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M A J O R A R T I C L E

Physiologic Cold Shock Increases Adherence of
Moraxella catarrhalis to and Secretion of Interleukin
8 in Human Upper Respiratory Tract Epithelial Cells

Violeta Spaniol,1 Rolf Troller,1 and Christoph Aebi1,2

1Institute for Infectious Diseases and 2Department of Pediatrics, University of Bern, Switzerland

Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid
and prolonged downshifts of environmental temperature when humans breathe cold air. In the present study,
we show that a 26�C cold shock up-regulates the expression of UspA1, a major adhesin and putative virulence
factor of M. catarrhalis, by prolonging messenger RNA half-life. Cold shock promotes M. catarrhalis adherence
to upper respiratory tract cells via enhanced binding to fibronectin, an extracellular matrix component that
mediates bacterial attachment. Exposure of M. catarrhalis to 26�C increases the outer membrane protein–
mediated release of the proinflammatory cytokine interleukin 8 in pharyngeal epithelial cells. Furthermore,
cold shock at 26�C enhances the binding of salivary immunoglobulin A on the surface of M. catarrhalis. These
data indicate that cold shock at a physiologically relevant temperature of 26�C affects the nasopharyngeal
host-pathogen interaction and may contribute to M. catarrhalis virulence.

Moraxella catarrhalis colonizes the surface of the hu-

man nasopharynx and is a major cause of acute oti-

tis media in children and exacerbations of chronic ob-

structive pulmonary disease (COPD) in adults [1, 2].

Clinical studies have revealed that the prevalence of

both colonization and infections caused by this path-

ogen display seasonal variation and are greatest in win-

ter [3–6]. This phenomenon is incompletely under-

stood. Viral infections occurring during the cold season

pave the way for subsequent secondary bacterial infec-

tion by T cell–mediated release of interferon g, which

inhibits bacterial phagocytosis by macrophages [7] and
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increases the expression of adhesion receptors on ep-

ithelial cells (eg, carcinoembryonic antigen-related cell

adhesion molecule 1) [8]. Also, virus-induced inflam-

mation results in exposure of extracellular matrix pro-

teins, which facilitates adherence of bacterial pathogens.

In addition—and this has received little attention in

the literature—the human nasopharyngeal flora is re-

peatedly exposed to rapid downshifts of environmental

temperature. Breathing cold air (eg, �1�C at 10–20 L/

min) reduces the nasopharyngeal temperature from

34�C at room temperature to ∼25�C within several

minutes and for extended periods of time [9]. Tem-

perature is a critical environmental factor, and cold

shock (as it has been characterized for Escherichia coli)

affects the bacterial transcriptome in a concerted at-

tempt to maintain essential cellular functions [10]. Our

previous findings established that a 26�C cold shock

results in up-regulation of the UspA1 adhesin of M.

catarrhalis and enhances adherence to human con-

junctival cells [11]. This response occurs in both phy-

logenetic lineages of M. catarrhalis and entails adaptive

events in multiple outer membrane (OM) components.

Cold shock, which occurs when humans inspire cold

air [9], is a physiologic phenomenon during the cold

season and can affect the host-pathogen interaction in
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several ways. First, enhanced adherence may increase the bac-

terial density on the nasopharyngeal surface. Studies in children

have indicated that the density of M. catarrhalis in the naso-

pharynx is positively associated with prolonged respiratory tract

symptoms [12] and a greater likelihood of otitis media [13].

Second, temperature-induced variation in OM composition,

including OM proteins (OMPs) and lipooligosaccharide (LOS),

can affect the recognition of bacteria by cell-surface receptors

(eg, cell-associated fibronectin) [14], influencing the adherence

of M. catarrhalis to host cells. Third, cold shock–induced al-

teration of the OM may affect the inflammatory responses in

both respiratory epithelial and monocytic cells [15, 16] and

influence the mucosal immune response. Secretory immuno-

globulin A (sIgA) against M. catarrhalis are directed against a

small number of major OMPs, including UspA1 [17, 18].

