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A B S T R A C T

The effects of seeing on Sérsic r 1/n profile parameters are extensively studied using a Moffat

function. This analytical approximation to the point spread function (PSF) is shown to

provide the best fit to the PSF predicted from atmospheric turbulence theory when b , 4:765.

The Moffat PSF is additionally shown to contain the Gaussian PSF as a limiting case

ðb!1Þ. The Moffat function is also shown to be numerically well behaved when modelling

narrow PSFs in HST images. Seeing effects are computed for elliptically symmetric surface

brightness distributions. The widely used assumption of circular symmetry when studying the

effects of seeing on intrinsically elliptical sources is shown to produce significant

discrepancies with respect to the true effects of seeing on these sources. A prescription to

correct raw (observed) central intensities, effective radii, index n and mean effective surface

brightness is given.

Key words: atmospheric effects – methods: data analysis – galaxies: distances and redshifts –

galaxies: photometry.

1 I N T R O D U C T I O N

It is well known that the ability to parametrize galaxies from

ground-based images is severely compromised by seeing, which

scatters light from the objects, thereby producing a loss of

resolution in the images, lower mean surface brightnesses than the

true values, and larger effective radii. The effects of seeing have

been extensively studied in the case of elliptical galaxies with r 1/4

profiles (Franx, Illingworth & Heckman 1989; Saglia et al. 1993).

Recently, Trujillo et al. (2001, hereafter T01) extended previous

work by studying analytically the effects of seeing on elliptically

symmetric surface brightness distributions, following the Sérsic

(1968) r 1/n law and assuming a Gaussian point spread function

(PSF). Sérsic’s generalization of the de Vaucouleurs (1948, 1959)

r 1/4 law has been shown to provide a better representation to the

distribution of light in both elliptical galaxies (including the dwarf

ellipticals) and the bulges of spiral galaxies (Caon, Cappacioli &

D’Onofrio 1993; D’Onofrio, Capaccioli & Caon 1994; Young &

Currie 1994; Andredakis, Peletier & Balcells 1995).

The existence of ‘wings’ in stellar profiles reveals that the real

PSF deviates from the Gaussian form. In this paper we show, from

the size of the wings present in real images (e.g. Saglia et al. 1993),

that such deviations from Gaussian PSFs can result in different

values for the profile parameters in the range of 10–30 per cent.

The new generation of ground-based telescopes and the study of

galaxies at high redshifts make these types of studies crucial in

order to obtain reliable (unbiased) information from the structural

analysis of these objects.

This paper presents a further, more detailed, analysis of the

effects of seeing on Sérsic profiles when ‘wings’ are present in the

PSF. For this reason we have modelled the PSF by a generalization

of the Gaussian form: the Moffat function (Moffat 1969), which

describes well the presence of wings. It should be noted that these

kinds of studies are not only important for ground-based

observations. In fact, HST images present their own ‘narrow’

PSFs (see a detailed study in Bendinelli, Zavatti & Parmeggiani

1987, and Krist 1993). The use of these steep PSFs presents

numerical problems, which can be avoided by modelling the

narrow PSFs with polynomials instead of exponential expressions

like Gaussians. In Section 2 we summarize some general results

from the use of Moffat PSFs. Section 3 describes the effects of

seeing on the Sérsic profile parameters brought about by the Moffat

PSF. A prescription for seeing corrections is given in Section 4.

2 G E N E R A L R E M A R K S A B O U T M O F FAT

C O N VO L U T I O N

Point spread functions can be determined observationally by

studying the scattering of stellar light. Numerous papers have been

devoted to this problem (e.g. Moffat 1969; King 1971; Bendinelli

et al. 1990). Among the analytical approximations, the Moffat

function (see equation 1) has been widely used to model the PSF

(e.g. Bendinelli, Zavatti & Parmeggiani 1988a,b; Young et al.

1998); for instance, the IRAF data reduction package (Tody 1986)

adopts the Moffat function as a standard PSF. In Fig. 1 we plot bothPE-mail: itc@ll.iac.es
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the Gaussian function and Moffat functions having a range of b.

