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Abstract

A few Pseudomonas species are able to form hydrocyanic acid (HCN), particularly

when grown under glycine-rich conditions. In the presence of metals, cyanide can

form water-soluble metal complexes of high chemical stability. We studied the

possibility to mobilize metals as cyanide complexes from solid minerals using

HCN-forming microorganisms. Pseudomonas plecoglossicida was cultivated in the

presence of copper- and nickel-containing solid minerals. On powdered elemental

nickel, fast HCN generation within the first 12 h of incubation was observed and

water-soluble tetracyanaonickelate was formed. Cuprite, tenorite, chrysocolla,

malachite, bornite, turquoise, millerite, pentlandite as well as shredded electronic

scrap was also subjected to a biological treatment. Maximum concentrations of

cyanide-complexed copper corresponded to a solubilization of 42% and 27% when

P. plecoglossicida was grown in the presence of cuprite or tenorite, respectively.

Crystal system, metal oxidation state and mineral hydrophobicity might have a

significant influence on metal mobilization. However, it was not possible to

allocate metal mobilization to a single mineral property. Cyanide-complexed gold

was detected during growth on manually cut circuit boards. Maximum dicya-

noaurate concentration corresponded to a 68.5% dissolution of the total gold

added. These findings represent a novel type of microbial mobilization of

nickel and copper from solid minerals based on the ability of certain microbes to

form HCN.

Introduction

Only a few pseudomonads have been described as being

cyanogenic, i.e. able to form hydrocyanic acid (HCN),

especially when grown under glycine-rich conditions. In

particular, Pseudomonas aeruginosa (Meganathan & Castric,

1977; Pessi & Haas, 2000), Pseudomonas fluorescens (Astrom,

1991; Faramarzi et al., 2004), Pseudomonas putida (Flaish-

man et al., 1996), and Pseudomonas syringae (Kremer &

Souissi, 2001) are capable of generating HCN by oxidative

decarboxylation from direct precursors such as glycine,

glutamate, or methionine (Castric, 1977).

Pseudomonas plecoglossicida is known as the causative

agent of a lethal fish disease occurring in ayu fish (Plecoglos-

sus altivelis) (Nishimori et al., 2000). The organism was

originally isolated from internal organs of dead fishes, but

also occurs on the skin and fins (Sukenda, 2001). Besides

fish, P. plecoglossicida can also be found in waste water, soil,

sewage sludges, or in the roots of sand dune plants as an

endophytic organism, especially in the wild rye (Elymus

mollis) (Song et al., 2003; Chowdhury et al., 2004; Ekhaise,

2004; Park et al., 2005). From a more physiological point of

view, P. plecoglossicida has been also reported to produce

siderophores under iron-limited growth conditions (Meyer

et al., 2002). Interestingly to note is that the strain is also

able to grow in solutions of 5% NaCl (Nishimori et al.,

2000). Until today, P. plecoglossicida is not known as being a

cyanogenic organism.

Generally, cyanide is formed as secondary metabolite

during the early stationary growth phase (Knowles & Bunch,

1986). Cyanide occurs in solution as free cyanide which

includes the cyanide anion (CN�) and the nondissociated

HCN. At physiological pH, cyanide is present mainly as

HCN because of its pKa value of 9.3 and is, therefore,

volatile. In the presence of salts however, this value decreases

to c. 8.3 and the volatility is reduced (Fagan, 1998). In

addition, in many cases (particularly in microbial growth

media or under natural conditions), cyanide is complexed
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by cyanicidic compounds (‘cyanide killers’) which reduce

the volatility again. Cyanicides include carbonic acids,

humic acids, sulfate, arsenic, arsenate, iron, oxidized forms

of zinc, and antimony (Fagan, 1998).

From a chemical point of view, cyanide can interact with

a series of metals. It is known that nearly all transitions

metals (except lanthanides and actinides) form well-defined

cyanides complexes which show a very good water solubility

and a very high chemical stability (Chadwick & Sharpe,

1966; Barnes et al., 2000). By combining microbiological

and chemical principles, namely ‘microbiological cyanide

formation’ and ‘chemical metal complexation by cyanide,’

we report here the ability of P. plecoglossicida to form HCN

resulting in metal mobilization from solid materials. The

objectives of the work were (i) to investigate growth and

HCN generation by P. plecoglossicida under various growth

conditions (varying glycine concentration, initial pH, or

amount of solids added); and (ii) to study the formation of

water-soluble metal cyanides when the organism is grown

in the presence of metal-containing solid materials. Very

recently, we have reported the ability of HCN-generating

microorganisms (P. fluorescens, Chromobacterium violaceum,

Bacillus megaterium) to form water-soluble nickel and gold

cyanides when exposed to nickel powder or shredded electro-

nic waste (Faramarzi et al., 2004).

