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S U M M A R Y
We present a new method for the modelling of frequency-dependent and frequency-
independent Q in time-domain seismic wave propagation. Unlike previous approaches, at-
tenuation models are constructed such that Q as a function of position in the Earth appears
explicitly as a parameter in the equations of motion. This feature facilitates the derivation of
Fréchet kernels for Q using adjoint techniques. Being simple products of the forward strain
field and the adjoint memory variables, these kernels can be computed with no additional
cost, compared to Fréchet kernels for elastic properties. The same holds for Fréchet kernels
for the power-law exponent of frequency-dependent Q, that we derive as well. To illustrate
our developments, we present examples from regional- and global-scale time-domain wave
propagation.

Key words: Tomography; Seismic attenuation; Computational seismology; Theoretical
seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismic waves propagating through the Earth are attenuated due to a
multitude of microscale processes including diffusion and disloca-
tion creep of point defects, grain boundary sliding and the viscous
motion in (partially) molten material (e.g. Jackson 2007; Karato
2008, chapter 11). Commonly described macroscopically in terms
of the quality factor Q, viscoelastic attenuation leads to seismic
phase velocity dispersion and to an amplitude reduction of seismic
waves (e.g. Dahlen & Tromp 1998; Kennett 2001; Aki & Richards
2002). Numerous laboratory experiments consistently revealed a
temperature and frequency dependence of Q for Earth materials
that can be described phenomenologically by the Arrhenius-type
equation

Q(ω) = Q0

(
ω

ω0

)α

eαE/RT , (1)

where E is the activation energy, T is temperature, R is the gas con-
stant and ω0 is a reference frequency (e.g. Goetze 1971; Goetze &
Brace 1972; Gueguen et al. 1989; Karato & Spetzler 1990; Jackson
2000). Typical values for the constant α, summarized for instance
by Karato (2008), range between 0.2 and 0.4. Much of the seismo-
logical interest in Q is related to its exponential dependence on T,
which suggests that attenuation may serve as a proxy for temperature
in the Earth. The frequency dependence of Q found in laboratory
studies has been confirmed by analyses of seismic data across the
seismologically observable frequency band from ∼10−3 to ∼1 Hz
(e.g. Anderson & Minster 1979; Sipkin & Jordan 1979; Flanagan &
Wiens 1998; Cheng & Kennett 2002; Lekić et al. 2009). A review
on the frequency dependence of Q may be found, for instance, in

Romanowicz & Mitchell (2007). Despite convincing evidence for a
power-law dependence of Q on frequency, the majority of seismic
studies assume frequency-independent attenuation. This simplifi-
cation can be justified by the sparsity and bandlimited nature of
seismic observations that often prevent reliable estimates of α.

With the advent of the numerical age, the proper modelling of
seismic wave attenuation has received considerable attention. While
the implementation of viscoelastic attenuation in frequency-domain
numerical modelling is nearly trivial, attenuation is more difficult to
implement in time-domain wave propagation schemes that are most
frequently used in large-scale 3-D applications (e.g. Igel et al. 1995;
Komatitsch & Tromp 1999; Moczo et al. 2002; Chen et al. 2007;
Dumbser et al. 2007; Fichtner et al. 2009; Tape et al. 2010). Fol-
lowing the seminal work of Emmerich & Korn (1987) and Carcione
et al. (1988a,b), attenuation has been modelled almost exclusively
by superpositions of rheological bodies of either Maxwell or Zener
type that have been shown to be equivalent (Moczo & Kristek 2005).
The discrete ensemble of relaxation meachnisms leads, by construc-
tion, to a numerically convenient set of equations (Robertsson et al.
1994; Blanch et al. 1995; van Driel & Nissen-Meyer 2014a). The
rheological bodies are described in terms of relaxation variables that
are determined such that a prescribed Q(ω) is matched as closely
as possible. The concept of representing a broad absorption band
by a superposition of individual relaxation mechanisms already ap-
pears in Liu et al. (1976), where it had, however, not been used for
numerical modelling.

While the forward problem of viscoelastic wave propagation can
be considered solved (at least when sufficient computational re-
sources are available), the inverse problem remains technically chal-
lenging because Q does not appear explicitly in the description of
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the rheological bodies used to model attenuation (see Section 2.1.1
for details). Instead, Q is determined implicitly by the set of suitably
chosen relaxation parameters. Furthermore, the relation between Q
and the relaxation parameters may vary from one location to an-
other. The absence of an explicit Q in the time-domain viscoelastic
wave equation complicates the computation of Fréchet kernels that
are needed to invert for the heterogeneous distribution of Q in the
Earth.

Based on the assumption of a frequency-independent Q, Tromp
et al. (2005) proposed to circumvent this problem through the defi-
nition of additional adjoint sources for the computation of Q kernels.
This approach, adopted for instance by Bozdağ et al. (2011) and
Zhu et al. (2013), yields correct kernels, but it also doubles the
computational cost because an additional adjoint simulation must
be performed. Furthermore, an extension to frequency-dependent
Q seems difficult.

Here we present a new approach to the time-domain mod-
elling of viscoelastic wave propagation with frequency-dependent
or frequency-independent attenuation where Q at a specified refer-
ence frequency appears explicitly in the equations of motion. In ad-
dition to improving computational efficiency, this approach allows
us to compute Fréchet kernels for Q and its frequency dependence
without the requirement of additional wavefield simulations.