Note that as b increases the Moffat function tends to approximate

the core of the Gaussian profile. In fact, a Moffat function contains

the Gaussian PSF as a lim iting case (see Appendix A). Moreover,

the Moffat PSF has two clear advantages over the Gaussian PSF:

(i) it is numerically well behaved in the treatment of narrow

PSFs, and

(ii) it allows the ‘wings’ that usually appear in stellar profiles to

be fitted.

Very accurate convolutions between the PSF and the model

profiles of the galaxies are required in order to obtain reliable

results. Current reduction packages use Fast Fourier Transforms to

evaluate the convolutions. This is, in fact, inappropriate where

there are strong changes in the intensity gradients of the galaxy

profiles. The inner parts of galaxy profiles are steep, and this

demands a very accurate measurement of the high frequencies in

the Fourier domain. Narrow PSFs (such as those of the HST )

magnify this problem, because they also present a steeper profile.

Working in the real domain does not exempt us from trouble either;

in fact, one can encounter several numerical problems when

performing accurate convolutions using a Gaussian to model

narrow PSFs. Current computers can manage numbers of the order

of , e200. These kinds of numbers can be easily obtained when

working with Gaussians which have s , 1 in units of pixels (see

the exponential expressions at play when performing a Gaussian

convolution in equation 4 in T01). The use of Moffat functions

avoids this problem due to the use of polynomials instead of

exponential expressions (see equation 3). In this sense, Moffat

functions are numerically better behaved than Gaussians when

dealing with narrow PSFs.

2.1 Mathematical analysis

We will use a circular Moffat function to model the point spread

function:

PSFðrÞ ¼
b 2 1

pa 2
1 1

r

a

� �2
� �2b

; ð1Þ

with the full-width at half-maximum, FWHM ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21/b 2 1
p

,

where PSFðFWHM=2Þ ¼ ð1=2ÞPSFð0Þ, and the total flux is

normalized to 1. Consider a case where, in the absence of seeing,

the surfaces brightness distribution, I(r ), of a galaxy is elliptically

symmetric. This means that the isophotes of the object all have

the same constant ellipticity e ðe ¼ 1 2 b/a, where a and b are

respectively the semimajor and semiminor axes of the isophotes).

As shown in T01, elliptical coordinates (j,u) are the most

appropriate for this type of problem. In this coordinate system, the

Figure 1. Top panel: The normalized intensity profile of a Gaussian function and Moffat PSF functions having different values of b are plotted against the

radius of the PSF in units of FWHM. Bottom panel: The difference between the normalized Moffat PSF [PSFb(r )] and the normalized Gaussian PSF [PSFG(r ].
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surface brightness distribution, I(r ), of an elliptical source depends

only on j: IðrÞ ¼ IðjÞ. The convolution equation that represents the

effect of seeing on the surface brightness distribution is given by

Icðj; uÞ ¼ ð1 2 eÞ

ð1

0

j0Iðj0Þ dj0
ð2p

0

du0 PSFðj0; u0; j; uÞ; ð2Þ

where PSF (j0, u0, j, u ) is the Moffat PSF given by

PSFðj0; u0; j; uÞ ¼
b 2 1

pa 2

11
j 2 1j

02 22jj0 cosðu2u0Þ1 ðe 2 22eÞðj0 sin u02j sin uÞ2

a 2

� �2b

:

ð3Þ

The subscript ‘c’ will be used from here on to refer seeing-

convolved quantities. Along the major axis of the object, u ¼ 0, the

angular integral can be solved analytically ðe . 0Þ :ð2p

0

du0 PSFðj0; u0; j; 0Þ ¼ 2
b 2 1

pa 2
a2b
e

X1
k¼0

C
b
2kðwÞ

�
1

ae

j0

a

� �2

ð2e 2 e 2Þ

" #k

B
1

2
;
2k 1 1

2

� �
;

ð4Þ

where

ae ; 1 1
j
02ð1 2 eÞ2 1 j 2

a 2
and w ;

1

ð2e 2 e 2Þ1=2
j

a

1

a1=2
e

; ð5Þ

and Cl
nðtÞ and B(z, w) are the Gegenbauer polynomials (Gradshteyn

& Ryzhik 1980, p. 1029) and beta functions (Abramowitz &

Stegun 1964, p. 258) respectively. A simpler expression is obtained

for the convolution in the circularly symmetric case ðe ¼ 0Þ :

IcðrÞ ¼ 2
b 2 1

a 2

ð1

0

dr0r0Iðr0Þa
2b
0 Pb21 a21

0 1 1
r 2 1 r

02

a 2

� �� �
; ð6Þ

where

a0 ; 1 1
r
02 2 r 2

a 2

� �2

1
2r

a

� �2
" #1=2

; ð7Þ

and Pn(x ) is the Legendre function of first class (Abramowitz &

Stegun 1964, p. 332).

