
BIOINFORMATICS ORIGINAL PAPER Vol. 24 no. 17 2008, pages 1917–1925
doi:10.1093/bioinformatics/btn336

Systems biology

Synchronous versus asynchronous modeling of gene regulatory
networks
Abhishek Garg1,∗, Alessandro Di Cara2, Ioannis Xenarios3, Luis Mendoza4 and
Giovanni De Micheli 1

1Ecole Polytechnique Federale de Lausanne, Station 14, 1015 Lausanne, 2Merck Serono, Geneva, 3Swiss Institute
of Bioinformatics, Vital-IT Group, 1015 Lausanne, Switzerland and 4Instituto de Investigaciones Biomédicas,
Universidad Nacional Autónoma de México, México

Received on February 01, 2008; revised on June 10, 2008; accepted on July 01, 2008

Advance Access publication July 9, 2008

Associate Editor: Olga Troyanskaya

ABSTRACT

Motivation: In silico modeling of gene regulatory networks has
gained some momentum recently due to increased interest in
analyzing the dynamics of biological systems. This has been further
facilitated by the increasing availability of experimental data on
gene–gene, protein–protein and gene–protein interactions. The two
dynamical properties that are often experimentally testable are
perturbations and stable steady states. Although a lot of work has
been done on the identification of steady states, not much work
has been reported on in silico modeling of cellular differentiation
processes.
Results: In this manuscript, we provide algorithms based on
reduced ordered binary decision diagrams (ROBDDs) for Boolean
modeling of gene regulatory networks. Algorithms for synchronous
and asynchronous transition models have been proposed and their
corresponding computational properties have been analyzed. These
algorithms allow users to compute cyclic attractors of large networks
that are currently not feasible using existing software.

Hereby we provide a framework to analyze the effect of multiple
gene perturbation protocols, and their effect on cell differentiation
processes. These algorithms were validated on the T-helper model
showing the correct steady state identification and Th1–Th2 cellular
differentiation process.
Availability: The software binaries for Windows and Linux platforms
can be downloaded from http://si2.epfl.ch/∼garg/genysis.html.
Contact: abhishek.garg@epfl.ch

1 INTRODUCTION
Qualitative modeling of gene regulatory networks has been
addressed by various authors (Albert and Othmer, 2003; Bernot
et al., 2004; Chabrier et al., 2004; Devloo et al., 2003; Fauré
et al., 2006; Kauffman, 1969; Klamt et al., 2006; Mendoza and
Xenarios, 2006; Naldi et al., 2007; Remy et al., 2006; Thomas,
1991; Thomas and Kaufman, 1995). To model these networks,
models with different updating schemes have been proposed, namely
synchronous (Fauré et al., 2006; Naldi et al., 2007; Remy et al.,
2006), asynchronous (Devloo et al., 2003; Fauré et al., 2006;
Garg et al., 2007; Thomas, 1991) and semi-asynchronous models

∗To whom correspondence should be addressed.

(Fauré et al., 2006). In a synchronous dynamic model, all genes
change their expression levels simultaneously in consecutive time
points. This model is computationally tractable for very large
networks but at the expense of accuracy as, in reality, different
genes take different time to make the transition from one expression
level to another. Asynchronous dynamic models, in which all genes
take different time for making a transition, are closer to biological
phenomena but they are more complex to model and to analyze.
The synchronous and asynchronous dynamics of Boolean models of
gene regulatory networks have been qualitatively addressed in the
past (Fauré et al., 2006). Studies have shown that different updating
rules may lead to different attractors. Usually asynchronous rules
result in a larger number of states conforming an attractor, as well
as lengthier transitory states leading to an attractor. It is clear that it
is important to use adequate updating rules to obtain a biologically
correct dynamical model. However, till date no efficient algorithm
has been reported to compute all the attractors of large regulatory
networks using both synchronous and asynchronous updating rules.

In this manuscript, we extend a previous methodology (Garg
et al., 2007) so as to identify the different kinds of attractors that
may exist in gene regulatory networks. We compare computational
efficiency of synchronous and asynchronous models of gene
regulatory networks and propose an efficient method that performs
combined synchronous–asynchronous simulations for faster and
accurate identification of attractors. We also extend our previous
methodology to incorporate gene perturbation experiments on
regulatory networks.

2 DYNAMIC MODELS OF GENE REGULATORY
NETWORKS

We previously described (Garg et al., 2007) how gene regulatory
networks can be modeled efficiently using reduced ordered binary
decision diagrams (ROBDDs or in short BDDs) (Bryant, 1986).
BDDs are directed acyclic graphs that can represent large Boolean
functions in a space efficient manner, and are computationally
suitable for complex Boolean operations (e.g. logical AND, OR,
etc.) and set operations (e.g. Union, Intersection, etc.). To map
gene regulatory networks on BDDs, the first step is to transform
networks into Boolean functions which represent the dynamics of

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85219844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://si2.ep%EF%AC%82%00
http://creativecommons.org/licenses/

A.Garg et al.

a model. All the operations that can be performed on Boolean
functions can also be performed on their corresponding BDD
representations. In this manuscript, we use Boolean functions and
Boolean variables to represent gene regulatory networks and to
describe our algorithms. However, all Boolean operations in our
software are implemented using BDDs.