Until today, the microbially mediated formation of water-

soluble cyanide complexes from solid materials has been con-

sidered only marginally. Few reports describe the bacterial

solublization of gold by C. violaceum from gold-containing

ore or coupons of pure gold and the subsequent formation of

gold cyanide (Smith & Hunt, 1985; Lawson et al., 1999;

Campbell et al., 2001).

Materials and methods

Different Pseudomonas strains were isolated from soil col-

lected in Tehran (main campus of Tehran University of

Medical Sciences, Iran) on cetrimide agar which is selective

for the growth of pseudomonads. Samples from top soil

were suspended in cetrimide broth and plated on cetrimide

agar. For screening purposes, ability of HCN generation was

checked using a qualitative colorimetic spot test (Feigl &

Anger, 1966). After isolation, identification was performed

by the German Collection of Microorganisms and Cell

Cultures (DSMZ, Braunschweig, Germany). The strain was

assigned to Pseudomonas plecoglossicida with a similarity of

99.1% based on morphology, motility, utilization of carbon

sources, and cellular fatty acid composition.

Cells were routinely cultured for maintenance in 250 mL

baffled Erlenmeyer flasks in 50 mL of cetrimide medium

containing (in g L�1) cetrimide (0.2); gelatine peptone

(20.0); casein hydrolysate (10.0); magnesium chloride (1.4);

and potassium sulfate (10.0); glycerol (10 mL). pH was

7.3� 0.2. Long-term storage of the organisms was carried

out in 15% glycerol at � 80 1C. Luria–Bertani broth con-

taining tryptone (10.0), yeast extract (5.0), sodium chloride

(10.0) was used for growth experiments. The pH was

adjusted to 7.2 except when experiments regarding different

initial pH values were performed. Glycine and metal-

containing solids were additionally supplemented in differ-

ent amounts according to the experimental setup. Duplicate

cultures were grown in 250 mL baffled Erlenmeyer flasks in

100 mL of medium and incubated at 30 1C on a rotary

shaker at 150 r.p.m. Bacterial growth was monitored by

determining the optical density at 450 nm. The pH was

recorded additionally. For metal mobilization experiments,

different amounts (up to 10 g L�1) of solid materials (e.g.

nickel, different copper minerals, shredded electronic scrap)

were added to the medium.

Copper- and nickel-containing mineral and ore samples

(chrysocolla, malachite, bornite, millerite, pentlandite, bun-

senite) were received from the collection of the Geological

Institute of the ETH (Zurich, Switzerland). Elemental nickel

(which served as a model compound), cuprite, tenorite, and

turquoise were obtained commercially. All minerals were

manually crushed (except nickel which was already obtained

as powder) and sorted to remove the host rock. Remaining

solids were ground to powder using a ball mill and sieved to

obtain particles o 71 mm.

Free cyanide was quantitatively analyzed applying the

picric acid colorimetric method (Drochioiu et al., 2003).

Analyses of metal complexed cyanides were performed by

reversed phase high pressure liquid chromatography (rP-

HPLC) (Faramarzi et al., 2004). Metal-complexed cyanides

were separated at 40 1C on a hydrophobic C-18 column.

The eluent consisted of 25% acetonitrile; 150 mM ortho-

phosphoric acid; 60 mM tetrabutylammonium hydroxide

(TBAOH); and 2.34 mM sodium perchlorate. pH was ad-

justed with sodium hydroxide to 7.3. Flow rate was set at

1 mL min�1. Metal cyanides were determined by UV detec-

tion at 229, 230, and 267 nm for Au, Cu, and Ni, respectively.

Commercially available corresponding metal cyanides were

used as standards.