In the present study, we investigated the effect of a 26�C cold

shock on the ability of M. catarrhalis to adhere to and induce

an inflammatory response in human upper respiratory tract

cells. Cold shock enhanced bacterial adherence to pharyngeal

and laryngeal epithelial cells and induced an elevated interleu-

kin 8 (IL-8) response in comparison with those for bacteria

incubated at 37�C. Furthermore, cold shock increased the bind-

ing of salivary immunoglobulin A (IgA) to the surface of M.

catarrhalis.

MATERIALS AND METHODS

Cell lines and growth conditions. Detroit 562 pharyngeal cells

(ATCC CCL-138) were maintained in Eagle minimal essential

medium (Invitrogen), supplemented with 10% of heat-inac-

tivated fetal calf serum (FCS), 2 mmol/L L-glutamine, 1 mmol/

L sodium pyruvate (Sigma), 1% nonessential amino acids

(Sigma), 100 U/mL penicillin, and 100 mg/mL streptomycin at

37�C in 5% CO2. Hep-2 laryngeal cells (ATCC CCL 23) were

grown in the Eagle minimal essential medium supplemented

with 10% FCS, 2 mmol/L L-glutamine, 100 U/mL penicillin,

and 100 mg/mL streptomycin.

Bacterial strains and culture conditions. M. catarrhalis

strain O35E, its isogenic uspA1 (O35E.uspA1) and lpxA

(O35E.lpxA) mutants, and the clinical isolates 300, 415, and

420 have been described elsewhere [11, 19]. Bacteria were cul-

tured at 37�C and 200 rpm in brain-heart infusion (BHI) broth

(Difco) or on BHI agar plates in an atmosphere containing 5%

CO2. Cold shock experiments were performed as described else-

where [11]. Bacteria were grown overnight at 37�C, resuspended

in fresh BHI medium, and grown to an optical density at 600

nm (OD600) of 0.3. Subsequently, bacteria were exposed to 26�C

or 37�C, respectively, for 3 h (unless otherwise stated), harvested

by centrifugation, resuspended in cell culture medium, adjusted

to an OD600 of 1 (∼ colony-forming units/mL), and used85 � 10

for infecting epithelial cells at indicated multiplicities of infec-

tion. To investigate inactivated M. catarrhalis, bacteria were re-

suspended in phosphate-buffered saline (PBS) and heat-killed

by incubation at 60�C for 1 h.

Preparation of M. catarrhalis OM vesicles and LOS. OM

vesicles (OMVs), composed of OMPs and LOS [20], and pu-

rified LOS from strain O35E exposed for 3 h to either 26�C or

37�C, respectively, were prepared as described elsewhere [19,

21].

Cell infection. Cells were seeded onto 24 well plates at a

density of cells/well in medium without antibiotics52.5 � 10

24 h before infection. After adhesion, cells were starved in

serum-free medium for 18 h to avoid increased adherence of

bacteria, considering the ability of serum components (such as

fibronectin) to facilitate binding [22, 23] and to get rid of the

serum growth factors that can influence cytokine secretion.

Cells were infected with M. catarrhalis at the indicated mul-

tiplicity of infection, centrifuged for 5 min at 165 g, and in-

cubated at 37�C in 5% CO2. To assess the proinflammatory

effects of OMPs or LOS, cells were stimulated with purified

OMVs or LOS at the indicated concentrations. Lipopolysac-

charide (LPS) from Salmonella enterica (Sigma) was used as a

positive control. Cell viability was evaluated morphologically

and by trypan blue exclusion.

IL-8 enzyme-linked immunosorbent assay. Cells were in-

fected as described above. Growth media were collected, cen-

trifuged, and stored at �80�C. IL-8 was determined using a

commercially available enzyme-linked immunosorbent assay

(ELISA) kit according to the manufacturer’s protocol (R&D

Systems).