This paper is organized as follows. To introduce basic concepts
without heavy notation, we start our developments in Section 2.1
using a 1-D scalar wave equation. In Section 2.1.2, we describe
a novel parametrization of attenuation models where Q appears
explicitly. Subsequently, in Section 2.2 we make the transition to
the elastic case. A examples, we consider isotropic media, as well
as full anisotropy with 21 independent elastic parameters. Section 3
is dedicated to the derivation of shear and bulk Q kernels, based on
the previously derived Q models. In the interest of a readable text,
we defer the derivation of kernels for the power-law exponent α to
the Appendix. Examples of synthetic seismograms for frequency-
dependent Q and corresponding Fréchet kernels are presented in
Section 4.

2 F O RWA R D M O D E L L I N G

2.1 The scalar wave equation

For the purpose of illustration, we start our development with the
scalar wave equation. Written in velocity–stress formulation, it con-
sists of the momentum conservation law

ρv̇ − ∂xσ = f, (2)

and the viscoelastic constitutive relation defined by

σ̇ (t) =
∫ ∞

−∞
Ċ(t − t ′)ε̇(t ′) dt ′ . (3)

In eq. (3), σ , C and ε = ∂xv are representative components of
the stress tensor σ , the elastic tensor C and the strain tensor ε,
respectively.

2.1.1 Numerical modelling of viscoelastic attenuation

Taking inspiration from Blanch et al. (1995), we model the
time-dependence of the elastic modulus C by a superposition of
N ≥ 1 exponential functions with decay times τ p (p = 1, . . . , N) that
phenomenologically mimick different relaxation mechanisms in

the Earth:

C(t) = Cr

⎡
⎣1 + τ

N∑
p=1

D(p)e−t/τ (p)

⎤
⎦ H (t) . (4)

The symbol C r denotes the relaxed modulus, D(p) are the weights of
the relaxation mechanisms, H is the Heaviside function and τ is a
parameter that controls the strength of viscoelastic attenuation. As
described in Section 2.1.2, the free parameters D(p), τ (p) and τ must
be determined such that C(t) approximates a pre-defined behaviour.
Differentiating (4) with respect to time t, and introducing the result
into (3), yields

σ̇ = Cr (1 + sτ ) ε̇ + Crτ

N∑
p=1

M (p) , with s =
N∑

p=1

D(p) , (5)

where the memory variables

M (p)(t) = − D(p)

τ (p)

∫ ∞

−∞
e−(t−t ′)/τ (p)

H (t − t ′)ε̇(t ′) dt ′ (6)

satisfy the first-order differential equation

Ṁ (p) = − D(p)

τ (p)
ε̇ − 1

τ (p)
M (p) . (7)

The combination of eq. (7), the momentum conservation law (2),
and the constitutive relation (3), forms a complete set of equations
that describes the propagation of a scalar viscoelastic wave.

2.1.2 Constructing Q models

The quality factor Q(ω) is defined as the ratio

Q(ω) = Re C(ω)

I C(ω)
, (8)

where the complex modulus C(ω) is given by

C(ω) = iω
∫ ∞

−∞
C(t)e−iωt dt . (i = √−1). (9)

When Q is sufficiently large, typically �100, it can be re-
lated to the fractional energy loss per oscillation cycle, that is
	E/E = −2πQ−1. For the specific form of C(t) defined in eq.
(4), we find

Q(ω) =
⎡
⎣1 + τ

N∑
p=1

D(p)ω2τ (p) 2

1 + ω2τ (p) 2

⎤
⎦

⎡
⎣τ

N∑
p=1

D(p)ωτ (p)

1 + ω2τ (p) 2

⎤
⎦

−1

.

(10)

To construct Q-models that approximate a prescribed empirical
frequency dependence of the form suggested already in eq. (1),

Qtarget(ω) = Q0

(
ω

ω0

)α

(11)

across the frequencies of interest, we proceed as follows:

(i) We define a set of Q0 values, (Q(1)
0 , . . . , Q(M)

0 ), that span the
range of Q in our earth model.

(ii) We set τ = Q(k)
0 for each k = 1, . . . , M. This defines a

collection of numerical Q models, Q(ω, Q(k)
0 ), via eq. (10).
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Figure 1. Black curves show Q(ω) for Q0 equal to 50, 100 and 500 (from left- to right-hand side) for N = 3 relaxation mechanisms. Qtarget(ω) = Q0(ω/ω0)α

with α = 0.3 and ω0 = 2π · 0.05 Hz is shown in red. The optimal relaxation times and weights are τ 1 = 0.14, τ 2 = 1.40 s, τ 3 = 9.46 s, D1 = 1.23, D2 = 0.91
and D3 = 2.07. Within the target frequency range 0.02–0.2 Hz, Q(ω) matches Qtarget(ω) to within 3 per cent of the respective Q0.

