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POWER SERIES 
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Abstract. The field K ((G)) of generalized power series with coefficients in the field K of characteristic 

0 and exponents in the ordered additive abelian group G plays an important role in the study of real closed 

fields. Conway and Gonshor (see [2,4]) considered the problem of existence of non-standard irreducible 

(respectively prime) elements in the huge "ring" of omnific integers, which is indeed equivalent to the 

existence of irreducible (respectively prime) elements in the ring K((G-0)) of series with non-positive 

exponents. Berarducci (see [1]) proved that K({G-0)) does have irreducible elements, but it remained 

open whether the irreducibles are prime i.e., generate a prime ideal. In this paper we prove that K((G - 0 ) ) 

does have prime elements if G = (E, +) is the additive group of the reals, or more generally if G contains 

a maximal proper convex subgroup. 

§1. Introduction. We begin with some preliminaries on generalized power series. 

• If AT is any field and G any ordered additive abelian group, AT((G)) is the set 
of all formal series 

a = y~] ayx
y, where ay e K Vy € G, 

y£G 

having well-ordered support Sa := {y e G : ay ^ 0}. 
With obvious operations + and •, K((G)) is a field (Hahn 1907 , see [5]). If 
K is an ordered field, so is K((G)) : We simply put a = J2yeG ayxJ > 0 iff 
as > 0, where S := min5a. 

• K((G)) is called the field of generalized power series with coefficients in K 
and exponents in G. 

• K((G-°)) denotes the subring of K((G)) whose series have their support 
included in G^° := {y € G : y < 0}. 

From now on, K will always denote a field of characteristic 0 and G an ordered 
additive abelian divisible group. 

These fields K((G)) play an important role in the theory of real closed fields 
because if K is real closed and G is divisible, then K((G)) is still real closed (see 
e.g., [12]). 

Moreover, it is a classical fact that if F is a real closed field, then F embeds in 
someR((G)),see[6]. 
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EXISTENCE OF PRIME ELEMENTS IN RINGS ... 1207 

Generalized power series and some variants have been studied by van den Dries, 
Ecalle, van der Hoeven, Macintyre, Marker, Ressayre and others, in connection 
with the study of asymptotic functions and o-minimal structures (see e.g., [13, 14, 
15,3,16,11,10]). 

Very recently, Berarducci (see [1]) proved that K((G-0)) does have irreducible 
elements, hence answering a question of Conway and Gonshor (see [2, 4]). 

In order to prove the existence of irreducibles, Berarducci introduces an ordinal 
valued map vo : K((G-0)) —> OR (see section 2). 

He first considers the case of the additive group of the reals G = (R, +) and 
shows that vo(bc) can be computed in terms of vo{b) and vo{c) using the natural 
product, by the formula vo{bc) = vo(b) 0 vo(c) (see section 2). And then to deal 
with the general case (i.e., non - archimedean groups) he uses an idea of Gonshor 
and Mourgues. 

He left open the question whether K((G-0)) contains prime elements (i.e., ele
ments generating prime ideals) even if G = (R, +). 

We prove that this is the case if G = (R, +) or more generally if G contains 
a maximal convex proper subgroup (e.g., G = W* with lexicographic order, a 
ordinal). 

More precisely we show that: 

1. If G is archimedean (i.e., G is isomorphic to a subgroup of G = (R, +)), then 
all aj-series (and some co + 1 -series) whose support is cofinal to 0 are prime 
in K((G^)). 

2. If G contains a maximal proper convex subgroup, K((G-0)) contains primes 
of type co + 1. 

However, for general groups G the existence of primes is still open, and it is also 
an open question whether all irreducibles i n^ ( (G- 0 ) ) are prime even if G = (R, +). 
CONTENTS OF THIS PAPER: 

§1: Introduction 
§2: The formula ( B ) 
§3: Primes in ^((R^0)) 
§4: Primes in K((G-0)) when G contains a maximal proper convex subgroup 

References. 