Adherence assay. The ability of M. catarrhalis exposed to

26�C or 37�C, respectively, to adhere to epithelial cells was

measured, as described elsewhere [11, 24].

Assessment of messenger RNA stability. Messenger RNA

(mRNA) stability was determined as described elsewhere [25,

26]. An overnight culture of strain O35E was resuspended in

fresh BHI broth and grown to an OD600 of 0.3. Subsequently,

bacteria were exposed to 26�C or 37�C, respectively, for 1 h.

Portions (5 mL) were then removed and mixed with an equal

volume of 50 mmol/L sodium azide and kept on ice. Rifampicin

(Sigma) was added to the rest of the bacterial cultures at a final

concentration of 150 mg/mL. Additional 5-mL portions of the

cultures were removed after 2, 5, and 10 min and treated as

described above. RNA was isolated and used for complemen-

tary DNA synthesis as described elsewhere [11]. To assess for

DNA contamination, RNA samples were also run without re-

verse transcriptase. Quantitative real-time polymerase chain re-

action (PCR) was performed in triplicate for both target (uspA1

and recA) and normalizer (16S ribosomal RNA [rRNA]) genes.

Primers and probes for uspA1, recA, and 16S rRNA were used

as described elsewhere [11, 27]. Relative quantification of gene

expression was performed using the comparative threshold

method. The ratios obtained after normalization were expressed
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Figure 1. Increases in adherence of Moraxella catarrhalis to epithelial cells of the upper respiratory tract due to cold shock. Shown is adherence
of strain O35E, its isogenic mutant O35E.uspA1, and isolates 300, 415, and 420 to Detroit 562 (A and C) and Hep-2 (B) cells in vitro after exposure
to 26�C or to 37�C for 3 h, using a 30-min incubation period for attachment. The level of adherence is expressed as the percentage of bacteria
attached to human cells relative to that for the original inoculum added to the well. Means � 1 standard deviation for 2 or 3 independent experiments
performed in triplicate are shown. The corresponding OMP profiles of M. catarrhalis strain O35E exposed to 26�C or 37�C for 3 h were visualized by
Coomassie brilliant blue staining (D). * for 26�C versus 37�C (1-way analysis of variance [A and B] or t test [C]).P ! .05

as folds of change compared with untreated samples (the

amount of mRNA at min was considered 100%). Half-t p 0

life was determined by plotting the percentage of mRNA left

versus the time elapsed after addition of rifampicin. The equa-

tion describing the best-fitting line (Excel software; Microsoft)

was used to determine the time at which 50% of the original

mRNA had been degraded.

Flow cytometry. The capacity of M. catarrhalis to bind to

fibronectin was analyzed by flow cytometry [22]. Bacteria

grown to mid-logarithmic phase were exposed to either 26�C

or 37�C for 3 h. Subsequently, the OD600 was adjusted to 0.2,

and 200-ml aliquots were centrifuged, washed in PBS–1% bo-

vine serum albumin (BSA), resuspended, and incubated in 200

mL of 50 mg/mL fibronectin (Sigma) for 1 h. Bacteria were

harvested and incubated for 1 h at room temperature in 200

mL of a 1:100 dilution of mouse anti–human fibronectin mono-

clonal antibody (Sigma). Bacteria were washed, incubated for

30 min in 200 mL of a 1:100 dilution of Alexa 488–conjugated

goat anti–mouse antibody (Invitrogen), transferred to 2 mL of

PBS containing 1% paraformaldehyde, and analyzed on a FAC-

Scan cytometer using CellQuest software (version 4.2; BD Bio-

sciences). Anti–human fibronectin antibody and Alexa 488–

conjugated anti–mouse antibody were added separately as neg-

ative controls.

The ability of M. catarrhalis to bind to salivary and colostrum

IgA (Sigma) was analyzed as described elsewhere [17].