Results and discussion

Growing Pseudomonas plecoglossicida on additional glycine

(1 g L�1) in the medium, a fast formation of HCN within the

first 12 h of incubation was observed (Fig. 1a). However, as

compared with P. fluorescens and Chromobacterium viola-

ceum (Faramarzi et al., 2004), maximum cyanide concentra-

tions were much lower (c. by a factor of 50). In parallel to

growth, water-soluble tetracyanaonickelate, [Ni(CN)4]2�,

was formed from powdered elemental nickel which served

as a model compound (Fig. 1b). Growth (as determined by
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OD and pH) was not influenced by the addition of nickel

powder.

To enhance tetracyanonickelate formation, different

amounts of glycine and nickel powder were added to the

growth medium. In addition, initial pH was varied. In the

presence of 1 g nickel per liter, increasing amounts of glycine

gradually reduced growth as determined by OD (Fig. 2a).

Maximum tetracyanonickelate concentration was obtained

at a glycine concentration of 5 g L�1. As HCN is directly

produced from glycine (Wissing, 1968), optimal glycine

concentrations were determined for the cultivation of P.

plecoglossicida in the presence of 1 g nickel powder per liter

(Fig. 2a). Concentrations of 3–7 g glycine per liter resulted in

the highest tetracyanonickelate concentrations. Increased

glycine concentrations (47 g L�1) led to reduced growth as

well as reduced tetracyanonickelate formation.

The addition of nickel powder stimulated growth to a

certain extent (Fig. 2b). Maximum OD was obtained at

nickel concentrations of c. 4 g L�1. However, at concentra-

tions 4 4 g L�1 growth was drastically reduced. The reasons

might be either toxic effects of nickel and/or mechanical

stress owing to increased pulp densities. Pulp density effects

have already been observed during growth of C. violaceum

and P. fluorescens in the presence of nickel powder (Fara-

marzi et al., 2004). As known from other reports, growth of

Acidithiobacillus species in the presence of pyrite or covellite

was also dependent on pulp density (Curutchet et al., 1990;

Baldi et al., 1992). Regarding the formation of tetracyano-

nickelate by P. plecoglossicida, optimal concentrations of

solid nickel were between 1 and 3 g L�1 (Fig. 2b). Although

growth was more or less constant over an initial pH range

of 6 to 9.5 as determined by OD measurement, a steady

decrease in tetracyanonickelate concentration was observed

(Fig. 2c). Maximum tetracyanonickelate concentration was

obtained at initial pH of 6.5.

In addition to powdered nickel, various copper, and

nickel minerals were also subjected to a biological treatment

in suspensions of 0.2 g L�1 (Table 1). Regarding copper

oxides, maximum cyanide-complexed copper concentration

corresponded to a solubilization of 42% and 27% when

grown in the presence of cuprite (Cu2O) and tenorite

(CuO), respectively. Crystal system, metal oxidation state as

well as mineral surface hydrophilicity might have a
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Fig. 1. Growth, generation of cyanide, and formation of tetracyano-

nickelate by Pseudomonas plecoglossicida in Luria–Bertani medium.

(a) Supplemented with glycine (1 g L�1); (b) supplemented with glycine

(1 g L�1) and powdered elemental nickel (1 g L�1). �, OD at 450 nm; ’,

pH; m, free cyanide; ^, tetracyanonickelate.
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Fig. 2. Growth and tetracyanonickelate formation by Pseudomonas plecoglossicida in Luria–Bertani medium. (a) Supplemented with different of

amounts of glycine and powdered nickel (1 g L�1); (b) supplemented with different amounts of powdered nickel and glycine (1 g L�1); (c) as function

of different initial pH values on powdered nickel (1 g L�1) and glycine (1 g L�1). Measurements were taken after an incubation of 48 h.�, OD at 450 nm;

^, tetracyanonickelate.
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significant influence on metal mobilization (Table 1). How-

ever, it was not possible to allocate metal mobilization to a

single mineral trait. It has been reported for the oxidation of

sulfidic minerals by Acidithiobacillus that the mineral struc-

ture is of major importance for the metal mobilization from

solids (Sand et al., 2001). This might also be the case for the

metal solubilization by cyanogenic microorganisms.

In addition to solid minerals, we have also investigated

the potential of P. plecoglossicida to mobilize metals from

solid waste such as scrap from electronic equipment. Re-

sidues from the mechanical recycling of used electronic

equipment (e.g. computers) represent a highly complex

metal-containing matrix (Brandl et al., 2001). These solid

wastes often contain metals with a high economic value.