In Equation (1), activator (or inhibitor) functions represent the set
of genes that have a collective activating (or inhibiting) impact on
the level of activation of a given gene. Equations (1) and (2) can be
understood better with the help of Figure 1.

Given a gene regulatory network, the state of a node (or gene) i
at time t is represented by a Boolean variable xi(t). To evaluate the
evolution in time of each gene, it is necessary to describe the state of
each gene at time t+1 as a function of the state of those genes acting
as its input at time t. A snapshot of the activity level of all the genes
in the network at a time t is called the state of the network. The state
of the network at time t is represented by a Boolean vector, xt , of
size N (number of genes in the network). Each bit of this vector
represents whether the gene is active or inactive. Another Boolean
vector, xt+1, of size N is used to represent the status of the network
in the next step. We call the previous vector present state and the
latter one next state.

Following the standardized qualitative dynamical systems
methodology (Mendoza and Xenarios, 2006), Equation (1) states
that inhibitor functions are strong enough to change the state of
the output gene from 1 to 0, while activator functions can change
the state from 0 to 1 if and only if no inhibitor functions are acting
on that gene. Although this might give an impression of a repressor
dominated system, in practice, a situation where an activator
dominates the repressor can be represented by Equations (1) and (2)
as shown in Figure 2.

xi(t+1)=

m∨
l=1

f a
xi,l

(t)

∧¬

n∨
l=1

f in
xi,l

(t)

 (1)

f a,in
xi,l

(t)=

p∧
j=1

xa
j (t)

∧

q∧
j=1

¬xin
j (t)

 (2)

xj ∈ {0,1}
f a
xm

are the set of activator functions of xi

f in
xn

are the set of inhibitor functions of xi

xa
p are the set of activators of functions fxi

xin
q are the set of inhibitors of functions fxi

∧ , ∨ and ¬ represent logical AND, OR and negation

Equations (1) and (2) represent the dynamics of individual genes
independent of the dynamics of the other genes in the network.
To model the dynamics of the complete network, one has to
couple the dynamics of these genes. This can be done by defining
the transition function, T (xt,xt+1), of the state of the network.
T (xt,xt+1) represents the transition from the present state xt to the
next state xt+1.

Transition functions can be either synchronous or asynchronous.
If the transition function is synchronous, all the genes are updated
according to their rules at the same time. If the transition function

Fig. 1. An example of a gene regulatory network. Circle-headed arrows
represent inhibition and arrows represent activation. Nodes with label f
are only used for explanation and are not part of the gene regulatory
network. f in

xi,1
(t)=(

x1 ∧x2 ∧¬x3
)
, f a

xi,1
(t)=(

x4 ∧¬x5
)
, f a

xi,2
(t)=x6. xi(t+1)=(

f a
xi,1

(t)∨f a
xi,2

(t)
)
∧¬f in

xi,1
(t).

(a) (b)

Fig. 2. A small representation of how activator dominated circuits can
be represented using Equations (1) and (2). (a) A small gene regulatory
network where gene xa

1 dominates over xin
2 . (b) Expanded functional

representation using Equations (1) and (2), where f a
xi

(t)=(¬xa
1 ∧¬xin

2

)
,

xi(t+1) = (
xa

1 ∨f a
xi

(t)
)
.

is asynchronous, at most one gene is updated between two
consecutive states. In the following sections we define synchronous
and asynchronous models in terms of these functions and variables.

2.1 Synchronous model
A synchronous model can be described by the following set
of equations:

Ti(xt,xt+1) =
(

xt+1
i ↔xi(t+1)

)
(3)

T (xt,xt+1) = T0(xt,xt+1)∧∧ TN (xt,xt+1) (4)

Equation (3) gives the transition function for a single gene i. Symbol
↔ stands for logical equivalence and in Equation (3), represents that
the value of a gene in the next time step, xt+1

i is equal to the value of
the function xi(t+1) [as defined in Equation (1)]. Equation (4) states
that all the genes in the network make a simultaneous transition from
the present state xt to the next state xt+1.

If a state transition graph is constructed using Equations (3) and
(4), then each state has only one transition going out of it. Hence,
assuming that all the genes can take ‘0’or ‘1’levels of expression, the
number of states and the number of transitions in the state transition
graph are both equal to 2N , where N is the number of genes in
the network. If this state transition graph is explicitly represented
and traversed, then an exponential number of states restricts the
computation to small sized networks. To avoid explicit enumeration,
we proposed in Garg et al. (2007) an implicit method based on
ROBDD (Burch et al., 1994; Xie and Beerel, 1998) to compute
attractors using Boolean equations having a similar representation
as Equations (1–4). For completeness, we present them here again

1918

Modeling gene regulatory networks

in Algorithms 1 and 2, which are based on the following definitions
and theorems:

Definition 1. Successor (Predecessor). Given a state of the network
xt (x′

t), all the states x′
t (xt) such that T (xt,x′

t)=1 are the successor
(predecessor) states of the state xt (x′

t).