Statistical analysis. Data were expressed as mean � 1

standard deviation (SD). Differences between groups were

analyzed by a 2-tailed t test and 1- or 2-way analysis of var-

iance (ANOVA) with a Bonferroni posttest using Prism soft-

ware (version 5.01; GraphPad). was defined as statis-P ! .05

tically significant.

RESULTS

Increases in adherence of M. catarrhalis to epithelial cells of

the upper respiratory tract due to cold shock. Because cold

shock induces expression of UspA1, we investigated whether it

affects the attachment of M. catarrhalis strain O35E to human

pharyngeal and laryngeal epithelial cells. As shown in Figure

1, cold shock significantly enhanced adherence to pharyngeal

(2.5-fold; Figure 1A) and laryngeal (3-fold; Figure 1B) cells, in

comparison with exposure to 37�C. Furthermore, cold shock

increased adherence of other M. catarrhalis clinical isolates to

pharyngeal cells (Figure 1C), indicating that this effect is a

general characteristic of M. catarrhalis that express UspA1. To

evaluate whether increased adherence at 26�C is attributable to

UspA1 only, the isogenic mutant O35E.uspA1 was tested. The
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Figure 2. Increased levels of Moraxella catarrhalis uspA1 and recA
mRNA stability due to cold shock. M. catarrhalis strain O35E, grown to
midlogarithmic phase (optical density read at 600 nm of 0.3), was exposed
for 1 h to 26�C or 37�C. RNA isolated at different time points after the
addition of rifampicin was analyzed by quantitative real-time reverse-
transcription polymerase chain reaction to determine the amount of uspA1
(A) and recA (B) transcripts. The percentage of mRNA remaining at each
time point was determined. Results are expressed as means � 1 standard
deviation for 2 or 3 separate experiments performed in triplicate. *P !

for 26�C versus 37�C (2-way analysis of variance)..05 Figure 3. Binding of Moraxella catarrhalis to fibronectin. Strain O35E
and its UspA1-deficient mutant (O35E.uspA1) were exposed to 26�C or
37�C for 3 h, harvested, and incubated with soluble fibronectin, followed
by a mouse anti–human fibronectin antibody. Alexa 488–conjugated anti–
mouse antibody was added, followed by flow cytometry analysis. Rep-
resentative flow cytometry profiles of M. catarrhalis strain O35E (A) and
O35E.uspA1 (B) after exposure at 26�C (gray) or 37�C (black) show UspA1-
dependent binding to soluble fibronectin. The dotted line represents the
negative control (bacteria incubated with secondary antibodies only). The
geometric mean fluorescence intensity � 1 standard deviation for 2
experiments performed is shown in panel C. * for 26�C versusP ! .05
37�C (1-way analysis of variance).

absence of UspA1 substantially reduced adherence of M. ca-

tarrhalis to both cell lines (Figures 1A and 1B), demonstrating

that UspA1 is a key adhesin; however, a cold shock effect was

still observed in the mutant, indicating that other adhesins may

also be involved. This concept is supported by comparative

analysis of OMPs visualized by Coomassie blue staining, dem-

onstrating some differences in the OMP profile of strain O35E

exposed to the different temperatures (Figure 1D).

Increases in uspA1 mRNA stability due to cold shock. A

conceivable explanation for the greater abundance of uspA1

mRNA molecules after cold shock [11] is greater stability at

26�C. To study this, mRNA stability experiments were per-
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Figure 4. Increase in the outer membrane protein–mediated release
of the proinflammatory cytokine interleukin 8 (IL-8) in Detroit 562 epithelial
cells due to cold shock. Cells were either incubated for 16 h with in-
creasing doses of heat-inactivated strain O35E (A) and isolates 300, 415,
and 420 (B) exposed to 26�C or 37�C or stimulated with OMP isolated
from Moraxella catarrhalis exposed to 26�C or 37�C (C). IL-8 secretion
in the supernatants was measured by an enzyme-linked immunosorbent
assay. A representative experiment of 2 or 3 independent experiments
is shown. Results are expressed as means � 1 standard deviation of
duplicate wells. * for 26�C versus 37�C (2-way analysis of variance).P ! .05

