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S U M M A R Y
The finite-difference method is among the most popular methods for modelling seismic wave
propagation. Although the method has enjoyed huge success for its ability to produce full
wavefield seismograms in complex models, it has one major limitation which is of critical
importance for many modelling applications; to naturally output up- and downgoing and P- and
S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield
constituents can be isolated in finite-difference-computed synthetics in complex models with
high numerical precision by means of a simple algorithm. The description focuses on up- and
downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-
difference modelling method. However, the same principles can also be applied to acoustic,
electromagnetic and other wave equations.
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I N T RO D U C T I O N

Modelling of seismic wave propagation plays a key role in almost
every aspect of exploration seismology. It is used to provide an
understanding of how waves propagate in a complex heterogeneous
real Earth. Modelling is also used for survey design (Regone 2007),
imaging (Vasconcelos 2013), inversion (Brenders & Pratt 2007)
and seismic data processing (e.g. to attenuate multiples or noise;
Amundsen & Robertsson 2014). Finally, generating synthetic data
sets for research has proven extremely valuable in developing and
testing new data processing algorithms (Özbek et al. 2010).

A wide range of modelling methods is available to generate syn-
thetic data. A particularly popular method in the exploration seismic
community is the finite-difference (FD) method (e.g. Virieux 1986;
Levander 1988). The FD method is relatively straightforward to im-
plement and enables the computation of seismograms that include
the full wavefield propagating in complex heterogeneous models
that can be acoustic, elastic, viscoelastic, anisotropic or poroelas-
tic in entire or parts of a model (Moczo et al. 2007; Robertsson
& Blanch 2014). Although the method is widely used, it also has
some drawbacks compared to other methods. In this paper, we show
how to eliminate one of these drawbacks, namely the perceived in-
ability of the method to naturally output decomposed wavefield
constituents such as up- and downgoing wavefields as well as their
P- and S-wave constituents. Such synthetic data are essential for
instance when developing and testing methods for multiple attenu-
ation (Dragoset & Jericevic 1998; Amundsen 2001), noise attenua-
tion (Halliday et al. 2010) or deghosting (Robertsson & Amundsen
2014). To date, one of the few full wavefield modelling techniques
that naturally computes such wavefield constituents is the reflectiv-

ity method (Kennett 1983). In this paper, we show how FD methods
for the elastic wave equation also can output such wavefield con-
stituents. However, the same methodology will also be applicable
for the solution of both the acoustic wave equation as well as the
electromagnetic wave equation. Our FD methodology operates in
the time-space domain and therefore, as opposed to the reflectivity
method for instance, we avoid potentially cumbersome transforma-
tions between the frequency–slowness and time–space domains.

Frequency–wavenumber and frequency–space domain filters that
separate elastic wavefield data into up- and downgoing waves and P
and S waves have been presented before (e.g. Fokkema & van den
Berg 1993; Amundsen et al. 2000). In principle, such filters can of
course also be applied to the output of FD simulations. However,
these filters are difficult to implement with high precision, particu-
larly close to grazing angles for instance. Recently it has been rec-
ognized that proper injection of multicomponent seismic data on FD
grids propagates recorded super-imposed up- and downgoing wave-
fields with their correct propagation directions (e.g. Blanch 2012;
Ravasi & Curtis 2013; Vasconcelos 2013; Amundsen & Robertsson
2014). However, the full implication of these results for FD mod-
elling has not been realized so far. We base our methodology on
the so-called FD-injection technique (e.g. Robertsson & Chapman
2000) to separate the synthesized data into its up- and downgoing
constituents as outlined by Amundsen & Robertsson (2014). Of
particular importance is the fact that since we are using the same
FD method (and simulation parameters) to separate the data as was
used to generate the data, the separation into wavefield constituents
will result in a decomposition that can be close to machine precision
accuracy independent of incidence angles and other complexities
of the wavefield.
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Figure 1. Configuration of FD simulations in the conventional application of FD-injection (Robertsson & Chapman 2000). Left: initial computation when
recording the injection wavefields along the recording/injection boundary. Right: wavefield injection recomputation after modifying the model inside the
injection surface. Wavefield constituent (1) represents the original unperturbed wavefield whereas wavefield constituent (2) represents the perturbed part of the
wavefield caused by the introduction of the green scatterer in the wavefield injection computation.

We begin by recapitulating the FD-injection technique
(Robertsson & Chapman 2000). Next we discuss how to separate
wavefield constituents into up- and downgoing as well as P and S
constituents by means of FD-injection. Finally, we demonstrate the
methodology through a simple example.