Definition 2. Forward (Backward) image, If
T (S(xt)) (Ib

T (S(xt))) is
the set of immediate successors (predecessors) of the states in the
set S(xt) on the state transition graph defined under the transition
function T.

Definition 3. Forward reachable states FR(S0) from the states set
S0 are all the states that can be reached from the states in the set S0
by iteratively computing forward image on the transition function
T (xt,xt+1) until no new states are reachable.

Definition 4. Backward reachable states, BR(S0), are all the states
xt whose forward reachable set contain at least one state in S0.

Definition 5. An Attractor is the set of states SS(xt) such that for
all the states s∈SS(xt), the forward reachable set FR(s) is the same
as SS(xt).

Definition 6. A Steady State is an attractor that consists of a single
state.

Theorem 1. A state i∈S is a part of an attractor if and only if
FR(i)⊆BR(i). State i is transient otherwise.

Theorem 2. If state i∈S is transient, then states in BR(i) are all
transient. If state i is a part of an attractor, then all the states in FR(i)
are also part of the same attractor. In the latter case set {BR(i)−
FR(i)} has all the transient states.

Proof of these theorems can be found in Xie and Beerel
(1998). Based on these two theorems, the procedure for attractor
computation is given in Algorithm 2. This algorithm uses Theorems
1 and 2. In Line 5 of Algorithm 2, a seed state is selected from
the state space T ′ and forward and backward reachable states from
this seed state are computed in Lines 6 and 7. Then Theorem 1, as
implemented in Line 8, checks if the seed state (from Line 5) is
part of an attractor. If the seed state is indeed part of an attractor,
then using Theorem 2 (as implemented in Lines 9–12), all the states
in the forward reachable set are declared to from an attractor in

Line 9 and the rest of the states in the backward reachable set are
declared transient in Line 10. Otherwise, the seed state and all the
other states in the backward reachable set are declared transient in
Line 12. In Line 13, the state space is reduced by removing those
states that have already been tested for reachability and the process
is repeated to find another attractor on the reduced state space. This
process is iterated until the whole state space is explored (i.e. until
T 	=∅). The states in the backward reachable set are removed from
the state space in each iteration, resulting in the continuous size
reduction of the latter. One should note that the number of iterations
of Lines 4–13 depends upon how the seed state is selected in Line 5.

Algorithm 2 uses the functions forward_set() and backward_set()
for computing forward reachable FR(S), and backward reachable
BR(S) states, respectively. These functions are given in Algorithm 1.
In Algorithm 1, the while loop in Lines 6–10 computes the reachable
states iteratively starting from the intial set of states S0, where k-th
iteration represents the states reachable in k time steps from S0.
FSk and RSk are the frontier set and the reachable set respectively
in the k-th iteration of the while loop. The Frontier set in the k-th
iteration, contains the states which have been reached for the first
time in the (k−1)th iteration of the while loop. The Reachable
set in the k-th iteration contains all reachable states from the
initial set S0 up to k iterations. The Frontier set in iteration k+1
is computed by taking the forward image (backward image for
backward reachable set computation) of the frontier set in the k-th
iteration and removing from this image set, the states that have
already been explored in previous iterations (which are stored in
reached set). The Reached Set is updated by adding the new states
from the frontier set. This process is iterated until no new states

1919

A.Garg et al.

can be added to Reached Set. The final Reached Set represents the
forward (backward) reachable set from the set of initial states S0.

Function initial_state() inAlgorithm 2 selects a seed state from the
given state space T ′. In this function (implemented in Lines 17–25),
a random initial state is selected from the transition state space T in
Line 17. The forward reachable set from this random initial state is
then computed in Lines 19–24. During the forward set computation,
when the frontier set evaluates to ∅ in iteration k, a random state is
taken from the frontier set in iteration k−1 and returned as the seed
state. The motivation behind this function is that a state in the last
frontier set is more likely to be a part of an attractor than a random
state in the state space T . For synchronous models, it can be proved
that the seed state selected in this way is guaranteed to be a part of
an attractor.

Results of running the Algorithm 2 on some of the benchmark
networks are given in Table 1. From the results we see that the
synchronous algorithm scales well with the size of the network and
can compute all the attractors in reasonable time and memory. The
benchmarking was performed on a 1.8 GHz Dual Core Pentium
machine with 1 GB of RAM running on Linux Fedora Core 5.

2.2 Asynchronous model
In the synchronous model, we made the assumption that all
genes make a transition at the same time and take an equivalent
amount of time in changing their expression levels. This assumption
is biologically unrealistic, but there is seldom enough kinetic
information to be able to discern the precise order and duration
of state transitions. To address this problem we make use of the
asynchronous model, where we make three assumptions. The first
assumption is that only one gene can make a transition (or be
updated) in a single step. The second assumption is that a state
can have a self transition if and only if none of the genes can
change their expression levels (i.e. xi(t+1)=xi

t ∀ i). Finally, the
third assumption is that every gene is equally likely to make a
transition. That means every state can have potentially N successor
states, where each successor state differs from the present state in
only one gene expression.