Figure 5. Lack of effect of cold shock on immunostimulatory properties
of lipooligosaccharide (LOS) deficiency. A, Detroit 562 epithelial cells were
infected (multiplicity of infection, 10) for 16 h with the heat-inactivated
M. catarrhalis strain O35E or the LOS-deficient mutant O35E.lpxA, which
were exposed to either 26�C or 37�C. B, Interleukin 8 (IL-8) secretion by
LOS-stimulated Detroit 562 cells. Cells were stimulated for 16 h with
LOS isolated from strain O35E, which was exposed to either 26�C or
37�C at the indicated concentrations. Lipopolysaccharide (LPS) (10 mg/
mL) isolated from Salmonella enterica was used as a positive control.
IL-8 secretion in the supernatant was measured by an enzyme-linked
immunosorbent assay. Results are expressed as means � 1 standard
deviation for 2 separate experiments performed in duplicate. * forP ! .05
26�C versus 37�C (2-way analysis of variance).

formed using RNA isolated from strain O35E at different time

points after addition of rifampicin to stop de novo RNA tran-

scription. Quantitative real-time reverse-transcription PCR (RT-

PCR) showed a significant difference between 26�C and 37�C

with respect to the relative amount of uspA1 mRNA remaining

after the addition of rifampicin (Figure 2A). The calculated half-

life of uspA1 transcripts after incubation at 37�C was 1.8 min,

whereas incubation at 26�C prolonged it to nearly 3.0 min. Sim-

ilar differences in mRNA stability of uspA1 were obtained with

M. catarrhalis strain 420 (data not shown). Thus, cold shock at

26�C stabilizes uspA1 transcripts. To assess whether prolonged

uspA1 mRNA half-life is specific to this particular transcript alone

or reflects a more general phenomenon, we assessed mRNA sta-

bility of recA, another gene whose expression level is increased

after cold shock [11]. Cold shock stabilized recA transcripts (al-

though to a smaller extent than uspA1), with a calculated half-

life of 1.8 and 2.3 min at 37�C and 26�C, respectively (Figure

2B).
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Enhanced binding of fibronectin due to cold shock. UspA1

and, in some strains, UspA2 mediate adherence to epithelial

cells by binding to cell-associated fibronectin [22]. In strain

O35E, binding to fibronectin is exclusively dependent on

UspA1 [22, 28]. Because a temperature drop from 37�C to 26�C

induces an increase in surface expression of UspA1, we inves-

tigated whether it also affects binding to fibronectin. Strain

O35E and its UspA1-deficient mutant were grown to midlog-

arithmic phase, exposed to 26�C or 37�C, and incubated with

soluble fibronectin. Binding to fibronectin was significantly in-

creased (63%) when bacteria were exposed to 26�C ( )P ! .05

(Figures 3A and 3C). In contrast, the UspA1-deficient mutant

did not bind to fibronectin (Figures 3B and 3C). These results

indicate that the ability to bind to fibronectin is strongly en-

hanced by cold shock–induced UspA1 expression.

Inducement of IL-8 release in pharyngeal epithelial cells

due to cold shock. To study the contribution of cold shock

to the proinflammatory response, we infected Detroit cells with

bacteria grown at 37�C or after a temperature downshift to

26�C. Heat inactivation was performed before infection of cells

to prevent bacterial replication during prolonged exposure at

37�C. Interaction between host cells and bacteria was investi-

gated by comparing the release of IL-8 in cells after 16 h of

incubation. Dose-specific IL-8 responses are shown in Figures

4A (O35E) and 4B (clinical isolates 300, 415, and 420). Cold-

shocked bacteria induced a significantly greater release of IL-

8 ( ). Similar (although not statistically significant) resultsP ! .05

for IL-8 secretion were obtained when pharyngeal cells were

infected with the isogenic mutant O35E.uspA1 (data not

shown). Thus, cold-shocked M. catarrhalis whole cells induce

a greater proinflammatory IL-8 response in pharyngeal epi-

thelial cells than do control bacteria incubated at 37�C.