2.2 The effect of seeing on the central intensity

For any intensity distribution with elliptical symmetry, I(j ), the

seeing convolved central intensity, Icðj ¼ 0Þ, is such that

Icð0Þ ¼ 2
b 2 1

a 2
ð1 2 eÞ

ð1

0

dj0j0Iðj0Þ

�
1

ðb 2 2 c 2Þb/2
Pb21

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2 2 c 2
p

� �
; ð8Þ

where

b ; 1 1
j
02

a 2
1 1

1

2
ðe 2 2 2eÞ

� �
and c ; 2

j
02

2a 2
ðe 2 2 2eÞ: ð9Þ

Note that the effect on the central intensity of the seeing convolved

distribution is a function of the intrinsic ellipticity of the object.

Basically, as e increases, the spread of photons from the inner parts

of the profile due to the seeing is more efficient, and consequently

the central intensity decreases.

2.3 The effect of seeing on the ellipticity of the isophotes

In the absence of seeing, by construction, all isophotes of the

profile have the same ellipticity, whereas the presence of seeing

tends to make them circular. Using the isophote condition,

Icðj; 0Þ ¼ Icðj;p=2Þ, it is possible to derive an implicit equation

that gives the variation of the ellipticity with the radial distance:ð1

0

j0Iðj0Þ dj0
X1
k¼0

C
b
2kðwÞ

a
b1k
e

2 ð21Þk
C
b
2kðw*Þ

ða*
e Þ

b1k

" #

� ð2e 2 e 2Þ
j0

a

� �2
" #k

B
1

2
;
2k 1 1

2

� �
¼ 0: ð10Þ

For this problem, it is useful to introduce ae;w; a
*
e and w* as

functions of the Cartesian coordinates x,y:

ae ; 1 1
j
02ð1 2 eÞ2 1 x 2

a 2
and w ;

1

ð2e 2 e 2Þ1=2
x

a

1

a1=2
e

ð11Þ

and

a*
e ; 1 1

j
02 1 y 2

a 2
and

w* ; 2 i
1

ð2e 2 e 2Þ1=2
y

a

1

ða*
e Þ

1=2
:

ð12Þ

From this implicit equation we can obtain y/x, and therefore the

ellipticity of the isophotes affected by seeing using eðxÞ ¼ 1 2 y/x.

2.4 The ability of the Moffat function to match the

atmospheric turbulence prediction of the PSF

The theory of atmospheric turbulence predicts the PSF to be the

Fourier transform of exp½2ðkbÞ5=3� (Fried 1966; Woolf 1982),

where FWHM ¼ 2:9207006b, and b is a scaling parameter. In the

real domain this PSF is written as

PSFTðrÞ ¼
1

2p

ð1

0

kJ0ðkrÞ e2 kFWHM
2:9207ð Þ

5=3

dk; ð13Þ

where J0 is the standard Bessel function (Abramowitz & Stegun

1964, p. 358). For a given FWHM, we have evaluated the value of

b that minimizes the difference between the prediction of the

atmospheric turbulence theory and the Moffat function by

minimizing the x 2 of the fit between both PSFs. An optimum

value of b , 4:765 was found. In Fig. 2 we have shown the

difference between the PSF prediction from turbulence theory and

a Moffat function for a value of b ¼ 4:765. It can be seen that the

agreement is quite good. A Moffat function could therefore be used

to reliably model the turbulence prediction, although the PSFs

usually measured in real images have bigger ‘wings’ or,

equivalently, smaller values of b than those expected from the

turbulence theory (e.g. Saglia et al. 1993). This is because the real

seeing not only depends on atmospheric conditions but is also

caused by imperfections in telescope optics.

