefore important to start the simulation
at a sufficiently high redshift to ensure that all transients have de-
cayed within the cosmic time at which the simulation output is used
for science applications. Alternatively, less stringent requirements

on the initial redshift are necessary if one uses second-order La-
grangian perturbation theory to displace particles at the initial time
(Crocce et al. 2006).

The simpler Zel’dovich approximation (which only requires the
calculation of the gravitational potential) is much more widespread.
In this case, a few authors have investigated how to compute the
optimal starting redshift (see e.g. Lukić et al. 2007) as well as
quantified the effects of the initial redshift on the halo mass function
(Tinker et al. 2008) and on the internal properties of dark matter
haloes (Knebe et al. 2009). These studies show that simulations of
the concordance cosmology (and Gaussian initial conditions) with
initial redshifts of 35 < zstart < 60 (depending on the simulations
specifications) have converged to the correct solution by z = 0 (at
least for halo masses M < 1014 h−1 M�). Even though our zstart

is in the right ball park, it is important to test that our results are
robust against changing initial redshift. We thus decided to perform
the following simple test: we re-simulated Run1.0 and Run1.750 of
our main Series using zstart = 99 instead of zstart = 50 and compared
the halo mass functions of the two simulations as a function of
redshift (see Fig. A1). In good agreement with Tinker et al. (2008),
for f NL = 0 we find that discrepancies are smaller than 10 per cent
at z ∼ 2 and that the (possible) effects of Zel’dovich transients are
completely erased by z ∼ 1. Our results show that this holds true
also for relatively large values of f NL (see the right-hand panel in
Fig. A1 where f NL = +750): even though non-linearities in the
initial conditions are slightly enhanced with respect to the Gaussian
case, at any given redshift the corresponding density field is also
more evolved and the effect of the Zel’dovich transients on the halo
mass function are again erased by z ∼ 2. For this reason, this paper
only uses data from snapshots at z ≤ 1.6 which are accurate to better
than 5 per cent.
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