(iii) We find optimal values for τ (p) and D(p) by minimizing the
cumulative difference between the numerical Q models Q(ω, Q(k)

0 )
and the target Q models Qtarget(ω, Q(k)

0 ),

J (τp, Dp) =
M∑

k=1

|| [Q(ω, Q(k)
0 ) − Qtarget(ω, Q(k)

0 )]/Q(k)
0 ||ω . (12)

The minimization ofJ represents a non-linear optimization prob-
lem in a low-dimensional parameter space that can be solved effi-
ciently with Monte Carlo-type techniques . Finding optimal τ p and
Dp for a whole set of Q0 values has the effect that the approximation

Q(ω) =
⎡
⎣1 + Q−1

0

N∑
p=1

D(p)ω2τ (p) 2

1 + ω2τ (p) 2

⎤
⎦

⎡
⎣Q−1

0

N∑
p=1

D(p)ωτ (p)

1 + ω2τ (p) 2

⎤
⎦

−1

≈ Q0

(
ω

ω0

)α

(13)

effectively holds for any Q0 inside the range of Q’s in the earth
model. The proposed optimization scheme for the relaxation pa-
rameters τ (p) and D(p) explicitly introduces Q0 into the equations
of motion through the enforcement of τ = Q−1

0 for all relevant Q0

values. There are two immediate advantages of this approach: (i)
the search for optimal τ (p) and D(p) only has to be performed once.
Thus, once τ (p) and D(p) are found, they can be used throughout
the earth model even when Q0 is spatially variable. This statement
holds provided that α is constant, which includes the frequency-
independent case with α = 0. (ii) The explicit appearance of Q0

facilitates the computation of Fréchet kernels for Q0 using standard
adjoint techniques. The computation of Fréchet kernels for Q0 and
α will be described in Section 3 and illustrated in Section 4.

A numerical example for the case of N = 3 relaxation mecha-
nisms and a frequency range from 0.02 to 0.2 Hz is shown in Fig. 1.
We determined the parameters τ (p) and D(p) using Simulated An-
nealing (Kirkpatrick et al. 1983). With α = 0.3, Q(ω) deviates from
Qtarget(ω) by less than 3 per cent for values of Q0 between 50 and
500. While fully sufficient for practical purposes, the accuracy can
be improved by using more than three relaxation mechanisms.

2.2 Extension to the elastic case

Following the illustrative example for the scalar wave equation in the
previous section, we now transition to the fully elastic 3-D case. We

consider both general anisotropy (Section 2.2.1) and the practically
most relevant isotropic scenario (Section 2.2.2).

2.2.1 General anisotropy

In analogy to eqs (2) and (3), the momentum conservation and
viscoelastic stress–strain relation for generally anisotropic media
can be written as

ρv̇i − ∂ jσi j = fi (14)

and

σ̇i j (t) =
3∑

k,l=1

∞∫
−∞

Ċi jkl (t − t ′)ε̇kl (t
′) dt ′ , (15)

respectively. The stress–strain relation (15) allows different elastic
coefficients Cijkl to be subject to different forms of viscoelastic
dissipation. These differences may result in anisotropic attenuation
that has been predicted for finely layered media (Carcione 1992; Zhu
et al. 2007) and observed in both laboratory and field experiments
(e.g. Tao & King 1990; Bao et al. 2012). Anisotropic attenuation
in the inner core, with stronger attenuation for waves propagating
parallel to the Earth’s spin axis, is also well documented (Creager
1992; Song & Helmberger 1993). Generalizing eq. (4) for the time
dependence of elastic parameters, we have

Ci jkl (t) = Cr
i jkl

⎡
⎣1 + τi jkl

N∑
p=1

D(p)e−t/τ (p)

⎤
⎦ H (t) . (16)

Following the developments in Section 2.1.1, we can eliminate the
numerically inconvenient convolutional integral in (15) with the
help of memory variables: Introducing the time derivative of (16)
into the stress–strain relation (15), yields

σ̇i j =
3∑

k,l=1

Cr
i jkl (1 + τi jkl s) ε̇kl +

3∑
k,l=1

Cr
i jklτi jkl

N∑
p=1

M (p)
kl . (17)

The memory variables M (p)
kl , defined as

M (p)
kl = − D(p)

τ (p)

∞∫
−∞

e−(t−t ′)/τ (p)
H (t − t ′)ε̇kl dt ′ , (18)
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satisfy the first-order differential equation

Ṁ (p)
kl = − 1

τ (p)
M (p)

kl − D(p)

τ (p)
ε̇kl . (19)

Combined, eqs (14)–(16) constitute a complete set of equations that
describes the propagation of dissipative waves in anisotropic media.

2.2.2 The isotropic case

Isotropic media described in terms of the bulk modulus κ and the
shear modulus μ are the simplest special case of the general vis-
coelasticity captured in eq. (15). The isotropic elastic tensor is given
by

Ci jkl =
(

κ − 2

3
μ

)
δi jδkl + μ (δikδ jl + δ jkδil ) . (20)

Using the fact that the relaxation parameters τ (p) and D(p) are deter-
mined such that the τ ijkl from eq. (16) are equal to the inverses of
their corresponding Q0’s, we can write the time-dependent Cijkl as

Ci jkl (t) = κrδi jδkl

⎡
⎣1 + Q−1

0 κ

N∑
p=1

D(p)e−t/τ (p)

⎤
⎦ H (t)

+ μr

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)

×
⎡
⎣1 + Q−1

0 μ

N∑
p=1

D(p)e−t/τ (p)

⎤
⎦ H (t) . (21)

Inserting the time derivative of (21) into the stress–strain relation
(15) yields the modified stress–strain relation

σ̇i j = κr
[
1 + Q−1

0 κ s
]
ε̇kkδi j + 2μr

[
1 + Q−1

0 μs
]

˙̃εi j

+ κr Q−1
0 κ

N∑
p=1

M (p)
kk δi j + 2μr Q−1

0 μ

N∑
p=1

M̃ (p)
i j . (22)

where εkk and ε̃ denote the trace and the deviator of the strain tensor
εij. Similarly, M (p)

kk and M̃ (p)
i j are the trace and the deviator of the

memory variable tensor M (p)
i j , defined as in eq. (18). The first two

terms in eq. (22) represent a purely elastic stress–strain relation.
The last two terms involving the memory variables account for
viscoelastic dissipation.