As in Equation (3) for synchronous models, we first give the
transition function for each gene i for an asynchronous model. To
model the first assumption of asynchronous models, which states
only one gene can be updated between two consecutive time steps,
we use the following relation:

TPi(xt,xt+1) =
(

xi
t+1 ↔xi(t+1)

)
∧

∧
j 	=i

(
xj

t+1 ↔xj
t

)
(5)

Equation (5) states that gene i in the next time step, takes the value
as defined by the function xi(t+1) in Equation (1) and all the other
genes stay at their current expression levels. For second assumption,
we would like to check if all the genes stay at the same level in the
next time step. For that we compute a flag function, F:

F(xt) =
N∧

i=1

(
xi(t+1) ⊕̄ xi

t

)
(6)

The Flag function F(xt)=0 iff xi(t+1) 	=xi
t for at least one gene i.

The transition relation for gene i is then given by:

Ti(xt,xt+1) = {F(xt)∨
(

xi(t+1) ⊕ xi
t

)
}∧TPi(xt,xt+1) (7)

In Equation (7), the transition function for gene i is given by
TPi(xt,xt+1) if either all the genes stay at the same level in the
next time step (i.e. the flag function, F(xt)=1) or if the expression
of gene i in the next step can be different from its expression in the

present time step (i.e.
(

xi(t+1) ⊕ xi
t

)
=1).

To compute the corresponding asynchronous transition function,
we take the disjunction of Equation (7) for all the genes in
the network:

T (xt,xt+1) = T0(xt,xt+1)∨∨ TN (xt,xt+1) (8)

Equation (8) incorporates the third assumption, which states that
from a given state, the network can have multiple next states and
each next state can differ from the present state in at most one gene
expression. Note that Equation (8) is the counterpart of Equation (4)
for synchronous models, with the difference that the conjunctions
(∧) have been replaced by disjunctions (∨).

The asynchronous model has 2N states, and each of them can
have upto N outgoing transitions, making a total of N ·2N transitions
in the worst case. This means that the number of transitions in an
asynchronous model can be more than those in the corresponding
synchronous model by upto a factor of N . This increased number
of transitions has a considerable impact on the BDD representation
of the transition function, whose complexity increases with the
number of transitions that it needs to model.

In asynchronous models, the attractors are computed as in the
synchronous model but by using the transition functions as described
in Equations (5–8). Column 9 of Table 1 presents the benchmarking
of the asynchronous model. The increased run time to compute the
attractors in asynchronous models is due to both the size of the state
transition diagram and the heuristics used to select seed states in
Algorithm 2. Contrary to synchronous models, for the asynchronous
model, the initial_state() function in Algorithm 2 does not guarantee
to return a state that forms a part of an attractor. This creates a
potential problem, since, for computing the set of attractors common
to the synchronous and the asynchronous model of a gene regulatory
network, Algorithm 2 for the asynchronous model may require a
large number of iterations. For this reason, in Table 1, mammalian
cell, T-helper(Th) and T-cell receptor have a greater differences in
computational time for synchronous and asynchronous model as
compared to the run time difference for the dendritic cell network.
The large time difference between the two models for the Network
1 is due to the extremely large size and complex configuration of
this network.

2.3 Modeling asynchronously using a synchronous
model

As is evident from the results from Table 1, BDD representation
and manipulation can be far more efficient on a synchronous
representation as compared to the asynchronous representation.
A similar conclusion has been made in an entirely different
context in electronics design automation commmunity, where
verification of asynchronous circuits using BDDs is known to
be more computationally challenging than synchronous circuits
(Baldamus and Schneider, 2001; Burch et al., 1991). To tackle
this issue, in this section we propose a combined synchronous–
asynchronous traversal technique. We will see that, by using this
combined traversal technique, we can find the attractors of an
asynchronous model of networks with as many as 1200 nodes and

1920

Modeling gene regulatory networks

Table 1. Benchmarking of the synchronous model (Column 8) using Algorithm 2, asynchronous model (Column 9) using Algorithm 2 and combined
synchronous asynchronous model (Column 10) using Algorithm 3

Network Nodes Edges Number of Attractors Time taken (in sec)

Self Loops Simple Simple 2 Complex sync async combined

Mammalian Cell 10 39 1 0 1 1 0.1 0.26 0.22
T-helper 23 34 3 0 0 0 0.12 0.35 0.4
Dendritic Cell 114 129 0 1 0 0 0.32 0.37 0.49
T-cell receptor 40 58 1 0 9 7 3.0 960 460
Network 1 1263 5031 1 0 0 0 200 * 730

A cut-off time of 1 h was used and the algorithms which could not finish computation within this time were terminated (represented by ‘∗’). Mammalian cell network is taken from
(Fauré et al., 2006), Th from (Mendoza and Xenarios, 2006) and T-cell receptor from (Klamt et al., 2006). The Dendritic cell network was generated by semi-automatic mining
of literature evidence. Network 1 is a full literature mined Insulin growth factor regulatory network. It has been developed through automatic literature mining tools that build
a tentative regulatory network based on the set of keywords such as activation/inhibition.