F D - I N J E C T I O N

Robertsson & Chapman (2000) describe a technique, referred to
as FD-injection, for recomputing the response of FD solutions af-
ter local model alterations. The method is closely related to the
method for source wavefield injection described by Alterman &
Karal (1968) and relies on two fundamental observations:

(1) The principle of superposition and the fact that the wave
equation is linear. If two wavefield constituents are present on an
FD grid and if one of them is known, the other wavefield constituent
is simply obtained by subtracting the known wavefield constituent
from the total wavefield.

(2) The observation that FD stencils are compact in space.

In Fig. 1, we illustrate the different steps of the FD-injection method-
ology. Initially an FD simulation is carried out on an unperturbed
model (Fig. 1, left). During this simulation the wavefield is recorded
along a closed (transparent) surface around a target of interest. To
be more precise, the wavefield is recorded on as many neighbouring
grid points to the surface as the FD stencil used is wide (in space). In
a second step, the model is altered inside the closed surface (illus-
trated by the green scatterer in the right part of Fig. 1). Next we wish
to recompute the wavefield after the model alteration. This can be
done by injecting the wavefield from the first simulation on the same
surface but now on the perturbed model. Since the wavefield to be
injected is known this can be added and subtracted as appropriate
for the update of points along the injection surface for the parts of
the spatial stencils that intersect the injection surface (subtract the
injection wavefield at the appropriate points when updating points
in the immediate exterior of the injection surface and adding the
injection wavefield at the appropriate points when updating points
in the immediate interior of the injection surface). As a consequence
we will observe an apparent discontinuity across the injection sur-
face. Inside the surface both the injected wavefield [identical to the

initial computation in the unperturbed model and denoted by (1) in
Fig. 1] as well as the perturbed wavefield [difference in wavefields
before and after the model alteration and denoted by (2) in Fig. 1]
are present and superimposed. Outside the injection surface only
the perturbed wavefield is present, appearing to leak through the
injection surface (note that if the model is left unperturbed in the
second simulation, the wavefield outside the injection surface will
be as close to zero as machine precision allows).

The FD-injection method was originally proposed benefitting
from the fact that in the second simulation when the wavefield is
recomputed, the model can be made much smaller encompassing
the region of change and major nearby scatterers to recompute the
wavefield after model alterations. Robertsson et al. (2000) showed
how this results in substantial computational saving in a time-lapse
seismic modelling application. Borisov & Singh (2013) use the FD-
injection method to significantly reduce the computational cost in
target-oriented elastic full waveform inversion.

The FD-injection technique described by Robertsson &
Chapman (2000) relies on the recording and injection of wave-
fields on a closed surface on an FD grid. Amundsen & Robertsson
(2014) discuss the consequence of using an open surface (e.g. a
single horizontal segment) while injecting wavefields on different
models. In particular, they discuss injecting wavefields on a ho-
mogeneous model with the material properties corresponding to
those of the location of the original recording surface (assumed to
be uniformly homogeneous) as illustrated in Fig. 2. The left part
of Fig. 2 shows the original recording datum (corresponding to an
open surface), whereas the right part shows the injection surface
on a different model with the (homogeneous) material properties
of the recording datum. The wavefield that is injected in the model
shown in the right part of Fig. 2 comprises two parts. First, normal
to the surface (the inwards direction if the surface would have been
closed), only wavefields radiate from the injection surface that are
propagating inwards. These wavefields are injected with correct
polarity. Second, in the opposite direction to the normal, only
wavefields radiate from the injection surface that are propagat-
ing outwards but with opposite polarity. The injected wavefields
will strictly propagate away from the injection surface on the ho-
mogeneous model, as after injection the propagating wavefields
cannot change direction to cross the injection surface. As a result
the injected wavefield will be separated into up- and downgoing



1336 J.O.A. Robertsson et al.

Figure 2. Configuration of FD simulations in the application of FD-injection (Robertsson & Chapman 2000) proposed in this paper. Left: initial computation
when recording the injection wavefields along the injection boundary. Right: wavefield injection recomputation on a homogeneous model to separate the
wavefields (Amundsen & Robertsson 2014). Wavefield constituent (1) represents the upgoing wavefield whereas wavefield constituent (2) represents the
downgoing wavefield.