3 S E N S I T I V I T Y K E R N E L S

In Section 2, we established forward problem equations that link vis-
coelastic parameters to the seismic wavefield. In what follows, we
will use this link in order to derive expressions for Fréchet kernels
with respect to Q and α. For this, we assume that a measurement, en-
coded in the measurement functional χ (u), has been made. Possible
measurements include L1 and L2 waveform differences (Brossier
et al. 2009, 2010), cross-correlation traveltimes (Luo & Schuster
1991), generalized seismological data functionals (Gee & Jordan
1992), or various time–frequency misfits (Fichtner et al. 2008). Our
analysis rests on the adjoint method, described, for instance, by
Tarantola (1984), Tromp et al. (2005), Fichtner et al. (2006a,b) or
Chen (2011).

3.1 Adjoint equations and adjoint memory variables

Invoking the adjoint method, the variation δχ of the measurement
functional can be written in terms of the forward wavefield u, the
forward strain tensor ε, the adjoint wavefield u†, the adjoint strain
tensor ε†, the variation in density δρ, and the variation of the elastic
tensor δC:

δχ = −
∞∫

−∞

∫
V

δρ u̇†
i (t)u̇i (t) dx dt

+
∞∫

−∞

∫
V

⎡
⎣

∞∫
−∞

ε
†
i j (t) δĊi jkl (t − t ′) εkl (t

′) dt ′

⎤
⎦ dx dt . (23)

The adjoint field is governed by the adjoint equations that may be
written in velocity–stress formulation, consisting of the momentum
conservation equation

ρv̇
†
i − ∂ jσ

†
i j = f †

i (24)

and the stress–strain relation

σ̇
†
i j =

∞∫
−∞

Ċi jkl (t
′ − t)ε̇†kl (t

′) dt ′ . (25)

The adjoint source f †
i is determined by the definition of the measure-

ment, that is by the specific form of χ (see Section 4 for examples).
Viscoelastic dissipation in the adjoint stress-strain relation is time-
reversed, meaning that current stresses depend on future strains.
Since the adjoint equations are, however, solved in reverse time, nu-
merical stability is ensured (Tarantola 1988; Fichtner 2010). Again
following the developments in Section 2.1.1, we eliminate the con-
volutional integral in (25) by defining adjoint memory variables
M (p) †

kl as

M (p) †
kl = − D(p)

τ (p)

∞∫
−∞

e−(t ′−t)/τ (p)
H (t ′ − t)ε̇†kl dt ′ . (26)

Differentiating eq. (26) with respect to time t, it follows that the ad-
joint memory variables satisfy the first-order differential equation

Ṁ (p) †
kl = 1

τ (p)
M (p) †

kl + D(p)

τ (p)
ε̇
†
kl . (27)

The resulting modified stress–strain relation for the adjoint field is

σ̇
†
i j = Cr

i jkl (1 + τi jkl s) ε̇
†
kl +

3∑
k,l=1

Cr
i jklτi jkl

N∑
p=1

M (p) †
kl . (28)

Equipped with the complete set of adjoint equations, consisting of
eqs (23), (27) and (28), we can proceed with the calculation of
sensitivity kernels for Q and α. In the interest of a lighter notation,
we will consider shear and bulk Q separately, and we transfer the
detailed derivation of α kernels to the Appendix.

3.2 Shear Q

Restricting ourselves to an isotropic medium with Ci jkl = (κ −
2
3 μ)δi jδkl + μδikδ jl + μδilδ jk and variations in the shear modulus
μ, eq. (23) condenses to

δχ = 2

∞∫
−∞

∫
V

⎡
⎣

∞∫
−∞

ε̃
†
i j (t) δμ̇(t − t ′) dt

⎤
⎦ ε̃i j (t

′) dx dt ′ , (29)
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where ε̃i j and ε̃
†
i j are the deviatoric parts of εij and ε

†
i j , respectively.

Invoking the chain rule, we can express δμ in (29) in terms of
variations in Q0 μ:

δμ = ∂μ

∂ Q0 μ

δQ0 μ . (30)

The partial derivatives ∂μ/∂Q0 μ follows from the definition of the
time-dependent elastic modulus in (4), with the general relaxed
modulus Cr set equal to the relaxed shear modulus μr:

∂μ(t)

∂ Q0 μ

= −μr Q−2
0 μ

⎡
⎣ N∑

p=1

D(p)e−t/τ (p)

⎤
⎦ H (t) . (31)

Using (30) and (31), we can reformulate the integral over
ε̃
†
i j (t)δμ̇(t − t ′) that appears in eq. (29):

∞∫
−∞

ε̃
†
i j (t) δμ̇(t − t ′) dt =

∞∫
−∞

˙̃ε
†
i j (t) δμ(t − t ′) dt

= −μr Q−2
0 μ

N∑
p=1

∞∫
−∞

D(p)e(t−t ′)/τ (p) H (t − t ′) ˙̃ε
†
i j (t) δQ0 μ dt .