1111

1011

1010

1000

1001

1011

1010

1100
1000

1001

(c) Simple loop(Type2)(b) Simple loop(a) Self loop

Fig. 3. Possible types of attractors in the synchronous model.

over 5000 edges (Table 1), which is not otherwise possible using the
standalone asynchronous model of Section 2.2.

First, we would like to differentiate between the attractors of
synchronous and asynchronous models of gene regulatory networks.
An attractor is a set of states such that all the states in the set are
reachable from each other and all the transitions emerging from the
states in this set have the destination state belonging to this set. Based
on this definition, an attractor could be formed by a single state or a
set of states. A single state attractor is called a self loop, otherwise
it can be either a simple loop or a complex loop. A simple loop is a
cycle of states such that each state can have exactly one successor
state. A complex loop is formed by two or more overlapping simple
loops. A self loop attractor is called a steady state.

Since synchronous networks can have only one outgoing
transition from any state, an attractor in synchronous networks
can only be of two types: (a) self loops, and (b) simple loops.
Simple loops for synchronous models can again be divided into
two subclasses: (1) where any two consecutive states of the loop
differ in exactly a single gene expression and (2) where at least two
consecutive states of the loop differ in more than one gene expression
(1010→1100 in Figure 3c). These possible attractors are shown in
Figure 3.

Similarly, an asynchronous model can have three classes of
attractors, namely, (a) self loops, (b) simple loops, and (c) complex
loops. These are shown in Figure 4. Since the definition of
asynchronous models allows only a single gene expression change
between any consecutive states, they can have only one kind of
simple loops (unlike synchronous models).

Self loops and simple loops found in the asynchronous model
of a gene regulatory network are also present in the synchronous
model of the same network. The two models can only differ in the
complex loop and simple loops of the second type (i.e. Fig. 3c).

1111

1011

1010

1000

1001

1011
1010

1000

1110

1001

1100

(c) Complex loop(b) Simple loop(a) Self loop

Fig. 4. Possible types of attractors in the asynchronous model.

Though simple loops (of Fig. 3c) may lead to a complex loop
(of Fig. 4c) in an asynchronous model for some gene regulatory
networks, the presence of the former is not necessary for the
existence of complex loops. This necessitates the computation of
complex loops on asynchronous models, while self loops and simple
loops of asynchronous models can be determined by simulating the
synchronous model.

We propose to use the algorithms given in Section 2.1 to compute
the common attractors on the synchronous model and then compute
the complex loop attractors on the asynchronous model. This can
improve the efficiency of the algorithms proposed in Section 2.1 for
two reasons:

(1) The common set of attractors can be computed in fewer
iterations of Algorithm 2 for the synchronous models than
that required for the asynchronous model.

(2) ROBDDs for asynchronous models are more complex than
those for synchronous models. This makes all the logic
operations like AND, OR, Quantify, etc. computationally
demanding. Computing some of the attractors on the
synchronous model should improve the computational
efficiency.

Algorithm 3 details the combined synchronous–asynchronous
traversal technique. In this algorithm, we first compute the
synchronous attractors in Line 3. Then in Lines 4–7, the synchronous
attractors that do not exist in the asynchronous model are deleted. In
Line 8, the backward reachable states from the remaining attractors
are computed on the asynchronous state transition diagram. These
backward reachable states are removed from the state space in Line 9
(using Theorem 2) and the remaining attractors of the asynchronous

1921

A.Garg et al.

model are computed in Line 10 on the reduced state space using
Algorithm 2.

The function isFalseLoop() in lines 12–28 checks for the false
synchronous attractors. In Line 14 of this function, a state s0 is
randomly selected from the states set S. Then two sets, namely the
reached set RS0 and frontier set FS0, are defined and initialized to
null and s0, respectively. The superscript of FS and RS stands for
the iteration number. Then the state reachable in one step from the
current frontier set is computed in Line 18. Since we are making this
computation on synchronous models, there would be only one state
in the new frontier set. Then in Line 19, we compute the number
of bits by which the current and the new frontier set differ. If the
number of bits by which these two states differ is more than 1,
then the attractor is declared false (Lines 20–22). Otherwise, the
new frontier set is modified in Line 23. If the new frontier state has
already been explored then this modification makes it an empty set.
The new frontier set is added to the reached states set (Line 24) and
the process is iterated until the frontier set is empty (Line 17). If
for all the consecutive states of an attractor, the number of bits by
which they differ is exactly 1, then the attractor is declared genuine
(Line 27).