constituents on opposite sides of the injection surface [illustrated
in Fig. 2 where wavefield constituent (1) represents the upgoing
wavefield and wavefield constituent (2) represents the downgoing
wavefield]. This result is fully consistent with the observations pre-
sented above where on a closed surface and an unperturbed model,
these outward injected wavefield constituents would destructively
interfere with their propagating counterparts that have originally
been injected as ingoing wavefields before propagating on the un-
perturbed model. Furthermore, these intuitive results are not entirely
surprising as Masson et al. (2014) have established the equivalence
between the FD-injection methodology and time-reversal mirrors
for tomographic imaging. The results presented by Amundsen &
Robertsson (2014) are therefore conceptually equivalent with simi-
lar observations presented by Blanch (2012), Ravasi & Curtis (2013)
and Vasconcelos (2013) where wavefields are introduced by in-
jecting recordings as ‘multiple point sources’ using representation
theorems (Fokkema & van den Berg 1993).

Separation of FD modelled wavefields
into up- and downgoing constituents

When using an FD method to solve a partial differential equation,
a numerical error (NE) is introduced such that the solution com-
puted corresponds to a certain ‘finite difference equation’ (FDE)
which is different to the solution of the desired partial differential
equation (PDE): FDE = PDE + NE (Pletcher et al. 2012). This
general statement is true for any linear partial differential equation
including the wave equation. Whereas Amundsen & Robertsson
(2014) discuss the general use of FD-injection for wavefield sep-
aration, this paper is concerned with the application of the same
methodology applied to synthetic data generated using the same
underlying FD engine. A subtle but critical point of this paper is the
realization that if (and only if) we use the method of FD-injection
to separate FD-generated synthetics into their up- and downgoing
parts as described by Amundsen & Robertsson (2014), we exactly
generate the up- and downgoing constituents corresponding to the
FDE to within machine precision.

In the following we limit the discussion to the case where the
recording datum is located in a homogeneous part of the model (we
briefly address the general case of the recording datum intersecting

a heterogeneous part of the model in the Discussion section). As
described above and as illustrated in Fig. 2 the cost of the method-
ology is proportional to two FD simulations. However, the model in
the second FD simulation can be much smaller than in the original
simulation; the FD model should only be large enough to encom-
pass the recording datum and should be homogeneous with the
material properties of the location of the recording datum in the
original simulation. As described above, FD-injection will auto-
matically separate the up- and downgoing wavefields radiating on
opposite sides of the injection boundary. In principle, the technique
works to within machine precision of the computations. However,
boundary reflections from the absorbing boundaries in the two sim-
ulations are likely to dominate the error. Nevertheless, in the second
simulation where the wavefields are separated, we benefit from the
fact that the model is homogeneous and that perfectly matched layer
(PML) absorbing boundary conditions (Komatitsch & Martin 2007)
can be made working to an extremely high degree of accuracy in
such a case. Also, by letting the edges of the open injection sur-
face partly intersect with the PML boundary, edge diffractions are
avoided without having a significant effect on the wavefield sepa-
rated data in the vicinity of the injection location. This is because
PML’s attenuate waves that propagate perpendicular to the PML
boundary whereas waves propagating parallel to the boundary are
not affected.

Separation of up/down separated modelled wavefields
into P- and S-wave constituents

In modelling of elastic wavefields, it is often also of interest not
only to know the up- and downgoing constituents but also to
know the parts that constitute P waves and the parts that constitute
S waves (Yan & Sava 2008). In the following we limit the discus-
sion to the isotropic elastic case where the separation of P and S
waves is straightforward; we separate the wavefield into a curl-free
and a divergence-free part. In a homogeneous, isotropic, source-free
medium the elastic wave equation in terms of particle velocity v̄ is
given by:

∂2v̄

∂t2
= α2∇ (∇ · v̄) − β2∇ × (∇ × v̄) , (1)
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Figure 3. 2-D model used in the example. The model is bounded by a free surface on the top. The top layer has a P-wave velocity of 1800 m s−1, an S-wave
velocity of 600 m s−1 and a mass density of 1600 kg m−3. The lower interface of the upper layer is planar with a dip of 5◦. The bottom layer has a P-wave
velocity of 2200 m s−1, an S-wave velocity of 1100 m s−1 and a mass density of 2100 kg m−3.

Figure 4. Vertical component of particle velocity recorded 5 m below the free surface (top) and 50 m below the free surface (bottom).

where α is the P-wave velocity of the medium and β is the S-wave
velocity (Chapman 2004). In a homogeneous medium, separating
P and S waves is straightforward as eq. (1) decouples into two
wave equations for P and S waves, respectively. After injecting the
wavefield to separate up- and downgoing waves as described above,

the parts of the injected particle velocity field that correspond to P
and S waves are obtained respectively by applying the appropriate
spatial operator as well as integrating twice in time:

v̄α = α2

∫ ∫
∇(∇ · v̄)dt2, (2)
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Figure 5. Upgoing vertical component of particle velocity 5 m below the free surface (top) and 50 m below the free surface (bottom).

and

v̄β = β2

∫ ∫
∇ × (∇ × v̄)dt2. (3)

Generalizations to anisotropic media are described by Dellinger &
Etgen (1990) and Yan & Sava (2009).