(32)

Identifying copies of the adjoint memory variables M (p) †
kl , defined

in (26), we can condense (32) into

∞∫
−∞

ε̃
†
i j (t) δμ̇(t − t ′) dt = μr Q−2

0 μ

N∑
p=1

τ (p) M̃ (p) †
i j (t ′) δQ0 . (33)

We can now combine (29) with (33) in order to write δχ in terms
of the volumetric Fréchet or sensitivity kernel KQ0 μ

:

δχ =
∫
V

KQ0 μ
(x) δ ln Q0 μ(x) dx , (34)

where KQ0 μ
can be explicitly computed from the interaction of the

forward strain deviator ε̃i j and the deviator of the adjoint memory
variables, M̃p,i j :

KQ0 μ
= 2μr Q−1

0 μ

N∑
p=1

τ (p)

∞∫
−∞

M̃ (p) †
i j ε̃i j dt . (35)

Eq. (35) reveals that the kernel for Q0 μ can be computed in a sim-
ilar fashion as kernels for elastic parameters, velocity and density;
without any additional computational requirements. The adjoint
equations are solved in reversed time which automatically yields
the adjoint memory variables needed to evaluate the time integrals
in (35). For comparison, the sensitivity kernel for the shear modulus
μ in a non-dissipative medium is given by (e.g. Tromp et al. 2005;
Fichtner 2010)

Kμ = 2μ

∞∫
−∞

ε̃
†
i j ε̃i j dt . (36)

Thus, for the computation of the Q kernel KQ0 μ
, the term

Q−1
0 μ

∑N
p=1 τ (p) M̃ (p) †

i j , involving the deviator of the adjoint mem-
ory variables, simply takes the place of the adjoint strain tensor
ε̃
†
i j in eq. (36). Following similar steps as above, we show in the

Appendix that the Fréchet kernel Kα for the exponent α in the
power-law frequency dependence of Qμ (eq. 11), is given by

Kα = −2μrαQ−1
0 μ

N∑
p=1

τ (p)

D(p)

∂ D(p)

∂α

∞∫
−∞

M̃ (p) †
i j ε̃i j dt . (37)

3.3 Bulk Q

Considering only variations in the viscoelastic properties related to
the bulk modulus κ , the variation of the elastic tensor Cijkl reduces to
δCijkl = δκ . The variation of the misfit or measurement functional χ

can then be written in terms of the traces εkk and ε
†
kk of the forward

and adjoint strain tensors:

δχ =
∞∫

−∞

∫
V

⎡
⎣

∞∫
−∞

ε
†
kk(t) δμ̇(t − t ′) dt

⎤
⎦ εkk(t ′) dx dt ′ . (38)

Following exactly the same steps as in Section 3.2 on shear Q, we
can transform (38) into

δχ =
∫
V

KQ0 κ
(x) δ ln Q0 κ (x) dx , (39)

with the sensitivity kernel

KQ0 κ
= κr Q−1

0 κ

N∑
p=1

τ (p)

∞∫
−∞

M (p) †
kk εkk dt . (40)

In eq. (40), M (p) †
kk denotes the trace of the memory variable tensor

M (p) †
i j . Just as the kernel for shear Q in eq. (35), the kernel for bulk

Q can be computed from the forward strain and the adjoint memory
variables that are a natural by-product of the adjoint solution. Again,
for comparison, we note the kernel for the bulk modulus κ in a non-
dissipative medium is given by (e.g. Tromp et al. 2005; Fichtner
2010)

Kκ = κ

∞∫
−∞

ε
†
kkεkk dt . (41)

It follows that a simple replacement of ε
†
kk by Q−1

0 κ

∑N
p=1 τ (p) M (p) †

kk

in eq. (40) yields Q instead of κ kernels.
In the Appendix, we demonstrate that the Fréchet kernel for the

power-law exponent of bulk Q is given by

Kα = −κrαQ−1
0 κ

N∑
p=1

τ (p)

D(p)

∂ D(p)

∂α

∞∫
−∞

M (p) †
kk εkk dt . (42)

4 E X A M P L E S

To illustrate the practical implementation of frequency-dependent
Q and its effect on seismic waveforms, as well as the computation
of Q and α kernels, we present various examples from global- and
regional-scale wave propagation.

4.1 Global wave propagation

In order to model global seismic wave propagation in a broad fre-
quency range, while keeping the computational requirements at
a manageable level, we limit ourselves to the radially symmetric
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Figure 2. Left-hand panel: Q as a function of frequency as approximated with linear solids and used in the global example shown in Fig. 3. The original
frequency-independent Q of PREM (Dziewoński & Anderson 1981) is shown in black. Two frequency-dependent versions of Q are shown in red (reference
frequency 1 Hz) and blue (reference frequency 0.1 Hz). Right-hand panel: Phase velocity dispersion relative to the phase velocity of PREM for Q0 = 1000
and the Q models shown to the left-hand side. Velocities are fixed to PREM velocities at the central period of the simulation (22 s) causing the red model to
produce smaller traveltimes at short periods. The frequency range used in the example is indicated by grey shading.

earth model PREM (Dziewoński & Anderson 1981). Being a spe-
cial case of an axisymmetric medium, the equations of motion for
PREM can be reduced to a system of PDE’s in two space variables,
and solved efficiently by the time-domain spectral-element code
AxiSEM (Nissen-Meyer et al. 2007, 2014; van Driel & Nissen-
Meyer 2014b).