The results of using this combined model are listed in the last
column of Table 1. The improvement of the combined model
over the asynchronous model is more evident from the results
on T-cell receptor and Network 1 gene regulatory networks.
While processing for Network 1, the asynchronous model could
not finish the computation in 1 h whereas the combined method

computed the attractors in 12 min and for the T-cell receptor network,
the performance almost doubled. For T-helper and dendritic cell
networks, the combined model takes marginally more time than the
asynchronous model but this might be attributed to the fact that there
is a fixed overhead involved in computing the backward reachable
set in Line 8 of Algorithm 2 that is not compensated by the small
run time difference between the synchronous and the asynchronous
model.

3 MODELING GENE PERTURBATIONS
Computing attractors on gene regulatory networks gives an insight
into the cell differentiation process. If the computed steady states (i.e.
self-loop attractors) have a clear correspondance to biological cell
states and other types of attractors have a biological explanation,
then it is possible to be confident of the general validity of the
model. In that case, it would be interesting for biologists to study the
results of gene perturbation experiments on the given network. In
this section, we extend our mathematical model of gene regulatory
network to perform perturbation experiments. We investigate two
kinds of gene perturbations:

(1) Over-expression: this represents the constant expression of a
gene at a high expression level. In Boolean logic, this means
that the gene is ‘ON’ or ‘1’ all the time.

(2) Knock-out: this represents the case when a gene is silenced
and it does not participate in the network dynamics. That
means gene is ‘OFF’ or at level ‘0’ all the time.

We modify Boolean Equations (1–3) and 5 to encode knowledge
about all possible gene–perturbations in the model and then, during
the analysis phase, we select the genes to be perturbed dynamically.
Encoding this information in the model itself helps in sharing
information between different perturbation experiments. Also, such
a modeling approach permits answering questions such as what
perturbations may give the desired steady states without explicitly

1922

Modeling gene regulatory networks

performing all the possible gene perturbations. We use two N
bits Boolean vectors k and e, called knocked out genes and over
expressed genes, respectively. If a bit i of k (or e) evaluates to 1 (i.e.
ki =1 or ei =1), then it means that gene i is knocked out (or over
expressed). Only one of ki and ei can evaluate to 1 for any given i.
To encode this information, we use the modified Boolean variables
x̃i’s as in Equation (9).

x̃i =
(

xi ∨ei
)
∧¬ki (9)

Equation (9) states that if gene i is over expressed (i.e. if ei =1),
then x̃i =1. If gene i has been knocked out (i.e. if ki =1), then x̃i =
0. If the gene is normal (i.e. ei =0 and ki =0), x̃i =xi. Now, we
modify Equations (1–2) to include the perturbation information. The
modified equations are given in Equations (10–11).

xi(t+1)=¬ki ∧

ei ∨

m∨
l=1

f a
xi,l

(t)

∧

¬

n∨
l=1

f in
xi,l

(t)

 (10)

f a,in
xi,l

(t)=

p∧
j=1

x̃a
j (t)

∧

q∧
j=1

¬x̃in
j (t)

 (11)

kj is true if gene j is knocked out

ej is true if gene j is over expressed

Equation (10) states that if gene i is over expressed (i.e. if ei =1),
then xi(t+1)=1. If gene i has been knocked out (i.e. if ki =1), then
xi(t+1)=0. If the gene is normal (i.e. ei =0 and ki =0), Equation
(10) is same as Equation (1). Equation (11) is exactly the same as
Equation (2), with modified variables x̃i.

The transition function for synchronous models given in
Equation (3) is modified to Equation (12) and asynchronous models
in Equation (5) is modified to Equation (13).

Ti(xt,xt+1) = xi
t+1 ↔

{
¬ki ∧

(
ei ∨xi(t+1)

)}
(12)

TPi(xt,xt+1) =
(

xi
t+1 ↔

{
¬ki ∧

(
ei ∨xi(t+1)

)})
∧

∧
j 	=i

{
xj

t+1 ↔
{
¬kj ∧

(
ej ∨xj

t

)}}
(13)

The rest of the equations for synchronous and asynchronous models
remain the same as in Equation (4) and Equations (6–8), respectively.

Equations (9–13) along with Equations (4, 6–8) represent the
state space with all possible gene perturbations. Given a perturbation
experiment, we restrict the state space to only those perturbations
which are part of the experiment and compute attractors on that
restricted state space. For this, we define three Boolean functions
fk , fe and fGP to represent information of the knocked out,
over expressed and perturbed genes, respectively. fGP is further
expressed as a function of fk and fe. These functions are given in

Equations (14–16).

fGP = fk ∧fe (14)

fk =

 ∧

i:ki=1

ki

∧

 ∧

i:ki=0

¬ki

 (15)

fe =

 ∧

i:ei=1

ei

∧

 ∧

i:ei=0

¬ei

 (16)

A perturbation experiment can have multiple levels (or orders)
of perturbations. Each level i has a number of genes which are
perturbed synchronously. These perturbed genes are encoded into
f i
k , f i

e and f i
GP using Equations (14–16), where i is the level of

the perturbation experiment. Perturbations in consecutive levels,
starting from level 1 and going down to L levels, are done
sequentially. Level 0 always represents the original network without
any perturbation.

