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ON LITTLEWOOD’S CONSTANTS

D. BELIAEV and S. SMIRNOV

Abstract

In two papers, Littlewood studied seemingly unrelated constants: (i) the best α such that for any
polynomial f , of degree n, the areal integral of its spherical derivative is at most const ·nα , and
(ii) the extremal growth rate β of the length of Green’s equipotentials for simply connected
domains. These two constants are shown to coincide, thus greatly improving known estimates
on α.

1. Introduction

In this paper, we study the growth rate as n → ∞ of the quantity

An = sup
∫

D

|g′|
1 + |g|2 dm,

where the supremum is taken over all polynomials g of degree n, D is the unit disc
{|z| < 1}, and m denotes the two-dimensional Lebesgue measure. We are interested
in the best α such that An � nα (which means that for every ε > 0, there is a
constant Cε with An � Cεn

α+ε). In [16], Littlewood observed that 0 � α � 1/2,
and he conjectured that α < 1/2. The problem of determining the best possible α
appears under the number 4.18 in Hayman’s problem list [11].

It is easy to show that there is a constant c such that for any rational function g
of degree n, ∫

D

|g′|
1 + |g|2 dm � c

√
n.

Note that the integrand is a modulus of the spherical derivative g′σ of g (that is,
the derivative with respect to the spherical metric), and that in D the spherical
measure dmσ is comparable to the Lebesgue measure dm. So our integral can be
estimated by ∫

D

|g′σ | dmσ �
∫

C

|g′σ | dmσ

�
(∫

C

|g′σ |2dmσ

)1/2 (∫
C

dmσ

)1/2

= (2πn)1/2(2π)1/2

= 2π
√

n.

Here we use the fact that a rational function of degree n maps the complex sphere
to itself n-to-1, so the area of the image is n times bigger than the area of the
sphere. In particular, this argument shows that α � 1/2.
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Littlewood’s conjecture was proved in [14] by Lewis and Wu: improving upon
the work of Eremenko and Sodin [8], they obtained an explicit upper estimate
α < 1/2 − 2−264. Later, Eremenko obtained in [7] a positive lower bound on α.
Following the work by Eremenko and Sodin [8] and Lewis and Wu [14], we exploit
a connection between this problem and the extremal behavior of the harmonic
measure.

Our main result is that α is related to the growth rate of the length of Green’s
lines. In the case of simply connected domains Ω, we define βΩ as

lim sup
ε→0

log length{z : G(z) = ε}
log 1/ε

,

where G is Green’s function with a pole at infinity, and we define

β = supβΩ,

where the supremum is taken over all simply connected domains Ω. In the non-
simply connected case, one needs a more elaborate definition, and we use the multi-
fractal analysis technique.

For a given domain Ω, we define the packing spectrum πΩ(t) as

sup
{

q : for all δ > 0, there exists a δ-packing{B} with
∑

diam(B)tω(B)q � 1
}

,

where ω is the harmonic measure in Ω, and a δ-packing is a collection of disjoint
open sets whose diameters do not exceed δ. Note that this definition is valid for
any domain with compact boundary, and for t = 1 it is analogous to βΩ (see [18]
for the proof of βΩ = πΩ(1) for simply connected Ω).

We define the universal spectrum π(t) as the supremum of πΩ(t) over all planar
domains Ω with compact boundary.

The main result of this paper is the following theorem.

Main theorem. For any positive ε, there exists a constant c = c(ε) such that

An � cnπ (1)+ε .

Equivalently,

α � π(1).

Remark. Our proof actually implies that for t ∈ [0, 2],∫
D

(
|g′|

1 + |g|2
)t

� cnπ (2−t)+ε .

Also of interest to us are πp(t) and πp,sc(t), which are, respectively, the suprema
of πΩ(t) over all the domains of attraction to infinity for polynomial mappings,
and over the simply connected domains of attraction to infinity for polynomial
mappings (see [5] for background material on complex dynamics). It is clear that
πp,sc � πp � π, but a priori they might differ.

In [7], Eremenko essentially proved that πp,sc(1) � α. (He works under the
assumption that the polynomials are hyperbolic, but this can easily be avoided.)
Binder, Makarov, and Smirnov show in [4] that πp,sc(t) = πp(t) for t > 0. Recently,
Binder and Jones announced a proof of the identity πp(t) = π(t), which, together
with our theorem, completes the circle:

α � π(1) = πp(1) = πp,sc(1) � α.
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There is yet another growth (or, rather, decay) rate that is related to α; this was
also studied by Littlewood. The growth rate γ of coefficients of univalent functions
in D

− is defined by

γ := sup
φ

lim sup
n→∞

log |bn |
log n

+ 1,

where the first supremum is taken over all functions

φ(z) = z +
∞∑

n=1

bnz−n

that are univalent in D
−. Littlewood proved (see [15, 17]) that β � γ. Much later,

Carleson and Jones [6] showed that γ = β. Summing it all up, we arrive at the
following corollary.