REMARK. In our paper [8] we solved affirmatively another question of [1] by 
proving that the ideal J QK((G-0)) generated by the set of monomials { x7 : y e G 
and y < 0 } is prime for any G. [ It was proved in [1] for G = (R, +) ]. 

The results of this paper and [8] are independent. 

§2. The formula (B). In order to prove the existence of irreducibles in K((G~0)), 
Berarducci introduced an "ordinal valuation" u0 : K((G-°)) —• OR. Before 
denning this map, we recall some basic definitions which all appear in [1]. 

DEFINITIONS. Let b = ^ e R < o bsx
6 € K((R^0)), and y e R<0. 

1. b\y := Y^s<y bsxS i s t n e truncation of b at y. 

2. b^ := x~^b\y 

3. J :={be A:((R^0)) : 3y < 0 such that Sh < y i.e., n<yVa£Sh}. 
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1208 DANIEL PITTELOUD 

Case i) Case ii) Case iii): vo{b) = a> 

Sh y 0 y 0 0 
FIGURE 1 

REMARK. It is easy to prove that / is an ideal of AT((R-0)), which is generated by 
the set of monomials with negative exponents. 

NOTATIONS. 

1) OR denotes the class of all ordinals. 
2) Lim denotes the class of all limit ordinals. 
3) ot abbreviates order type. 
4) C.n.f. abbreviates Cantor normal form. 
5) If X, Y C R and y G R, X < Y means x < y Vx e XVy e Y, X <y means 

X < {y}, R<y := {S G R : S < y} etc... 
6) I f Z C R, X* :=X\ {0}. 
7) If b e ^( (R^ 0 )) , ot{b) := ot(Sb). 

DEFINITION.' of v0 : A:((R^0)) —> OR. 
Let b G ̂ ( (R^0)) (Refer to figure 1). 

i) If there is some y G R<0 such that Sb < y, then vo(b) :— 0. 
ii) If there is some y G R<0 such that Sb \ {0} < y and 0 G Sb, then v0(b) := 1. 
iii) Otherwise, vo(b) := o/, where 3 is defined by ot(Sb n [—e, 0[) = a»̂  for e > 0 

sufficiently small. 

REMARKS. 

1) b = c mod (/) iSvQ(b - c) = 0. 
2) If 6 ^ 0, uo(^l)') < v0(b) for all y e R<0 sufficiently close to 0. 

3) If we are in Case iii) of the definition of VQ and if ot(Sb \ {0}) = ' a>ax + ... + 
coa" (with ai > ... >a„ > 0), then v0(b) = coa". 

Berarducci's formula, which we call (B), states that 

v0(bc) (=' v0(b) 0 «o(c) V ft, c G ̂ ( (R^0)) , 

where © denotes the commutative (natural) product of ordinals (see [9]). 
The main tool for proving (B) is the convolution formula: 

If b, c G #((R^0)) and y G R<0, then 

(Ml-' = £A+4/=y*IA«:l<'mod(/) (C) 

REMARKS. 

1) For each y G R<0, there is only a finite number of pairs (/?, E) G R-° x R-° such 
that b^c^ ^ 0 mod (J). Hence the right member of (C) does make sense. 

2) (C) holds for a product of several factors: {b\b2...bn)\
y = J2p{+ +p„=yb\---bn 

mod (/) . 
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EXISTENCE OF PRIME ELEMENTS IN RINGS ... 1209 

Finally let us recall the following facts (see [1]) which we will repeatedly use 
(without mention) in all this paper. 

LEMMA2.1. Letb,c e K((R^0)). 
a) vo{b + c) < max(vo(b), vo(c)) 
b) v0{b + c) = max{v0(b), v0(c)) ifv0(b) ± v0{c) 
c) vo{bc) = vo((b — b\y){c - c\n))for all y, n sufficiently close to 0 
d) vQ(bc) = v0(b) Qv0(c). 