The idea is formally described in Algorithm 4. In this algorithm,
the main loop in Lines 3–13 is iterated over all levels L. For
every level i, corresponding functions fe, fk and fGP are constructed
using Equations (14–16) in Line 4. Then the transition function is
restricted to the state space defined by this perturbation experiment
(Lines 5, 6). The attractors are computed on the perturbed network
in Line 7 using the combined synchronous–asynchronous method.
Once the attractors are found, we compare the forward reachability
of attractors of the previous level with the attractors of the
current level of a perturbation experiment. This is done in Lines
8–13. For every attractor computed in the previous level, i.e.
level i−1, we compute the forward reachable states on the new
transition function (Line 10). Then we check all the attractors in
the current level i that are contained in this forward reachable set
(Line 12). Lines 3–13 can be repeated for different experiments
on the same network without constructing a new model of the
regulatory network.

4 MODELING THE T-HELPER NETWORK
We implemented our methodology in the software package
genYsis (http://si2.epfl.ch/∼garg/genysis.html) and tested it in
the study of the signaling network (Fig. 5) that controls the
differentiation of T-helper (Th) cells (Mendoza and Xenarios, 2006).
Th cells have three main phenotypes: the precursor Th0, and the
effector Th1 and Th2, which secrete IFN-γ and IL-4, respectively.
The differentiation from Th0 to either Th1 or Th2 phenotypes
depends on the integration of diverse molecular and cellular clues.
It has been shown that the Th network is sufficient to describe
qualitatively the differentiation of Th cells, studied by modeling
it as a discrete dynamical system (Mendoza, 2006), a continuous
dynamical system (Mendoza and Xenarios, 2006), a Petri net (Remy
et al., 2006), and a binary decision diagram (Garg et al., 2007).

There is a wealth of experimental data on the effect of cytokines
on the differentiation of Th cells (Agnello et al., 2003; Bergmann
and van Hemmen, 2001), and we tested our algorithm by simulating
some experimental treatments. First, it was necessary to demonstrate
that our algorithm is able to correctly identify the attractors of
the wild-type (unperturbed) Th network. Table 2 shows that our
methodology correctly identifies the three stable steady states on

1923

http://si2.epfl

A.Garg et al.

Table 2. Steady states of the Th Cell

Perturbed genes Active genes in steady states Cell type

All the genes are inactive Th0
wild type IFN-γ Tbet SOCS-1 IFN-γ R Th1

IL-10 IL-10R GATA-3 STAT3 STAT6 IL-4 IL-4R Th2

IL-12 over expressed IFN-γ Tbet SOCS-1 IFN-γ R IL-12 IL-12R STAT4 Th1
IL-10 IL-10R GATA-3 STAT3 IL-12 STAT6 IL-4 IL-4R Th2

IL-4 over expressed IFN-γ Tbet SOCS-1 IFN-γ R IL-4 Th1
IL-10 IL-10R GATA-3 STAT3 STAT6 IL-4 IL-4R Th2

Fig. 5. Th network. The regulatory network that controls the differentiation
process of Th cells. Positive regulatory interactions are shown with a pointed
arrow head and negative interactions with a round arrow head.

the Th network, which represent the activation patterns observed in
Th0, Th1 and Th2 cells.

Next, we simulated the effect of subjecting Th cells to two
consecutive stimuli, first a constant saturating concentration of
IL-12, and then changing it to a saturating concentration of IL-4.
As shown in Figure 6a, this combination of signals has the result
of eliminating the Th0 steady state (or self loop attractor). If the
system is in the Th0 state, the constant activation of IL-12 moves
it to the Th1 state, where it stays even after the inactivation of
IL-12 and the constant presence of IL-4. In contrast, if the system
starts in the Th1 or Th2 states, the two consecutive signals are
incapable of moving the system to another attractor. The steady
state profile on IL-12 and IL-4 over expression are shown in
Table 2.

Finally, we did the simulation of the same perturbations as
described above, but in reverse order. That is, activating IL-4 to its
highest level, and then inactivating it and activating IL-12 instead.
Results are the same as before, shown in Figure 6b. The only
difference was that in this simulation, the network in the Th0
states receives the IL-4 and moves to Th2, where it stays after the
elimination of IL-4 and the activation of IL-12.

These simulations show that Th0 state is unstable under the
perturbation of IL-12 or IL-4, which act as differentiation signals to
take the system to the Th1 or Th2 states, respectively. In contrast, the
Th1 and Th2 states are stable under the perturbation of the IL-4 and

wildtype

IL-4 overExp

IL-12 overExp

Th1

Th1

Th1

Th2

Th2

Th2

Th0

(a) Experiment A (b) Experiment B

wildtype

IL-4 overExp

Th1

Th1

Th1

Th2

Th2

Th2

Th0

IL-12 overExp

Fig. 6. Results of gene perturbation experiments.

IL-12 nodes. These results are in total agreement with experimental
data (Murphy and Reiner, 2002) and reported simulations of the Th
network using a different mathematical framework (Mendoza and
Xenarios, 2006).