Enhancement of IL-8 release due to OMVs isolated from

cold-shocked bacteria. During infections, M. catarrhalis re-

leases OMVs that contain OMPs and LOS [29]. OMVs are

known to induce the secretion of various proinflammatory me-

diators, including IL-8, which contributes to bacterial patho-

genesis [15]. To address the question of whether cold shock

affects the immunostimulatory properties of the OM, we stim-

ulated Detroit cells for 16 h with OMVs isolated from strain

O35E exposed to either 26�C or 37�C and assessed IL-8 secre-

tion. As shown in Figure 4C, OMVs isolated from M. catarrhalis

grown at 26�C induced greater IL-8 release than did OMVs

isolated from bacteria grown at 37�C. Similar results for IL-8

secretion were obtained when pharyngeal cells were stimulated

with OMVs isolated from the isogenic UspA1-negative mutant

(data not shown).

Immunostimulatory properties of LOS not affected by cold

shock. To study the contribution of LOS to the cold shock–

induced inflammatory response, we assessed IL-8 secretion us-

ing the isogenic lpxA mutant of strain O35E [19, 30]. Detroit

pharyngeal cells were infected for 16 h with heat-inactivated

M. catarrhalis wild-type strain O35E and the LOS-deficient

mutant O35E.lpxA, both exposed to either 26�C or 37�C. As

shown in Figure 5A, the LOS-deficient mutant exposed at both

temperatures elicited levels of IL-8 similar to the wild-type

strain incubated at 37�C. To investigate whether cold shock

affects the immunostimulatory properties of purified LOS, we

stimulated pharyngeal cells for 16 h with LOS (1–10 mg/mL)

isolated from strain O35E exposed to both temperatures. Again,

there was no difference in IL-8 secretion (Figure 5B). Fur-

thermore, the LOS-stimulated pharyngeal cells produced sig-

nificantly lower levels of IL-8 than did the cells treated with

whole bacteria or OMVs.

Increases in sIgA binding on the surface of M. catarrhalis

due to cold shock. Salivary and sputum IgA antibodies are

known to react with OMPs and LOS [17, 18]. Given that cold

shock induces UspA1, we hypothesized that a temperature

downshift might increase surface binding of sIgA. We prein-

cubated saliva samples from healthy adults with M. catarrhalis

grown at 37�C or 26�C and determined sIgA binding by flowed

cytometry. Figures 6A and 6C demonstrate significantly in-

creased binding of salivary IgA on the surface of cold shock–

induced M. catarrhalis ( ). The absence of UspA1 sig-P ! .05

nificantly decreased binding of IgA (Figures 6B and 6C), and

cold shock had no significant effect. The absence of expression

of other major OMPs, such as UspA2 and Hag, had little in-

fluence on IgA binding to M. catarrhalis (data not shown).

Similar cold shock–dependent IgA binding was found using

IgA isolated from human colostrum (data not shown). Thus,

UspA1 is required for the maximal binding of salivary IgA on

the surface of cold shock–induced M. catarrhalis.

Impairment of the adherence to pharyngeal cells due to

binding of sIgA to M. catarrhalis. Because sIgA binds to

UspA1, we investigated whether it also affects bacterial adher-

ence to Detroit cells. Bacteria exposed to either 26�C or 37�C

were incubated with or without sIgA and layered on confluent

Detroit cells; adherence was then determined. Precoating of M.

catarrhalis with sIgA significantly impaired the adherence to

pharyngeal epithelial cells (Figure 6D). While binding of sIgA

similarly inhibited (∼3-fold) the adherence of M. catarrhalis

exposed to both temperatures, the adherence of IgA-coated M.

catarrhalis after cold shock exceeded the adherence of IgA-

coated bacteria grown at 37�C.