As a consequence of the convolution formula (for several factors) and Lemma 
2.1, we get the following: 

COROLLARY 2.2. Let a, b e K((R<0)) be such that v0(a) = co and v0(b) = cos+n, 
where S e Lim U {0} and n e N. Let y e IR<0. Then for each k > 1 we have 

(akb)b = kak~xa^b + akb^ + e, where v0{s) < cos+n+k-x. 

§3. Primes in A:((E^0)). We prove in this section that if a e A:((E^0)) is of 
order type co or co + 1 and satisfies vo{a) = co, then a is prime in AT((IR-0)). 

In particular, this implies that Conway's series x _ 1 + x ~ 1 / / 2 + x _ 1 / 3 + ... + l i s 
prime in the model of open induction M((]R<0)) © Z. 

Now let us give the general idea of the proof. 
Assume that a is fixed as above, and let b,c,d e ^T((R-0)) be such that ab = cd. 

We want to prove that a\ c or a\ d in A^((R-0)). [ a\ c means a divides c ]. 
The idea (given in Lemma 3.1 below) is to transform the equation ab = cd into 

a simpler one, where it is easier to see that a | c or a | d. 
We are then led to associate a complexity to such equations in such a way that 

the complexity of the new equation is smaller than that of the initial one. 
If we succeed in doing this, it is clear that we will get the result by induction on 

the complexity of the equation. 

REMARKS. 

1) When we speak of the complexity of the equation ab = cd, we have to be careful: 
If say cd = c'd', does it follow that the complexity of ab = cd is the same of that 
of ab = c'd' ? We will make this very precise later. 

2) For this proof by induction on the complexity of the equation, some experimental 
computations show that we have to consider all equations of the form akb = cld, 
{a fixed, k, I e N*, b,c,d € K((WL^0))). 

Following these general ideas we will first prove that a is "almost" prime (see 
Proposition 3.2). It will follow quite easily that a is prime (see Theorem 3.3). 

DEFINITIONS. Let a e OR and let a, b € ^ ( (R^ 0 ) ) . 

1. a = b mod {Jw«) iff vo{b — a) < coa. 
2. a|6 mod (•/„<>) iff 3 e,e e ^((M-0)) such that* = ae + e andv0(e) < coa. 

LEMMA 3.1. Leta,b,c,d e K((R-0)) be such that vo(a) = co, vo(b)=cos+n, VQ{C) 

= cos'+r, v0(d) = cod2+s; where5,Sud2 €LimU{0}andn,r,s € N. Letk,l eWand 
assume that ak b = cld mod(Jv^atb)). Lety e Sa\ {0} be fixed sufficiently close to 0, 
and assume furthermore that ak~l\ c^ mod (Jwsl+r-i )ifr>\;aj(c mod (Jvo(c)) and 
a J(dmod(JVo{d)). Then there exist b', c', d' G K((R^0)) such that ak+lb' = \c')ld' 
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1210 DANIEL PITTELOUD 

mod (Jv^ak+ih,)),vo(c') = vo(c),v0{d') = vo{d), andvo(b') < vo(b). Moreover we 
have a J( c'mod (J^i)) and a ](d' mod{JVoy,)). 

PROOF. AS akb = c'd mod (7^+,+*), Corollary 2.2 yields 

(*) kak~la^b + akb]y = lcl~lc^d + c'd^y modiJ^+k-x). 

By dividing if necessary a and d by kay and {kay)
k respectively, we can as well 

assume that ka^y = 1 mod (/) . 
By multiplying (*) by a and using akb = c'd mod (JVo(akb)), we get 

c'd - lcl~lc^da - c'd^a + ak+lb^ = 0 mod{JVoWh)). 