5 CONCLUSION
In this article, we have addressed the computational issues of
different dynamic models for gene regulatory networks. We have
shown, using our software genYsis on networks of varying
sizes, that asynchronous modeling of even moderately sized gene
regulatory networks can be computationally impossible to perform
in a decent run time whereas synchronous behaviour of the same
networks can be modeled in a few minutes. We introduced a
combined synchronous–asynchronous modeling approach that can
represent the asynchronous behaviour of regulatory networks in
run time proportional to the synchronous models. Using this
efficient modeling approach, we then introduced the framework
for performing perturbation experiments on gene regulatory
networks. We have shown the application of our software on
the Th regulatory network. In contrast to existing softwares
(e.g. Gene Network Analyzer, Cell Net Analyzer, GinSim, etc.)
for similar applications, genYsis can identify all kinds of
attractors that may exist in the gene regulatory networks. The
combined synchronous–asynchronous algorithm has been integrated
in the latest version of the simulation package SQUAD (Di Cara
et al., 2007). The methodology for gene perturbation analysis
will be incorporated into SQUAD in its next release. In the
meantime, genYsis is freely available as a standalone package
on http://si2.epfl.ch/∼garg/genysis.html.

1924

http://si2.epfl

Modeling gene regulatory networks

ACKNOWLEDGEMENTS
Funding: This work was supported in part by ENFIN, a Network
of Excellence funded by the European Commission within its
FP6 Program, under the thematic area ‘Life Sciences, genomics
and biotechnology for health’, contract number LSHG-CT-2005-
518254.

Conflict of Interest: none declared.

REFERENCES
Albert,R. and Othmer,H.G. (2003) The topology of the regulatory interactions predicts

the expression pattern of the Drosophila segment polarity genes. J. Theor. Biol.,
223, 1–18.

Agnello,D. et al. (2003) Cytokines and transcription factors that regulate T helper cell
differentiation: new players and new insights. J. Clin. Immunol., 23, 147–162.

Baldamus,M. and Schneider,K. (2001) The BDD Space Complexity of Different
Forms of Concurrency. In Proceedings of ICACSD ’01. Newcastle upon Tyne, UK,
pp. 231–242.

Bergmann,C. and van Hemmen,J.L. (2001) Th1 or Th2: how an appropriate T helper
response can be made. Bull. Math. Biol., 63, 405–430.

Bernot,G. et al. (2004) Application of formal methods to biological regulatory networks:
extending Thomas’ asynchronous logical approach with temporal logic. J. Theor.
Biol., 229, 339–347.

Bryant,R.E. (1986) Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., 35, 677–691.

Burch,J.R. et al. (1991) Symbolic model checking with partitioned transition relations.
In Proceedings of International Conference on VLSI’91. Edinburgh, Scotland,
pp. 49–58.

Burch,J.R. et al. (1994) Symbolic model checking for sequential circuit verification.
IEEE Comput-Aid D, 13.

Chabrier,N. et al. (2004) BIOCHAM. In Proceeding of Computational Method of
Systems Biology. Paris, France, pp. 172–191.

Devloo,V. et al. (2003) Identification of all steady states in large biological systems by
logical analysis. Bull. Math. Biol., 65, 1025–1051.

Di Cara, et al. (2007) Dynamic simulation of regulatory networks using SQUAD. BMC
Bioinformatics, 8, 462.

Fauré,A. et al. (2006) Dynamical analysis of a generic Boolean model for the control
of the mammalian cell cycle. Bioinformatics, 22, e124–e131.

Garg,A. et al. (2007) An efficient method for dynamic analysis of gene regulatory
networks. Springer LNBI, 4453 , 62–76.

Kauffman,S.A. (1969) Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol., 22, 437–467.

Klamt,S. et al. (2006) A methodology for the structural and functional analysis of
signaling and regulatory networks. BMC Bioinformatics, 7, 56.

Murphy,K.M. and Reiner,S.L. (2002) The lineage decisions on helper T cells. Nat. Rev.
Immunol., 2, 933–944.

Mendoza,L. and Xenarios,I. (2006) A method for the generation of standardized
qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model.,
3, 13.

Mendoza,L. (2006) A network model for the control of the differentiation process in
Th cells. BioSystems, 84, 101–114.

Naldi,A. et al. (2007) Decision diagrams for the representation and analysis of logical
models of genetic networks. LNCS/LNBI, 4695, 233–247.

Remy,E. et al. (2006) From logical regulatory graphs to standard petri nets: dynamical
roles and functionality of feedback circuits. Springer LNCS, 4230, 56–72.

Thomas,R. (1991) Regulatory networks seen as asynchronous automata: a logical
description. J. Theor. Biol., 153, 1–23.

Thomas,R. and Kaufman,M. (1995) Dynamical behaviour of biological regulatory
networks-I. Biological role of feedback loops and practical use of the concept of
the loop-characteristic state. Bull. Math. Biol., 57, 247–276.

Xie,A. and Beerel,P.A. (1998) Efficient state classification of Finite State
Markov Chains. In Proceedings of DAC. San Francisco, CA, USA, pp. 605–610.

1925