Corollary. We have

α = β = γ = π(1) = πp,sc(1). (1.1)

The corollary uses the as yet unpublished result of Binder and Jones mentioned
above. Note that a well-known conjecture (see [6, 18, 13, 20]) states that π(t) =
(2− t)2/4 for |t| � 2; in particular, α = β = γ = 1/4. The best published estimates
to date for β are

0.17
[17]
< β

[8]
< 0.4884,

so the same estimates hold for α, which is a significant improvement over the
previously known

1.11 · 10−5
[2]

� α
[14]

� 1/2 − 2−264.

Recently, Hedenmalm and Shimorin released a preprint [12] with the estimate
β < 0.46. The authors have also recently obtained an estimate from below: β > 0.23
(see [2, 3]).

1.1. Connection to the value distribution of entire functions

Before giving the proof of our main theorem, we would like to note that the
reason for Littlewood’s interest in this problem was the following striking corollary
to his conjecture (see [16]).

Littlewood’s conditional theorem. Assume that α < 1/2. If f is an entire
function of order 0 < ρ < ∞, then for any 0 < θ < 1/2 − α there is a ‘small’ set S
such that ‘almost all’ roots of any equation f(z) = w lie in S. In other words,

Area(S ∩ B(R))
Area(B(R))

= O

(
1

R2θρ

)
, R → ∞,

and for all w,

#{z ∈ B(R) \ S : f(z) = w}
#{z ∈ B(R) : f(z) = w} = O

(
1

Rρ(1/2−α−θ)

)
, R → ∞,

where B(R) is a disc of radius R, centered at the origin.
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2. Proof of the main theorem

It is a standard fact (for details, see [18] and [9]) that π(t) is finite, convex, and
strictly decreasing on [0, 2]. Hence, for any small δ, we can choose ε so small that

π(1 − 2ε) − π(1) < δ.

We will also use a more elaborate fact (which follows from multifractal formalism
and fractal approximation – see [18]), that there is a constant const(t, ε), such that
for any disjoint collection of cubes {Q} of size at most 1, one has∑

Q

ω(Q)π (t)l(Q)t+ε < const(t, ε).

Let g be a polynomial of degree at most n, and ai its zeros. Consider a set where
|g| is big; that is, |g| � n. We can easily estimate the integral over this set by∫

D∩{|g |�n}

|g′|
1 + |g|2 � n−1

∫
D

|g′|
|g| = n−1

∫
D

|(log g)′|

= n−1

∫
D

∣∣∣∣∣
n∑

i=1

1
z − ai

∣∣∣∣∣ � n−1 · 2πn = 2π.

(2.1)

Now consider a complementary set, where |g| is small, which is contained inside
the disc of radius 3/2:

Ω :=
{

z : |g(z)| < n, |z| < 3
2

}
,

and let W = {Qj} be a Whitney decomposition of Ω. We note that

dµ(z) = 4n−1 |g′(z)|2
(1 + |g(z)|2)2 dx dy

is the Riesz measure associated with the nonnegative subharmonic function

u =
log(1 + |g|2)

n
.

Then, by the Riesz representation theorem,

µ(B(z, r)) � c

2π

∫2π

0

(u(z + 2reiθ ) − u(z)) dθ. (2.2)

Hence, for every cube Qj , we have

µ(Qj ) � c
log(1 + n)

n
.

Fix a cube Qj such that Qj ∩ D �= ∅, and denote by ξj a point at ∂Ω such that
d(ξj ,Qj ) � 2l(Qj ). Then, from (2.2),

µ(Qj ) � c

2π

∫2π

0

(u(ξj + 8l(Qj )eiθ ) − u(ξj ))dθ

� max
z∈B (ξj ,8l(Qj ))

c[u(z) − u(ξj )]+.
(2.3)

Denote by G(z) the Green function for C \ Ω with a pole at infinity. Extend G to
a continuous subharmonic function in C by setting G = 0 on Ω.
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By the maximum principle, for the domain C \Ω we obtain G(z) � log|2z/3| for
any z ∈ C \ Ω; hence

G(z) � log 4
3 for |z| = 2.

By the maximum principle, for the domain 2D \ Ω we have

u(z) − u(ξj ) � M2G(z)
(

log 4
3

)−1

for |z| � 2,

where M2 = max|z |=2 u(z).
If we let zj be a center of Qj , and ω a harmonic measure on C \Ω with a pole at

infinity, then by the previous inequality and (2.3) we have

µ(Qj ) � max
z∈B (ξj ,8l(Qj ))

c[u(z) − u(ξj )]+

� c
(

log 4
3

)−1

M2 max
z∈B (ξj ,8l(Qj ))

G(z)

� cM2 max
z∈B (zj ,16l(Qj ))

G(z).