Elementary algebra shows that this last equation can be written as 

(**) (c - c\ya)'{d - d'ya) - c^a2e + ak+lb^ = 0 mod{JV(t{akb]) 

for some e e ^ ( ( E - 0 ) ) which is given by 

e = lc'~ld^ + ( Y, (\'-l(ctoya'-2)(d - d^a). 
2<i<l ^ ' 

Now we consider two cases: 
Case 1: r = 0 

Using Lemma 2.1 and VQ(C^) < at3', we easily prove that vo(c^a2e) < vo(akb). 
So we get ak+ib^ + (c - c^a)'(d - d^a) = 0 mod (JVo{aicb)) and we set 

c' :=c- clya, d':=d- dlya and b' := b^y. 

We trivially have VQ(C') < VQ(C) and void') < void) and these inequalities must be 
equalities otherwise we contradict a \c mod (Jvo(c)) or a Id mod (/„„(</)). 
Moreover, vo(b^y) < vo{b) as y is close to 0, and we have vo(akb) = vo(c'd) = 
v0((c')'d')=v0(a

k+lb'). 
Finally, a J(c' mod (Jvo(c>)) and a J(d' mod {JV(l(d')) because a j(c mod (Jvo(c)) and 
a Id mod (/„o W). 

Case 2: r > 0 
By hypothesis ak~l | c^ mod (Jmsl+r-l), hence (**) can be written as 

(1) ak+lb' + (c- clya)'{d - d\ya) = 0 mod{JV(){ath)). 

We set c' := c - c^ya, d' := d - d^ya and we prove exactly as in Case 1 that 
v0(c') = v0(c),v0(d') = v0(d), a J(c' mod (•/„„(<•<)) and a \d' mod iJVo(d>)). 
As v0iic')'d') = v0ic'd) = 03d+n+k, (1), Lemma 2.1 and (B) imply that 
ws+n+k = Vo(ak+ib') = wk+\ 0 Vo(b'). But we also have 
wS+n+k = Vo(akb} =mk Q U()(fe)_ 

Hence voib') < voib) and voiakb) = voiak+lb'), which completes the proof of the 
lemma. H 

We now define the complexity map. 

Let A:={ue KiiR^0)) : v0iu) > 1}. We set 

Cpl-.A^xN* —• iOR)4, ib,c,d,l) >-> iv0ic),v0id),l,voib)) 

where iOR)4 is ordered lexicographically. 
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EXISTENCE OF PRIME ELEMENTS IN RINGS ... 1211 

REMARK. If akb = c'd mod iJ^^b)) w r t n a> b, c, d as in Lemma 3.1, then (B) 
implies that k is determined by b, c, d, I. 

DEFINITION. If u e K((R^0)) and v0(u) = wa+m, where a G Lim u{0} and 
m e N, then we say that y G M<0 is a big point of u ifm> Oandwo(w''') = coa+m~l. 

PROPOSITION 3.2. Let a,b,c,d G AT((M-0)) be such that voia) = co,vo{b) = 
a>s+n,vo(c) =cos'+r,v0(d) =a>dl+s\ where S,SUS2 G Lim U{0} andn,r,s G N. Let 
k, I G N* and assume that akb = c'd mod (Jvo(akb)). Then a\ c mod (/„0(c)) or a\d 
mod(Jvo{d)). 

PROOF. By induction on the complexity of (b, c,d,l). 
Assume that akb = c'd mod (/„„(<,*/,)) and that the result holds for all (b', c', d', I') 

G A3 x N* such that Cpl(b',c',d',l') < Cpl{b,c,d,l). 
We have to prove that a\ c mod (JVo(c)) or a\ d mod (JVo(d))-
By contradiction, suppose that a J(c mod (JVo(c)) and a \d mod (JVtJ(d))-

• if A: = 1, applying Lemma 3.1 we get a2b' = (c')'d' mod (JV0(a2b,)). 
As (vo(c'), vo{d'), I) = (VQ{C), vo(d), I) and voib') < v0ib), we have 
Cplib', c', d', I) < Cplib, c, d, I). 
Hence by induction we get a\ c' mod (/„0(c')) or a\ d' mod iJV(j(d')), which 
contradicts Lemma 3.1. 