The presence of these bigger ‘wings’ in real images makes

Moffat functions a better choice to model the PSF than the

turbulence theory prediction. As an example of this, current
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packages of data reduction in IRAF suggest a default value of

b ¼ 2:5. In order to span the range of the different ‘wing’ sizes

present in real images, in the next section we model the Moffat

PSFs using three different values of b: b ¼ 5 (to simulate the

turbulence prediction), 2.5 (the default value of the IRAF package),

and 1.5 (to model a large ‘wing’ in the PSF).

3 T H E E F F E C T S O F S E E I N G O N T H E S É R S I C

P R O F I L E PA R A M E T E R S

The equations that we have shown in the previous section are

general results for Moffat seeing. For practical purposes with

applications to real galaxies, we are going to focus on the Sérsic

profile. In the particular case of r 1/n profiles, the surface brightness

distribution is given (in elliptical coordinates) by

IðjÞ ¼ Ið0Þ102bn ðj/ reÞ
1
n

� �
; ð14Þ

where I(0) is the central intensity, and re the effective radius of the

profile. The constant bn is chosen such that half the total luminosity

predicted by the law comes from j , re. bn can be well

approximated by the relation bn ¼ 0:868n 2 0:142 (Caon et al.

1993).

3.1 The central intensity

To study the effect of seeing on the central intensity, we make use

of equations (8) and (14). Fig. 3 shows this effect for different

values of the ellipticity in the intrinsic light profile, assuming

b ¼ 1:5, 2.5 and 5, and for the Gaussian case (i.e., b!1Þ as well.

As b increases (i.e., as the size of the PSF ‘wings’ decrease), we

asymptotically recover the effect on the central intensity produced

by a Gaussian PSF.

From this figure it follows that the effect of seeing on the central

intensity increases as the size of the ‘wings’ increase. This is easily

understood, as broader ‘wings’ increase the probability that a

photon will hit the imaging device at a point further offset from

where it would have hit in the absence of a seeing. For a typical

Figure 2. Top panel: The best fit to the PSF predicted by the theory of atmospheric turbulence (diamonds) using a Moffat function with a b value of 4.765 (solid

line). Bottom panel: The difference between these two PSFs as a function of the radius of the PSF in unit of FWHM.
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value of b (e.g., b ¼ 2:5Þ, the difference from a Gaussian PSF is

, 10 per cent.

For a given seeing-disc (note that the relative size of the FWHM

to effective radius increases along the x-axis of Fig. 3; cf. Figs 4

and 5), the central intensity of profiles with larger values of n is

more affected than for low n, as is expected because of the higher

central light concentration of these profiles. As noted in Section

2.2, the effect of seeing on the central intensity of the object is also

dependent on the intrinsic ellipticity of the object: the central

intensity of galaxies with larger ellipticities are more affected by

seeing.

3.2 The effective radius

The seeing effect on effective radius can be obtained by solving for

rc
e from the conservation of luminosity by the convolution

L cðrc
eÞ ¼ LðreÞ, where L(re) is the luminosity of the source inside

re, and L cðrc
eÞ is the luminosity obtained from the object affected by

seeing, measured inside its effective radius.

Fig. 4 shows this effect for different values of ellipticity, with

b ¼ 1:5, 2.5 and 5, and for the Gaussian PSF. Here, the presence of

significant ‘wings’ in the PSF produces an effective radius larger

than what is expected from Gaussian seeing. As n increases, the

convolved effective radius also increases. The ellipticity effect is

also shown. Greater ellipticities result in greater effective radii, and

these differences are more important for greater values of n. This

result is as expected due to the diminution of the central intensity

with larger ellipticity. For the values of b typically present in real

images ð2:5 , b , 4; see Saglia et al. 1993) we obtain deviations

from Gaussian seeing in the range 15–30 per cent (bigger

deviations are obtained for smaller values of the ratio rc
e/FWHMÞ.

It should be noted that our measurement of the effective radius

Figure 3. The effects of seeing on the observed central intensity, Ic(0), for different values of n. The Gaussian case (solid line) and three different values of b are

shown: b ¼ 5 (dot-dashed line), b ¼ 2:5 (dashed line) and b ¼ 1:5 (dot-dot-dot-dashed line). Three different ellipticities are also shown: e ¼ 0 (left column),

e ¼ 0:25 (middle column) and e ¼ 0:5 (right column).
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has been obtained over the semimajor axis. Some authors use as

radial distance the magnitude r* ¼
ffiffiffiffiffi
ab
p

; in this case, the effective

radius of the object affected by seeing is given by

rc*
e ¼ rc

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 eðrc

eÞ
p

, where eðrc
eÞ can be obtained using equation

(10).