Since the P/S separation step is applied to the up/down separated
data that result from the injection of the FD generated synthetics on
a model with uniform medium properties corresponding to those at
the recording datum, major unconformities just above or below the
recording datum, such as the Earth’s free surface or a fluid-solid
interface (e.g. the seafloor), do not present a problem.

Note that whereas the up/down-separation is accurate to within
machine precision as long as the same FD parameters (time- and
spatial discretization) are used, the accuracy of the P/S separa-
tion will only be as accurate as the operators used to approximate
eqs (2) and (3).

E X A M P L E

We demonstrate the methodology with a simple 2-D example. The
FD method is a conventional explicit staggered grid solution to
the system of first-order partial differential equations in terms of
particle velocities and stresses describing elastic wave propagation
(Robertsson & Blanch 2014). The method is second-order accurate
in time and fourth-order accurate in space.

The model shown in Fig. 3 is bounded by a free surface on the
top (at z = 0 m) and consists of two layers. The top layer has a
P-wave velocity of 1800 m s−1, an S-wave velocity of 600 m s−1

and a mass density of 1600 kg m−3. The lower interface of the
upper layer is planar with a dip of 5 degrees. The bottom layer has
a P-wave velocity of 2200 m s−1, an S-wave velocity of 1100 m s−1

and a mass density of 2100 kg m−3. An explosive Ricker wavelet
point source with a 50 Hz centre-frequency is located at x = 750 m
and z = 75 m. Data are output, decomposed and compared at two
different depth levels: at z = 5 m and z = 50 m. We show results
in terms of vertical component of particle velocity only. Results for



FD modelling of wavefield constituents 1339

Figure 6. Downgoing vertical component of particle velocity 5 m below the free surface (top) and 50 m below the free surface (bottom).

the horizontal component of particle velocity are produced in an
analogous fashion.

Fig. 4 shows the total wavefield at the two recording levels. At the
shallow recording level 5 m below the free surface (top plot), up-
and downgoing waves as well as their P- and S-wave constituents
overlap throughout the seismograms as waves reflect and convert at
the free surface. At the lower recording level (50 m below the free
surface; bottom plot), up- and downgoing waves as well as P- and
S-wave constituents no longer overlap completely.

Figs 5 and 6 show the up- and downgoing wavefield constituents
at the two recording levels. In Fig. 5, we show the upgoing wavefield
constituents 5 m (top) and 50 m (bottom) below the free surface
and in Fig. 6 we show the analogous results for the downgoing
wavefield. We can clearly identify corresponding arrivals in the
one-way wavefields at the two depth levels but with expected time
shifts (depending on propagation angles and whether they are P or
S waves).

Fig. 7 compares three traces of the upgoing wavefield displayed
in Fig. 5 against a reference solution where we have computed the
wavefield using the same FD method in the same model but without

the free surface present. In such a model, we expect all waves to
be upgoing and that no arrivals that interact multiple times with
the interface (i.e. surface-related multiples) will be present. We
see an excellent match of the direct wave and the reflections from
the interface. Again, since the same FD simulation parameters are
used during the injection calculation as in the original computation,
the wavefield decomposition is accurate to within machine preci-
sion. However, as expected the reference solution does not contain
the multiple reflected upgoing events present in our FD solution
on the full model with the free surface present. Therefore, this ex-
ample nicely illustrates that computing a solution where the free
surface is removed is not sufficient to predict all upgoing waves that
occur even in this very simple model with only one interface in the
sub-surface.

Finally, Figs 8 and 9 show the up- and downgoing, P- and S-
wave constituents (vertical particle velocity) at the two recording
levels 5 and 50 m below the free surface where fourth-order ac-
curate FD approximations to eqs (2) and (3) were used to sep-
arate up- and downgoing wavefields into their respective P- and
S-wave constituents. It is now entirely straightforward to identify
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Figure 7. Comparison of upgoing wavefield constituent 50 m below free surface against reference solution (FD solution without a free surface present) at
horizontal coordinate 500, 750 and 1000 m. Annotated events: (a) direct P wave, (b) PP reflection from the interface, (c) PS reflection from the interface, (d)
free surface multiples.