DISCUSSION

We have demonstrated in vitro that cold shock imitating phys-

iologic downshifts in human nasopharyngeal temperature in-

creases M. catarrhalis adherence to pharyngeal and laryngeal

epithelial cells (Figure 1). This effect is mediated by increased

expression and/or function of several surface adhesins. Fore-

most, rapid downshift of temperature from 37�C to 26�C in-
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Figure 6. Increase in the binding of salivary immunoglobulin A (IgA)
on the surface of Moraxella catarrhalis due to cold shock. Strain O35E
and its isogenic mutant O35E.uspA1 exposed to 26�C or 37�C for 3 h
were preincubated with saliva samples (1:20 dilution) from healthy adults.
Fluorescein isothiocyanate (FITC)–conjugated goat anti–human IgA anti-
body was added, and flow cytometry analysis was performed. Shown are
representative flow cytometry profiles of strain O35E (A) and O35E.uspA1
(B) after exposure at 26�C (gray) or at 37�C (black), which demonstrate
that UspA1 is required for effective secretory IgA (sIgA) binding on the
surface of cold shock–induced Moraxella catarrhalis. The dotted line
represents the negative control (bacteria incubated with secondary an-
tibodies only). C, Salivary IgA binding. The mean fluorescence intensity
(MFI) � 1 standard deviation (SD) for 2 experiments performed is shown.
D, Adherence assay demonstrating that binding of sIgA to M. catarrhalis
impairs the adherence to pharyngeal epithelial cells. Wild-type strain
O35E exposed to 26�C or 37�C was incubated with sIgA (100 mg/mL)

isolated from human colostrums for 30 min and layered on confluent
Detroit 562 epithelial cells; the number of adherent bacteria was deter-
mined after a 30-min incubation period. The level of adherence is ex-
pressed as the percentage of bacteria attached to human cells relative
to that for the original inoculum added to the well. Means � 1 SD for
3 independent experiments performed in triplicate are shown. *P ! .05
for 26�C versus 37�C (1-way analysis of variance).

creases the expression of UspA1, a trimeric autotransporter

adhesin that mediates binding to the host cell surface via cell-

associated fibronectin [22]. Our data indicate that fibronectin

binding was significantly increased when M. catarrhalis was

exposed to 26�C ( ) (Figures 3A and 3C). Clinical ex-P ! .05

periments have revealed that Staphylococcus aureus isolates that

exhibited greater adhesion to fibronectin and endothelial cells

led to persistent bacteremia [31]. Therefore, the finding that

cold shock increases the adherence of M. catarrhalis to upper

respiratory tract cells and enhances binding to fibronectin could

be clinically relevant during the cold season by temporarily

increasing the organism’s virulence.

Our results indicate that UspA1 is not the only cold shock–

induced adhesin. Enhanced adherence was also observed in the

UspA1-deficient mutant, indicating that other adhesins may

also be involved. This observation warrants additional inves-

tigation because M. catarrhalis expresses several adhesins that

interact with different host cell receptors, whose levels of ex-

pression appear to be specific to cell type [22, 32–34]. This

strategy could enable the organism to colonize different regions

of the respiratory tract.

The cold shock response in bacteria is organized as a complex

stimulon in which posttranscriptional events play an important

role [10]. It was recently demonstrated that cold shock–de-

pendent alterations in transcript abundances in S. aureus can

be attributed mainly to alterations in mRNA stability [26].

Thus, we analyzed whether increased expression of UspA1 is a

direct result of cold-induced stabilization of mRNA molecules

and found that 26�C stabilizes uspA1 transcripts (Figure 2A).

The proinflammatory cytokine IL-8 plays a pivotal role in

mucosal inflammation during respiratory tract infections [35].