We consider three different Q models, summarized in the left-
hand panel of Fig. 2. The original, frequency-independent Q of
PREM (black curve), a frequency-dependent Q with α = 0.3 and
reference frequency 1 Hz (red curve), and a frequency-dependent
Q with α = 0.3 and reference frequency 0.1 Hz (blue curve). The
phase velocities are matched to the phase velocities of PREM at
the central period of the numerical simulation, which is 22 s. The
resulting phase velocity dispersion curves are shown in the right-
hand panel of Fig. 2.

The frequency dependence of Q and the different choice in refer-
ence frequency lead to notable differences in synthetic seismograms,
a small collection of which is presented in Fig. 3 for a period band
ranging from 2 to 200 s. The example illustrates that the frequency-
dependence of Q is generally not a small effect because realistic
values of α between 0.2 and 0.4 (e.g. Karato 2008) can lead to
substantial modification of Q away from the reference frequency.

4.2 Regional-scale wave propagation

In our next example, we consider wave propagation at regional
scales, that is over distances of few hundred kilometres. Our com-
putational domain, shown in the upper right-hand panel of Fig. 4, is
centred on Turkey. We locate the earthquake in eastern Turkey and
choose an explosion as source mechanism in order to exclude radi-
ation pattern effects on the sensitivity kernels computed in the fol-
lowing sections. As earth model we again use PREM (Dziewoński
& Anderson 1981), modified such that Qμ and Qκ are frequency de-
pendent as shown in Fig. 1. For the simulation of 3-D seismic wave
propagation, we use the spectral-element solver SES3D, described
in Fichtner & Igel (2008) and Fichtner et al. (2009).

A comparison of synthetic seismograms with and without attenu-
ation is shown in Fig. 4 for station ADVT, located in western Turkey
at an epicentral distance of 9◦. As a result of the short epicentral
distance and the short dominant period of 8 s, the wavefield mostly
senses crustal and uppermost mantle structure where Qμ and Qκ in
PREM range around 600 and 58 000, respectively. It follows that
the effects on phase and amplitude are small, but noticeable. The

amplitudes of both body and surface waves are reduced by around
5 per cent. The time shifts induced by the presence of viscoelastic
attenuation range around 1 s.

For the calculation of Fréchet kernels we limit ourselves to two
types of measurements: (1) Relative L2 amplitude differences are
defined as

χ = A =
∫

u2 dt − ∫
u2

0 dt∫
u2

0 dt
, (43)

with u and u0 denoting synthetic and observed seismograms, re-
spectively. For our examples, we restrict ourselves to the vertical
components, that is u = uz . (2) Correlation traveltime shifts are
defined as the time T where the correlation between observed and
synthetic waveforms reaches its maximum (e.g Luo & Schuster
1991; Dahlen et al. 2000):

χ = T = arg max
∫

u(τ ) u0(t + τ ) dτ . (44)

The adjoint sources f† for these measurements, that is the right-hand
sides of the adjoint eq. (24), are given by

f†A(t) = 2u(t)∫
u2 dt

ez , (45)

and

f†T (t) = − u̇(t)∫
u̇2 dt

ez , (46)

respectively (e.g. Luo & Schuster 1991; Fichtner 2010). Equipped
with eqs (45) and (46), we can solve the adjoint equations that
provide the adjoint memory variables needed to compute Fréchet
kernels for viscoelastic parameters, according to eqs (35) and (40).

4.2.1 Fréchet kernels for Q at the reference frequency

Fig. 5 displays horizontal slices through Fréchet kernels for Q0 μ,
that is the shear Q at the reference circular frequency ω0. Ker-
nels are computed based on eq. (35) and for measurements per-
formed in three different time windows. While the time win-
dow from 246 to 333 s mostly contains higher-mode Rayleigh
waves, the time window from 362 to 400 s is dominated by the
fundamental-mode Rayleigh wave. Acknowledging that more elab-
orate measurements—based for instance on multitapers or various
time-frequency transforms (e.g. Laske & Masters 1996; Zhou et al.
2004; Fichtner et al. 2008)—are possible, we do not apply additional
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Figure 3. Comparison of vertical-component displacement seismograms (bandpass filtered between 2 and 200 s period) for a moment magnitude Mw = 5.0
event in 126 km depth under the Tonga islands, computed with AxiSEM in the anisotropic PREM model without ocean with the three different attenuation
models shown in Fig. 2. The traces are plotted for the GSN stations indicated in the map. The zoom windows are indicated with red rectangles in the record
section and the timescale is relative to the ray-theoretical arrival.



Q models and kernels 1885

Figure 4. Comparison of vertical-component synthetic seismograms without (black) and with (red) viscoelastic dissipation for a dominant period of 8 s. The
source–receiver configuration is shown to the right-hand side, with the computational domain shaded in light grey. As earth model, we use the spherically
symmetric PREM (Dziewoński & Anderson 1981) with a frequency-dependent Q constructed as in Fig. 1. The zoom into the P wave and surface wave trains
(lower left- and lower right-hand side, respectively), reveals time shifts of around 1 s and amplitude variations on the order of 5 per cent.