3.3 The Sérsic index n

To quantify the effect of seeing on the shape parameter n, we use

the parameter h(j ) (T01). h(j ) is equivalent, locally, to the

parameter n of the Sérsic profile. This parameter can be understood

as a measure of the slope of the profile. In Fig. 5 we show the

effects of seeing on this parameter (evaluated at rc
eÞ for different

sizes of the PSF ‘wings’ and different intrinsic ellipticities. It is

easy to see how the real value of n is recovered asymptotically

when the ratio rc
e/FWHM increases. The effect of seeing on hðrc

eÞ is

bigger for smaller values of b. This means that bigger PSF ‘wings’

produce a stronger effect on the slope of the profile. The increase in

the intrinsic ellipticity of the profile has a similar effect, but the

influence is not as important as it was for the previous parameters.

Note that seeing effects always produce a surface brightness profile

with a smaller value of n than the actual one. It is expected that any

procedure to recover the structural parameters of the profile that

does not take into account the effect of seeing will obtain lower

values of n than the actual ones. Lower values of n will also be

expected if the intrinsic ellipticities of the objects are not taken into

account during the recovery process. This is crucial in the study of

high-z galaxies. As was shown for the central intensity and

effective radius, the presence of ‘wings’ in the PSF causes the

values of the profile parameters to deviate from the prediction

Figure 4. The effects of seeing on the observed effective radius, rc
e for different values of n. The Gaussian case (solid line) and three different values of b are

shown: b ¼ 5 (dashed line), b ¼ 2:5 (dotted line) and b ¼ 1:5 (dot-dashed line). Three different ellipticities for the sources are also shown, e ¼ 0 (left

column), e ¼ 0:25 (middle column) and e ¼ 0:5 (right column).
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made correcting for Gaussian seeing. In the case of the hðrc
eÞ

parameter, these deviations are in the range of 10–20 per cent.

3.4 The mean effective surface brightness

From the previous results it is now easy to study the effect of seeing

on the mean effective surface brightness, defined as

kmle ; 2 2:5 log
LðreÞ

pr2
e

: ð15Þ

By using equation (15) and the conservation of the flux, it

immediately follows that

Dkmle ; kmlc
e 2 kmle ¼ 5 log

rc
e

re

: ð16Þ

In Fig. 6 we show how the mean effective surface brightness

changes as a function of rc
e/FWHM for different values of n and

intrinsic ellipticities. This figure clearly shows that galaxies

affected by seeing have apparent mean surfaces brightnesses lower

than their true values. Lower values of b produce greater effects on

this quantity. Also, as the intrinsic ellipticity of the object

increases, the effects of the seeing on the mean effective surface

brightness also increase.

4 A P R E S C R I P T I O N F O R S E E I N G

C O R R E C T I O N S

It is possible to obtain the parameters of the Sérsic profiles (seeing-

free quantities) from the convolved quantities. We present an easy

Figure 5. The effects of seeing on the index hðrc
eÞ for different values of n. The Gaussian case (solid line) and three different values of b are shown: b ¼ 5

(dashed line), b ¼ 2:5 (dotted line) and b ¼ 1:5 (dot-dashed line). Three different ellipticities for the sources are also shown, e ¼ 0 (left column), e ¼ 0:25

(middle column) and e ¼ 0:5 (right column).
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prescription1 based on the use of the plots in Figs 3, 4 and 5. The

steps which an observer must take are as follows.

(1) Determine the FWHM and the value of b from the stellar

profile by fitting a Moffat function. Current astronomical data

reduction packages, such as IRAF, allow this fitting.

(2) Measure rc
e along the semimajor axis directly from the raw

images. This can be done by solving the implicit equation

L cðrc
eÞ ¼ ð1=2ÞL

cð1Þ.