• Assume now k > 1. 
Let y G Sa \ {0} be fixed, sufficiently close to 0. As akb = c'd mod (/„«+»+*), 
Corollary 2.2 yields 

(*) ak~lb + akb^ = lc'~lclyd + c'd^ m ^ f / ^ - , ) . 

[As in Lemma 3.1, we can assume that ka^y = 1 mod (/) ]. 

Case 1: y is a big point of d. 
Multiplying (*) by c and using akb = c'd mod iJVo(akb)), we get 

(1) ak~xb' = cl+ld\y modiJa)slo(i+i)<Bi2+rv+n+s-,) for some b' G A. 

As Cplib', c,d\y,l + 1) < Cplib, c, d, I), we have by induction a\ c mod (•/„„(<•)) or 
a l ^ m o d C / ^ y i , ) ) . 

By assumption a J(c mod iJVo(c)) so a|fi?l)' mod (/„0yi7))-
Write d\y = ae + e, where vo(e) < void^y). By substituting this in (1), dividing 

by a and using (5), we get ak~2b' = c'+le modiJmsx&{,+mS2+r(H\)+,-i). 
By induction we get as before a\e mod (/(B*2+«-2), and so a2|rfly mod (/„0yb)). 
Applying again induction (fc - 3)- times, we get 

(**) ak-x\d\ymodiJvo(dV/)). 

By substituting (**) in (*), we get ak~lb0 = c^yc'~ld mod (7^+,+t-i) for some 

a) Assume that y is a big point of c 
Asvoic^y) <v0ic)iyisc\osetoO),wehweCplibo,c\y,c'-ld,l) < Cplib,c,d,l). 

Hence by induction a\c^y mod iJ„0(c i/)) or a| c ' _ 1 J mod C/^oy-u©^/- !^) -
Assume that a| c/_1rf mod iJm«), where 0 :=<Si 0 (/ - \)®S2 + ril - 1) + j . 
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1212 DANIEL PITTELOUD 

As Cpl{—, c,d,l — 1) < Cpl(b, c, d, I), we get by induction a\ c mod (Jvo(c)) or 
a\ d mod (JVo(d))> a contradiction. 

So a J(c1"ld mod (/„«) and we prove as above that ak~l \c^y mod UVQ(cv,))-
As ak~x \c\y mod (/„0(ci7)), we can apply Lemma 3.1 for the equation akb = cld 

mod (JVo(akb)), and we get ak+lb' = {c')>'d' mod (JV0(aMbl)). 
As (vo{c'),vo(d'),l) = («o(c),t;o(rf),/) and vo(b') < vo(b), it follows that 

Cpl(b',c',d',l) < Cpl(b,c,d,l). Hence by induction we get a\c' mod (Jv<>(c>)) 
or a| d' mod (/„„(</')), which contradicts Lemma 3.1. 

b) Assume that y is not a big point of c 
Then by (*) 

(2) a*-16 + a*&1'' ^ ' r f^Wrf( . />„+*- . ) . 

Now remember that ak~x\d\y mod (/„0yif)) (see (**) ), and write 

(3) d\y = eak~l + e, where v0(e) < v0(d
ly). 

By substituting (3) in (2), we get ak~xb+akb^ = c'eak~l mod (,/^+,,+it-i). Hence 

(4) . b + ab^ =clemod(JMb)). 

We have to consider two subcases: 
i) y is a big point of Z> 
Substituting (4) in the initial equation akb = c'd mod {JV(j(akb)), wegeta*(-afrl>' + 

c'e) = cld mod (Jvi)(akb)), whence 

ak+^_b\y) = ci(d _ ake)mod(JMak+H_hl7))). 