We demonstrate that cold-shocked M. catarrhalis enhances the

release of IL-8 in pharyngeal epithelial cells in comparison with

bacteria incubated at 37�C (Figures 4A and 4B). An enhanced

proinflammatory response was also observed when epithelial

cells were stimulated with OMVs isolated from bacteria exposed

to 26�C (Figure 4C), thus indicating that cold-shock conditions

affect the immunostimulatory properties of OMPs. Greater lo-

cal concentrations of IL-8 may promote the recruitment of

inflammatory cells, which cause respiratory tract symptoms (eg,

purulent nasal discharge, swelling and edema of the Eustachian

tube, and purulent otitis media). Pharyngeal epithelial cells

infected with the M. catarrhalis mutant that lacked expression
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of UspA1 showed a similar degree of IL-8 release as did cells

infected with the wild-type strain, suggesting that M. catar-

rhalis–induced IL-8 release is not dependent on UspA1 (or at

least is so to a lesser degree).

LOS is an important virulence factor inducing proinflam-

matory responses in related bacteria, such as Haemophilus in-

fluenzae [36], Neisseria meningitidis [37], and Neisseria gonor-

rhoeae [38]. Our data, however, demonstrate that M. catarrhalis

LOS appears to be a minor contributor to the stimulation of IL-

8 by epithelial cells and that its inflammatory properties are not

dependent on cold shock.

Respiratory tract infections typically are mucosal, and protec-

tion against them is at least in part mediated by mucosal immune

responses. Asymptomatic colonization with M. catarrhalis is as-

sociated with a greater frequency of sputum IgA than COPD

exacerbation, indicating that IgA may protect against infection

[39]. Here, we demonstrate that cold shock increases UspA1-

mediated binding of sIgA to the surface of M. catarrhalis. This

emphasizes its role as an important target of protective immune

responses. Consequently, children who lack UspA1-specific sIgA

may be more susceptible to M. catarrhalis infections, particularly

after exposure to cold air. This concept is supported by the fact

that the presence of sIgA against the pneumococcal surface pro-

tein PspA in early childhood was significantly associated with a

lower risk of pneumococcal acute otitis media [40].

We also found that precoating bacteria with sIgA from hu-

man colostrum inhibited bacterial adherence to pharyngeal ep-

ithelial cells. In contrast, the presence of sIgA increases pneu-

mococcal adherence to pharyngeal epithelial cells [41]. UspA1

is a major adhesin of M. catarrhalis, and anti-UspA1 IgA an-

tibodies may have the potential to block the attachment of M.

catarrhalis to epithelial cells by inhibiting binding to receptors

on the host cell surface. Adherence of sIgA-coated M. catarrhalis

after cold shock was greater than that of sIgA-coated bacteria

incubated at 37�C, indicating that cold-shocked bacteria may

require more sIgA to be prevented from attaching to epithelial

cells than bacteria exposed to 37�C.

Interestingly, during infection, M. catarrhalis releases OMVs

carrying UspA1 that bind to human C3 and protect H. influen-

zae from complement-mediated killing [29]. Hence, increased

presence of UspA1 in M. catarrhalis OMVs after cold shock may

have a collateral effect by promoting the survival of H. influenzae

during coinfection.

Thus, “catching a cold”—unquestionably a viral infection in

most instances—may also induce adaptive events in the resi-

dential upper respiratory tract flora, whose clinical implications

(based on our study results) deserve to be the focus of future

studies addressing this particular aspect of the transition from

asymptomatic colonization to bacterial secondary infection.

This study demonstrates that a 26�C cold shock up-regulates

OM adhesin expression of M. catarrhalis by prolonging the

mRNA half-life, promotes bacterial adherence to host cells via

enhanced binding to fibronectin, increases the OMP-mediated

proinflammatory activity of pharyngeal epithelial cells, and en-

hances sIgA binding on the bacterial surface. These findings

indicate that cold air in the human upper respiratory tract may

affect the nasopharyngeal host-pathogen interaction.
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