By Harnack’s inequality, the right-hand side is less than

cM23
∫
∂B (zj ,32l(Qj ))

G(z)
|dz|

2π32l(Qj )
,

which, by the Riesz representation formula, is equal to

cM2

∫32l(Qj )

0

ω(B(zj , t))
t

dt � cM2ω(B(zj , 32l(Qj ))).

So, finally, we have

µ(Qj ) � const M2ω(B(zj , 32l(Qj ))). (2.4)

By Schwarz’s inequality we have∫
Ω

|g′|
1 + |g|2 dx dy = n1/2

∑
Qj ∈W

n−1/2

∫
Qj

|g′|
1 + |g|2 dxdy

� 1
2
n1/2

∑
Qj ∈W

( ∫
Qj

4|g′|2
n(1 + |g|2)2 dx dy

)1/2( ∫
Qj

dx dy

)1/2

� 1
2
n1/2

∑
Qj ∈W

µ(Qj )1/2l(Qj )

=
1
2
n1/2

∑
Qj ∈W

µ(Qj )1/2−π (1−2ε)µ(Qj )π (1−2ε)l(Qj )

� Cn1/2

(
log(1 + n)

n

)1/2−π (1−2ε) ∑
Qj ∈W

µ(Qj )π (1−2ε)l(Qj )

� Cnπ (1)+δ
∑

Qj ∈D

µ(Qj )π (1−2ε)l(Qj ),

where ε is a small positive number, C is a constant, and D is the family of all dyadic
squares with side length less then 32, that intersect Ω.
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By (2.4), we can estimate the last sum as follows:

Cnπ (1)+δ
∑

Qj ∈D

µ(Qj )π (1−2ε)l(Qj )

� CM2n
π (1)+δ

∞∑
k=1

∑
l(Qj )=1/2k

ω(Qj )π (1−2ε)l(Qj )(1−2ε)+ε l(Qj )ε

= CM2n
π (1)+δ

∞∑
k=1

1
2kε

∑
l(Qj )=1/2k

ω(Qj )π (1−2ε)l(Qj )(1−2ε)+ε

� CM2n
π (1)+δ

∞∑
k=1

1
2kε

const(ε)

� nπ (1)+δ const(ε)M2.

(2.5)

Now assume that the following dichotomy holds: For any ε > 0, there exists a
constant const(ε) such that for any polynomial g of degree n, we have

M2 � const(ε)nε, (2.6)

or

|Ω| � 1/n. (2.7)

Thus, if (2.6) holds, then the desired estimate follows from (2.5):∫
Ω

|g′|
1 + |g|2 � const nπ (1)+ε+δ .

But both ε and δ can be made arbitrarily small, so we have the desired estimate.
If (2.7) holds, then an even better estimate follows from Schwartz’s inequality:

∫
Ω

|g′|
1 + |g|2 �

( ∫
Ω

|g′|2
(1 + |g|2)2

)1/2( ∫
Ω

1
)1/2

�
( ∫

C

|g′σ |
)1/2√

|Ω|

�
√

2πn|Ω|
�

√
2π.

Therefore it remains only to prove the dichotomy.

Proof of the dichotomy. Assume that M2 > nε . Recalling the definition that

M2 = sup
|z |=2

log(1 + |g|2)
n

,

we deduce that sup|z |=2 |g| > exp(n1+ε), so the set Ω where |g| < n cannot have
big measure.

We can write g as g = PQ, where

P (z) = λ
∏

|ai |>4

(z − ai), Q(z) = λ
∏

|ai |�4

(z − ai).
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Let m be the degree of P ; then

log

(
|λ|

∏
|ai |>4

|ai |
)

− m log 2 � log |P (z)|

� log

(
|λ|

∏
|ai |>4

|ai |
)

+ m log 2,

when |z| � 2. Since |Q(z)| < 6n for |z| � 2, it follows that

inf
z∈Ω

log |P (z)| � sup
|z |=2

log |P (z)|3−n

� log
(
exp(n1+ε)3−n6−n

)
� 1

2n1+ε ,

if n is sufficiently large. Since log |PQ| = log |g| < n in Ω, we can write

log |Q(z)| � log |PQ| − log |P |
� n − 1

2n1+ε

� − 1
4n1+ε , z ∈ Ω,

if n is large enough. Therefore, Ω is contained in the union of disks {z : |z − ai | �
exp(−nε/4)}. Hence

|Ω| � nπ exp
(
− 1

2nε
)

� 1/n when n is sufficiently large.

This proves the dichotomy for n > N(ε). For degree n bounded from above by
N(ε), the dichotomy is easy to prove by a compactness argument (and, anyway, it
suffices to prove that the estimate holds for polynomials of sufficiently large degree).
This completes the proof of the main theorem.

Acknowledgements. We would like to thank Mikhail Sodin for useful discussions,
and for comments on a preliminary version of the paper.
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Case postale 240
1211 Genève 24
Switzerland

Stanislav.Smirnov@math.unige.ch