As Cpl(—b\y,c,d - ake,l) < Cpl{b,c,d,l), we have by induction a\c mod 
(/„o(c)) or a\ d - ake mod (Jvo(d]). 

Both are impossible because if a\ d — ake mod (JVg(d)), then a\ d mod {JVa(d))-
ii) y is a not big point of b 
Then equation (4) reduces to b = c'e mod (Jvo^). Substituting this in the initial 

equation akb = cld mod (JVo(akb)), we get 

akcle = c'd mod(JV0(akb)), hence ake = d mod(JVo^). 

So a | d mod (/„„(,/)), a contradiction. This completes the proof of Case 1 (i.e., if 
y is a big point of d). 

Case 2: y is not a big point of d. 
Then (*) yields 

(5) ak~xb + akb\y = lc'~xc\yd mod{Jws+n+k^). 

a) Assume that y is a big point of c 
By (5) we have ak~~x \c][yc'~xd mod (J^+n+n-i). We are now exactly in the same 

situation as in Case la), and so we get a contradiction. 
b) Assume that y is not a big point of c 

(5) yields ak~xb + akb^y = 0 mod (/^+„+t-,), whence b + ab^ = 0 mod (JvM). 
Substituting this in the initial equation akb = c'd mod (/„„(„**)), we get 

ak+1(-bly) = c'd mod{Jvl)iak+i{_biy]]). 
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0 ot{a) = a>r> or co7' + 1 V i 

0 ot(dj) =coSi or co'5' + 1 V i 
m m '" it-i 

FIGURE 2 

As Cpl(—b^,c, d, I) < Cpl(b, c, d, I), we have by induction a\ c mod (JVo(c)) or 
a\d mod {Jvo(j)), a contradiction. 

This completes the proof of Proposition 3.2. H 

We are now ready to prove the main result. 

NOTATION. If u e AT((R-0)), uL denotes the supremum of Su : uL :=sup(5„) e 

THEOREM 3.3. Leta e K {{M.-0)) of orderly pew or a>+\, and such that v$(a) — w. 
Then a is prime in AT((R-0)). 

PROOF. Assume that ab = cd for some b,c,d e K((J&~0)). 
Multiplying b, c, d by x~h ,x~c ,x"d respectively, we can as well assume that 

bL = cL = dL = 0. 
We prove that a\c or a\d by induction on ot{c) © ot{d): [© denotes the natural 

sum of ordinals, see e.g., [9]]. 
First observe that if b, c or d is 0, then the result is obvious because a\0. So 

assume b ^ 0, c ^ 0, d ^ 0. 
Considering the Cantor normal form a/1 + a/2 +. . . + a/ r of Sb (/?i > /?2 > ••• > 

/?,. > 0), it is clear that we can write in a unique way b = b[ + b'2 + ... + b'r such that 
i) Sfe; < Sft- < ... < Sj; < 0 

ii) ot{b't) = a / Vi. 
We now slightly modify the b-s in the following way: 

Put dj := supSj' V/ (so d\ < 62 < ... < Qr-\ < 6r = 0) and define inductively 
£>i := 6|g, and 6, := 6^, — 6|0,._, for i > 2. Then we have: 

i) b = c>i + bi + ... + cv (if cv = 0 remove br) 
ii) Sbl<Sbl+]Vi 
iii) ©* <o?(t>,-) <f t / ' + 1 Vi. 

We do the same for c and d (see Figure 2, where we assume that vo(b), vo(c), vo(d) 
are > 1). 

As ab = cd, using (B) and the convolution formula it is easy to prove that 
0i = ^ i +>7i,/?i + 1 =y i ©c>i,andx-S|ac)i = (x^1c])(x- '"c/1) mod (JOJel+,). 