(3) Determine hðrc
eÞ numerically using the expression

hðrc
eÞ ¼

1

rc
e

Icðr
c
eÞ

dIcðjÞ
dj
jrc

e

ln
Icðr

c
eÞ

Icð0Þ
: ð17Þ

(4) Evaluate the value of n and e from the use of Fig. 5.

(5) Obtain the value of re using Fig. 4.

(6) Obtain the value of I(0) using Fig. 3.

5 C O N C L U S I O N S

As redshift increases, the apparent size of galaxies becomes

progressively smaller and the effect of seeing progressively

stronger. As we have seen, precise corrections for seeing are

demanded in order to obtain reliable and comparable information

about structural parameters from objects at the same or different

redshifts. We have chosen the Moffat function to model the PSFs of

real images. This choice has been made by following two criteria:

the ability of this function to model the ‘wings’ of the PSFs present

Figure 6. The differences Dkmle between the measured mean effective surface brightness, kmlc
e and the seeing-free quantity kmle for different values of n. The

Gaussian case (solid line) and three different values of b are shown: b ¼ 5 (dashed line), b ¼ 2:5 (dotted line) and b ¼ 1:5 (dot-dashed line). Three different

ellipticities for the sources are also shown, e ¼ 0 (left column), e ¼ 0:25 (middle column) and e ¼ 0:5 (right column).

1 A similar prescription for Gaussian seeing is presented in T01.
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in real images obtained from ground-based telescopes, and it is

well behaved numerically because of its polynomial structure.

We have studied the general properties of the Moffat function

when modelling PSFs. These properties can be summarized as

follows: it is a very good option to model the narrow PSFs present,

for example, in HST images because it is numerically well

behaved; the Gaussian PSF is a lim iting case of the Moffat PSF

ðb!1Þ, and the prediction for the PSF due to the theory of

atmospheric turbulence can be numerically well approximated by a

Moffat function with b , 4:765.

For practical purposes, we have analysed the effects of seeing

caused by this PSF on the Sérsic model. The effects on the central

intensity, effective radius, n index and mean effective surface

brightness are extensively shown in Figs 3, 4, 5 and 6. We have also

given an easy prescription for seeing correction that can be useful

for observers in order to obtain the seeing-free quantities.

Our main results have been to show the importance of taking into

account the intrinsic ellipticities of the objects and the presence of

‘wings’ in the PSFs for the recovery of accurate structural

parameter. It is not sufficient to consider the PSF as Gaussian and

assume circular symmetry to model the effects of seeing on the

surface brightness distribution when the ratio of the effective radius

to the FWHM is small (#2.5).
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Tody D., 1986, Proc. SPIE, 627, 733

Trujillo I., Aguerri J. A. L., Cepa J., Gutiérrez C. M., 2001, MNRAS, 321,

269, (T01)

Woolf N. J., 1982, ARA&A, 20, 367

Young C. K., Currie M. J., 1994, MNRAS, 268, L11

Young C. K., Metcalfe N., Zhu J., Wu H., Chen J. S., 1998, A&AS, 130, 173

A P P E N D I X A : T H E G AU S S I A N A S A

L I M I T I N G C A S E O F T H E M O F FAT F U N C T I O N

The Gaussian function can be obtained from the Moffat function

(MF) in the lim iting case where b!1. One can rewrite the MF as

a function of FWHM (F ) and b:

PSFðrÞ ¼ 4ð21/b 2 1Þ
b 2 1

pF 2
1 1 4ð21/b 2 1Þ

r

F

� �2
� �2b

: ðA1Þ

As b!1, we can substitute 21/b 2 1 with ðln 2Þ/b, so

b!1
lim PSFðrÞ ¼

b!1
lim

b 2 1

b

4 ln 2

pF 2
1 1

4 ln 2

b

r

F

� �2
� �2b

: ðA2Þ

Using
m !1
lim ð1 1 z/mÞm ¼ ez, we have

b!1
lim PSFðrÞ ¼

4 ln 2

pF 2
e24 ln 2

F 2 r 2

: ðA3Þ

Finally, writing F 2 ¼ 8s 2 ln 2, we obtain

b!1
lim PSFðrÞ ¼

1

2ps 2
e21

2
r
sð Þ

2

: ðA4Þ

For practical purposes, a value of b ¼ 100 is completely

satisfactory for modelling a Gaussian by using a Moffat function.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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