Figure 5. Horizontal slices through Fréchet kernels for relative perturbations in Q0 μ for measurements in different time windows on the vertical-component
velocity seismogram from station ADVT (see Fig. 4). The time windows are indicated in the top row by grey shading. Kernels for amplitude and traveltime
measurements are shown in the second and third row, respectively. All kernels are plotted at the depth where they attain their largest values. Note the different
colour scales.

filters or time windows in order to keep the examples illustrative
and repeatable. Kernels for amplitude and traveltime measurements
are shown in the second and third rows of Fig. 5, respectively. All
kernels are plotted at the depth where they attain their maximum
values.

Being a composite of various higher modes, the time window
from 246 to 333 s yields Fréchet kernels that deviate from the sim-
ple cigar shape produced by the fundamental-mode Rayleigh wave
in the 362–400 time window. The comparatively high frequencies
in the time window from 333 to 362 s lead to a thinner Fresnel
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Figure 6. The same as Fig. 5 but for relative perturbations in the bulk quality factor Q0 κ .

Figure 7. The same as Fig. 5 but for relative perturbations in the exponent α of the shear quality factor Qμ.

zone than for the other time windows where the dominant frequen-
cies are lower. Generally, amplitude and traveltime measurements
have similarly strong sensitivity to relative perturbations in Q0 μ, as
previously noted, for instance, by Zhou (2009).

Fréchet kernels for Q0 κ , that is bulk Q at the reference frequency,
can be computed using eq. (40). Kernels for the same measurement
windows and measurements as in Fig. 5 are shown in Fig. 6. As
expected for surface waves with little sensitivity to the bulk modu-

lus, sensitivities for bulk Q are several orders of magnitude smaller
than for shear Q. The overall geometrical pattern, however, remains
unchanged.

4.2.2 Fréchet kernels for the power-law exponent α

The computation of Fréchet kernels for α, that is the power-law
exponent in the frequency dependence of Q, requires knowledge
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of the partial derivatives ∂D(p)/∂α (see eqs 37 and 42). Since the
weights D(p) are computed by numerical optimization as outlined
in Section 2.1.2, their partial derivatives are not explicitly avail-
able. They can, however, be approximated by computing weights
D(p)(α + δα) for a slightly perturbed power-law exponent α:

∂ D(p)

∂α
≈ D(p)(α + δα) − D(p)(α)

δα
. (47)

For our example with three relaxation mechanisms, the finite-
difference approximation (47) yields the values ∂D(1)/∂α = −3.06,
∂D(2)/∂α = −1.54 and ∂D(3)/∂α = 2.56 for shear Q.

Fréchet kernels for fractional perturbations in shear α, displayed
in Fig. 7 for the previously used time windows and measurements,
are orders of magnitude smaller than kernels for fractional pertur-
bations in shear Q. While more targeted measurements are possible
(e.g. Cheng & Kennett 2002; Lekić et al. 2009; Kennett & Abdullah
2011), this result still reflects that the frequency-dependence of Q
in the Earth is difficult to constrain.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We presented a novel method for the modelling of frequency-
dependent and frequency-independent Q in time-domain numerical
wave propagation. In contrast to previous approaches (e.g. Em-
merich & Korn 1987; Carcione et al. 1988a,b; Blanch et al. 1995),
Q as a function of position in the Earth is introduced explicitly into
the equations of motion.

A key element of our method is the determination of only one set
of relaxation parameters τ (p) and D(p) from eq. (4) that is valid for
the full range of Q0 values in the earth model. This is different from
more classical approaches where a set of relaxation parameters is
determined individually for each Q0 value (e.g. Emmerich & Korn
1987; Blanch et al. 1995; van Driel & Nissen-Meyer 2014a). A
direct consequence of working with one universal set of relaxation
parameters are larger discrepancies between the target Q model and
the actual numerical Q model. For most practical purposes, however,
these errors are hardly relevant. Using, for instance, N = 3 relax-
ation mechanisms for frequencies between 0.02 and 0.2 Hz, and Q0

between 50 and 500, the relative errors between the target Q and
the numerical Q shown in Fig. 1 are below 3 per cent. This error is
well below lateral variations of shear Q in global models that are on
the order of ±100 per cent (e.g. Romanowicz 1995; Selby & Wood-
house 2002; Warren & Shearer 2002; Gung & Romanowicz 2004;
Dalton et al. 2008). Differences between 1-D Q models typically
range between 10 and 100 per cent (e.g. Dziewoński & Anderson
1981; Widmer et al. 1991; Durek & Ekström 1996; Resovsky et al.
2005; Trampert & Fichtner 2013).

The most relevant tuning parameters in our approach are the num-
ber and values of the target Q(k)

0 , as well as the number of relaxation
parameters. While one should ideally give a generally valid recipe
for the perfect distribution of the target Q(k)

0 , we think that carefully
conducted numerical experiments with different choices for Q(k)

0 are
more likely to provide good results for specific applications with
their specific requirements. The same holds for the number of re-
laxation mechanisms. The approximation can be improved through
the incorporation of additional relaxation mechanisms, though at
the expense of increase computational costs.

The α kernels derived in the Appendix and computed in Sec-
tion 4.2.2 for example measurements, in principle provide a tool
that enables inversions for the frequency-dependence of Q as a
function of position. Since Q itself tends to be poorly resolved (e.g.