Particularly gold is of special interest and can occur in

concentrations of 20 mg kg�1 shredded printed circuit

boards. Gold-containing pieces (5� 10 mm) of printed

circuit boards were used for growth experiments. These

were obtained by manually cutting printed circuit boards

followed by manual sorting. After a lag phase of c. 36 h,

cyanide-complexed gold (dicyanoaurate, [Au(CN)2]�) was

detected in the culture fluid (Fig. 3). Maximum dicyanoau-

rate concentration corresponded to a 68.5% dissolution of

the gold added. In this respect, P. plecoglossicida proved to be

more efficient than C. violaceum under identical growth

conditions (Faramarzi et al., 2004).

As being part of the soil microbiota (Kremer & Souissi,

2001; Benizri et al., 2005) and its close association with plant

roots (Park et al., 2005), one might speculate about the

ecological role of cyanogenic microorganisms such as P.

plecoglossicida in soil. From an ecological viewpoint, it is

assumed that HCN formation has an advantage for the

organism by inhibiting competing microorganisms (Blumer

& Haas, 2000). It has been demonstrated that HCN formed

in the rhizosphere (predominantly by pseudomonads) ad-

versely affected plant growth because of growth inhibition of

seedlings (Kremer & Souissi, 2001). Besides its influence on

plant growth, cyanide formed by P. aeruginosa has been

demonstrated as being an agent which rapidly paralyzes and

kills the nematode Caenorhabditis elegans. This might re-

present a defensive mechanism against grazing (Gallagher &

Manoil, 2001). However, besides controlling agent to inhibit

competitors, microbially formed cyanide might also act in

soil environments as lixiviant for metal compounds which

can be subsequently been taken up by plants and

Table 1. Mobilization of metal as corresponding cyanide complexes from different copper- and nickel-containing minerals by

Pseudomonas plecoglossicida

Element Mineral Formula

Metal

oxidation

state

Dana

class�
Crystal

system�
Crystal

class� Hydrophilicityw

Metal

mobilization

(%)z

Copper Cuprite Cu2O 11 4.1 Isometric Hexoctahedral B 42.0

Tenorite CuO 12 4.2 Monoclinic Prismatic B 27.2

Chrysocolla (Cu,Al)2H2Si2O5(OH)4 �
n(H2O)

12 74 Orthorhombic Pyramidal F 23.4

Malachite Cu(CO3)(OH)2 12 16a Monoclinic Prismatic D 8.9

Bornite Cu5FeS4 11 2.5 Orthorhombic Dipyramidal B 5.0

Turquoise CuAl(PO4)4(OH)8 11 42 Triclinic Pinacoidal D tr‰

Nickel Nickel Ni 0 1 Isometric Hexoctahedral B 5.5

Millerite NiS 12 2.8 Trigonal Hexagonal

scalenohedral

B 1.4

Pentlandite Fe4.5Ni4.5S8 12 2.7 Isometric Hexoctahedral B 0.14

Bunsenite NiO 12 4.2 Isometric Hexoctahedral E tr‰

�According to Dana’s New Mineralogy (Gaines et al., 1997).
wAccording to Wakamatsu (1997) with F being the group with the highest hydrophilicity.
zMaximum after 36–48 h of incubation as percentage of the initial amount of copper or nickel added (200 mg solids per liter).
‰tr, traces.
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Fig. 3. Growth, generation of cyanide, and formation of dicyanoaurate

by Pseudomonas plecoglossicida in Luria–Bertani medium supplemented

with glycine (1 g L�1) and with gold-containing pieces of shredded circuit

boards (resulting in c. 500 mg Au per liter). �, OD at 450 nm; ’, pH; m,

free cyanide; ^, dicyanoaurate.
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microorganisms. We have demonstrated that P. plecoglossi-

cida is able to mobilize nickel and copper from the corre-

sponding solids which might also be the case in soil under in

situ conditions. Until today, there are no comprehensive

reports on this hypothesis despite the known presence of

cyanogens in the rhizosphere. In addition, cyanogenic

microorganisms might also find an industrial application

regarding solid waste treatment for the recovery of metals.

We have shown that P. plecoglossicida mobilizes gold when

grown in the presence of electronic scrap.
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