By Proposition 3.2, a\ x~M'c\ mod (-/^/i) or a\ x~md\ mod (7^,) . 
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FIGURE 3 

Assume that a\ x~Mlc\ mod {Jmy\) and write 

(6) x~Mlc\ = ea + e, where uo(e) < con. 

By replacing e b y e - e\a for a G R<0 sufficiently close to 0, we still have an 
equality like (6) and we can assume that ot{ea) = con or coy[ + 1. [ If a is close to 
0, ot(e — e\a) = cos or cos + 1 for some ordinal S. Using (B), Lemma 2.1 and the 
convolution formula we get ot((e - e\a)a) = con or oon + 1 ]. 

Hence it is easy to conclude that ot{e) < con (and not only vo(e) < co7'). 
By (6), ab = cd =>• ab = (c\ + c2 + ... + cs)d = (exMla + xM'e + c2 + ... + cs)d, 
whence 

a{b - x^ed) = {x^e + c2 + ... + cs)d. 

ot{x>"s + c2 + ... + cs) © ot{d) < ot{c) © ot(d) because {ot(x^s) < a>n < ot{c\) 
and c\ is the first part of the C.n.f. of c). 

Hence we get by induction a\ x^e + c2 + ••• + cs or a\ d. 
Butifa|x'"£+C2+...+Cs,thenby(6)a|x'"1(x~'"1ci-ea)+C2+...+cJ whence a\ -

xMlea + c. So a\ c and we are done. -\ 

§4. Primes in K({G-0)) when G admits a maximal proper convex subgroup. We 
first consider the case where G is archimedean. 

THEOREM 4.1. Let G be an ordered abelian divisible archimedean group. 
Let a G K((G-0)) be of order type coorco + l and such that Sa \ {0} is cofinal to 

0. Then a is prime in K{{G-0)). 

PROOF. AS G is archimedean, G embeds in R. So we can assume that G C R. 
Suppose that ab = cd for some b, c, d e K((G^0)). Then ab = cd in £((R^0)) , 
and by Theorem 3.3 3 u G A^((R-0)) such that, say, c = au. 

As K{{G)) is a field, u = c/a G K((G)). So u e #((R^0)) n K({G)) = 
K({G^°)) and we are done. H 

The proof of the next theorem is exactly the same as in [1], so we only sketch it. 

THEOREM 4.2. Let G be an ordered abelian divisible group which contains a maximal 
proper convex subgroup GQ. Let Qbea divisible archimedean subgroup ofG such that 
Q n Go - {0}. 

Let a G ̂ ( (Q < 0 ) ) be of order type co such that a is not divisible by any monomial 
xy fory G Q<0. 

Then a + 1 is prime in K((G-0)). 

PROOF. [ First observe that such Q and a always exist: Choose yo G G<0 \ Go 
and set 
Q := {m . p e z, q G Z*}, a := £ „ > i x»/» ]. See Figure 3. 

As G is divisible, there exists a subgroup H of G such that G = H ® GQ. H can 
be chosen such that H D Q because Q n Go = {0}. Moreover, as Go is a maximal 
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proper convex subgroup, H is archimedean and the order of G is the lexicographic 
order on G = H © Go-

Hence there is a canonical ordered fields isomorphism 
/ : K((G)) — K{{Go))((H)) and i(K{{G^))) C K((G,))((H^)). 

AsSa C g and fin G0 = {0}, i(a + l) has order type co +1 inK((G0))((H^0)). 
Hence i(a + 1) is prime in K((Go))((H-0)) by theorem 3.3. So a + 1 is prime in 

K((G^0)) and we are done. H 

EXAMPLE. Let a e O/f and C7 = Ka ordered lexicographically, where 

AT := {(x0,xi,...,x^,...) \xp e R V/?<a}. 

Let a = x""1 +X'1 / 2 + x~1/3 + x~'/4 + ..., where - l / « := (-1/ra, 0,0,0,...) e 
Ma V n e N*. Then a + 1 is prime in AT((G^0)). 
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