Resovsky et al. 2005), a good spatial resolution of α, that is compa-
rable to the spatial resolution of seismic velocities, seems unlikely.
Model basis functions for α will thus need to have a broader spatial
extent, or even be constant for the whole Earth—depending on the
resolving power of a specific data set. In our description of Q, we so
far assumed a constant α throughout the Earth. In the case of spa-
tially variable α, this aspect would need to be relaxed, and position
dependent weight factors D(p) would need to be determined.

The most important advantage of our approach lies in the com-
putationally efficient calculation of Fréchet kernels that does not
require additional computational costs, compared to the calculation
of Fréchet kernels for elastic properties. Fréchet kernels for anelas-
tic properties can generally be expressed in terms of the forward
strain field and the adjoint memory variables that are a by-product
of any adjoint calculation in a viscoelastic medium.
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Zhu, H., Bozdağ, E., Duffy, T.S. & Tromp, J., 2013. Seismic attenuation
beneath Europe and the North Atlantic: implications for water in the
mantle, Earth planet. Sci. Lett., 381, 1–11.

A P P E N D I X A : C O M P U T I N G α- K E R N E L S

In this Appendix, we provide a detailed derivation of the Fréchet
kernels for the exponent α in the power-law frequency dependence
of Q, as defined in eq. (11). For this we first note that for Q0 
 1,
eq. (13) can be transformed to

N∑
p=1

Dpωτ (p)

1 + ω2τ (p) 2
≈

(ω0

ω

)α

. (A1)

Keeping the relaxation times for a specific target frequency
range fixed, eq. (A1) implies that the vector of weights D =
(D(1), . . . , D(N ))T only depends on α and not on Q0, that is
D = D(α). Equipped with this result, we now proceed with the
calculation of α kernels. In the interest of a lighter notation, we
again consider shear and bulk attenuation separately.

A1 Shear attenuation

In isotropic media with Ci jkl = (κ − 2
3 μ)δi jδkl + μδikδ jl + μδilδ jk

and variations in the shear modulus μ, the variation of the measure-
ment functional (eq. 23) takes the form

δχ = 2

∞∫
−∞

∫
V

⎡
⎣

∞∫
−∞

ε̃
†
i j (t) δμ̇(t − t ′) dt

⎤
⎦ ε̃i j (t

′) dx dt ′ , (A2)

where ε̃i j and ε̃
†
i j are the deviatoric parts of εij and ε

†
i j , respectively.

In the next step, we express δμ in (29) in terms of variations in α.
For this, we invoke the chain rule and the previously noted fact that
the weights Dp only depend on α (eq. A1):

δμ =
N∑

p=1

∂μ

∂ D(p)

∂ D(p)

∂α
δα . (A3)

The partial derivatives ∂μ/∂Dp follow from the definition of the
time-dependent elastic modulus in (4), with the general relaxed
modulus Cr set equal to the relaxed shear modulus μr:

∂μ(t)

∂ D(p)
= μr Q−1

0 μe−t/τ (p)
H (t) . (A4)

Using (A3) and (A4), we can reformulate the integral over
ε̃
†
i j (t)δμ̇(t − t ′) that appears in eq. (A2):

∞∫
−∞

ε̃
†
i j (t) δμ̇(t − t ′) dt =

∞∫
−∞

˙̃ε
†
i j (t) δμ(t − t ′) dt

= μr Q−1
0 μ

N∑
p=1

∞∫
−∞

∂ D(p)

∂α
e−(t−t ′)/τ (p)

H (t − t ′) ˙̃ε
†
i j (t) δα dt . (A5)

Substituting the adjoint memory variables M (p) †
kl , defined in (26),

we can simplify (A5) into

∞∫
−∞

ε̃
†
i j (t) δμ̇(t − t ′) dt = −μr Q−1

0 μ

N∑
p=1

∂ D(p)

∂α

D(p)

τ (p)
M̃ (p) †

i j (t ′) δα .

(A6)

Combining eqs (A2) with (A6) we can write the variation of the
measurement functional δχ in terms of a volumetric Fréchet or
sensitivity kernel:

δχ =
∫
V

Kα(x) δ ln α(x) dx , (A7)

where the kernel Kα is given in terms of the forward strain deviator
ε̃i j and the deviator of the adjoint memory variables, M̃p,i j :

Kα = −2μrαQ−1
0 μ

N∑
p=1

τ (p)

D(p)

∂ D(p)

∂α

∞∫
−∞

M̃ (p) †
i j ε̃i j dt . (A8)

This proofs eq. (37).

A2 Bulk attenuation

For variations in the viscoelastic properties related to the bulk modu-
lus κ , the variation of the elastic tensor Cijkl condenses to δCijkl = δκ .
The variation of the measurement functional χ can then be written
in terms of the traces εkk and ε

†
kk of the forward and adjoint strain

tensors:

δχ =
∞∫

−∞

∫
V

⎡
⎣

∞∫
−∞

ε
†
kk(t) δμ̇(t − t ′) dt

⎤
⎦ εkk(t ′) dx dt ′ . (A9)

Following exactly the same steps as in Section A1, we transform
(A9) into

δχ =
∫
V

Kα(x) δ ln α(x) dx , (A10)

with the Fréchet kernel

Kα = −κrαQ−1
0 κ

N∑
p=1

τ (p)

D(p)

∂ D(p)

∂α

∞∫
−∞

M (p) †
kk εkk dt . (A11)

This is the result previously stated without proof in eq. (42).