Figure 8. Up- and downgoing, P- and S-wave constituents (vertical particle velocity) 5 m below the free surface. Top left: upgoing P. Top right: upgoing S.
Bottom left: downgoing P. Bottom right: downgoing S.

the direct wave, reflections and conversions from the free surface,
reflections and conversions from the dipping interface and multi-
ples within the layer. Such results are essential for the development
of seismic data processing techniques for instance for deghosting,

multiple attenuation and noise attenuation. Although the model
used here to demonstrate the methodology is simple, equivalent re-
sults are completely straightforward to produce for more complex
models with strong vertical and lateral heterogeneity, at least for
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Figure 9. Up- and downgoing, P- and S-wave constituents (vertical particle velocity) 50 m below the free surface. Top left: upgoing P. Top right: upgoing S.
Bottom left: downgoing P. Bottom right: downgoing S.

cases when strong medium variations do not intersect the recording
datum.

D I S C U S S I O N

In this paper, we limited our discussion to the case where the
material properties at the recording datum are homogeneous. The
basic underlying principles of FD-injection are valid for arbitrar-
ily complex media at the injection boundary. However, the prob-
lem of how to proceed occurs in the second step when injecting
the recorded wavefield on the smaller truncated model to sepa-
rate up- and downgoing wavefields. It is essential that injected
waves on this model do not scatter from model heterogeneities
so that the direction of propagation is altered. We expect that
the methodology will work reasonably well also in mildly hetero-
geneous media when material properties are extended from the
recording datum vertically above and below in the new truncated
model. Although this is not entirely correct as the corresponding
part of the full model may differ from such a structure, the results
may be sufficiently accurate for many practical applications. How-
ever, it is clear that we no longer can argue that the results are
accurate to within machine precision. There is also a more fun-
damental concern related to the underlying ambiguity as to what
constitutes up- and downgoing P and S waves in media where the
local propagation regime is considerably more complex (Weston
1989).

Some care must be taken when decomposing and recording
the separate wavefield constituents to ensure that the output ex-
actly corresponds to the desired depth level. The FD-injection
based wavefield separation method described by Amundsen &
Robertsson (2014) injects upgoing waves upwards and downgo-

ing waves downwards in the homogeneous medium during the
wavefield separation computation. Therefore, depending on what
distance that the wavefield is recorded from the injection sur-
face, the upgoing wavefield is automatically redatumed upwards
(or downwards for the downgoing waves) in the homogeneous
model by a distance corresponding to the distance between the
injection surface and the final output location. This does not rep-
resent a problem as long as it has been accounted for when identi-
fying the location of the recording/injection surface in the original
model.

Another aspect that needs to be considered is that only up-
going waves are injected upwards (and downgoing waves down-
wards). Since the total wavefield is known from the original sim-
ulation, both up- and downgoing waves can be computed even
if only one part of them is computed during the wavefield sep-
aration computation. The other constituent is simply obtained
by subtracting the computed wavefield constituent from the total
wavefield.

Finally, as an alternative, we note that by reversing the wavefields
in time and flipping polarity on particle motion data, it is possible to
radiate downgoing waves upwards and upgoing waves downwards
in the wavefield separation computation through reverse time ex-
trapolation instead of the conventional forward time extrapolation
during the FD computation.

C O N C LU S I O N S

We have presented a methodology for isolating up- and downgo-
ing waves as well as P and S waves in conventional FD modelling.
Isolating such wavefield constituents is required in many applica-
tions of modelling and less general modelling methods, such as the
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reflectivity method (Kennett 1983), have previously been the only
option available.

Our methodology is based on the wavefield separation method
presented by Amundsen & Robertsson (2014) and relies on the FD-
injection technique introduced by Robertsson & Chapman (2000).
In principle, the method is highly accurate (to within machine preci-
sion for up/down separation). However, other sources of noise such
as reflections from absorbing boundaries or the degree of accuracy
of the chosen P/S separation operators are likely to dominate the
error in the final result.

The method relies on one additional FD simulation to separate the
data into up- and downgoing waves. However, for most applications
the size of the required model for the additional simulation will be
much smaller than that of the full FD simulation. The computational
cost is therefore only slightly greater than that of a conventional FD
simulation to generate synthetic data.

Finally, the methodology described is general and applies to
different wave equations. In addition to the elastic isotropic case
described in this paper, a similar methodology can be applied to
anisotropic elastic as well as electromagnetic wave propagation
problems for instance.
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