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High-density lipoproteins (HDLs) exert a series of potentially beneficial effects on many cell types including anti-atherogenic actions on the endo-
thelium and macrophage foam cells. HDLs may also exert anti-diabetogenic functions on the beta cells of the endocrine pancreas, notably by
potently inhibiting stress-induced cell death and enhancing glucose-stimulated insulin secretion. HDLs have also been found to stimulate
insulin-dependent and insulin-independent glucose uptake into skeletal muscle, adipose tissue, and liver. These experimental findings and the
inverse association of HDL-cholesterol levels with the risk of diabetes development have generated the notion that appropriate HDL levels
and functionality must be maintained in humans to diminish the risks of developing diabetes. In this article, we review our knowledge on the bene-
ficial effects of HDLs in pancreatic beta cells and how these effects are mediated. We discuss the capacity of HDLs to modulate endoplasmic
reticulum stress and how this affects beta-cell survival. We also point out the gaps in our understanding on the signalling properties of HDLs
in beta cells. Hopefully, this review will foster the interest of scientists in working on beta cells and diabetes to better define the cellular pathways
activated by HDLs in betacells. Such knowledgewill beof importance todesign therapeutic tools to preserve the proper functioning of the insulin-
secreting cells in our body.
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1. Introduction
Diabetes mellitus is defined by the finding of a fasting and postprandial
plasma glucose level higher than 7.0 and 11.1 mM, respectively, or a gly-
cated haemoglobin A1c level above 6.5%. Diabetes mellitus is differen-
tiated into diabetes mellitus type 1 (T1DM), diabetes mellitus type 2
(T2DM), and several rarer forms of diabetes such as gestational diabetes
or inherited forms.1 The rarer T1DM predominantly develops in chil-
dren and adolescents and is caused by a primary loss of insulin produc-
tion due to autoimmune beta-cell destruction. The much more frequent
T2DM is manifested mostly in adults after many years of insulin resist-
ance. In this case, diabetes develops when the pancreatic beta cells
can no longer produce the increased insulin secretion required to com-
pensate insulin resistance. Usually, the pre-diabetic insulin-resistant
state is clinically silent but revealed upon finding of impaired fasting
plasma glucose (5.6–7.0 mM), glucose intolerance (2 h plasma glucose
level after exposure to 75 g glucose ranging between 7.0 and
11.1 mM), or glycated haemoglobin level ranging between 5.4 and
6.5%.1 This pre-diabetic state is frequently accompanied by abdominal
obesity (waist circumference . 102 cm in men or .88 cm in
women), arterial hypertension, and a dyslipidaemia characterized by
fasting plasmatriglycerides above2.3 mMaswell as high-density lipopro-
tein (HDL) cholesterol levels below 1.05 mM in men or below 1.25 mM
in women. These confounding cardiovascular risk factors, which are

defining criteria of the metabolic syndrome, put pre-diabetic patients
at substantially increased risk for cardiovascular disease.1

By its increasing prevalence, T2DM has become a major public health
problem. From 1990 to 2010, diabetes-related mortality doubled and
since has become the worldwide ninth most prevalent cause of death.
With respect to potential years of life lost, diabetes ranks 19 worldwide
and 13 in Western Europe.2 The major reasons for premature mortality
of diabetic patients are cardiovascular diseases, chronic kidney disease,
and cancer. Glycaemic control is a mainstay to prevent acute metabolic
decompensation and microvascular complications, notably nephropa-
thy and retinopathy, as well as peripheral neuropathy. Lowering of low-
density lipoprotein cholesterol (LDL-C) by statins has emerged as the
most effective means of reducing the risk of myocardial infarction,
even in diabetic subjects. However, statins were also found to dose-
dependently increase the risk of manifesting diabetes mellitus, especially
in patients who are already affected by one or several components of the
metabolic syndrome and hence have increased risks of both cardiovas-
cularevents andmanifestationof diabetesmellitus.3 – 5 It hasbeen argued
that the cardiovascular benefit of statins measured by the reduction of
clinical endpoints outweighs the risk of diabetes mellitus, the latter
being revealed by hyperglycaemia rather than by a hard clinical endpoint.
It is, however, also important to note that the impact of statins for
microvascular and neurological complications of diabetes is not well
established.
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2. Low high-density lipoprotein
levels as a risk factor for diabetes (and
cardiovascular disease) development
A low level of HDL-cholesterol (HDL-C) is a well-defined risk factor
for the development of cardiovascular diseases6 and overall survival in
general,7 even when LDL-C levels are optimally controlled.8,9 More
recently, evidence has accumulated that a low HDL-C level also is an
independent risk factor for the development of diabetes.10–13

While a low HDL-C level (,1 mM HDL-cholesterol) is a bad prog-
nosis for both diabetes and cardiovascular disease development, very
high HDL-C levels do not appear to be associated with less risk than
intermediate HDL-C levels, at least for cardiovascular diseases.14 In
two recent meta-analyses of population studies and statin trials pub-
lished in JAMA15 and Circulation,16 the 20% individuals with the highest
HDL-cholesterol levels (HDL-C concentrations above 1.62 and
1.47 mM, respectively) were not better protected from coronary
heart diseases than the individuals in the 60th–80th percentiles with
HDL-cholesterol concentrations in the JAMA and Circulation studies
ranging from 1.35 to 1.62 mM and 1.24 to 1.47 mM, respectively.

Like the association with coronary heart disease, the association of low
HDL-Cwith an increasedriskofT2DMis independentofother risk factors
and confounders such as glucose, HbA1c, body mass index, triglycerides,
and blood pressure. This statistical independence does not imply causality.
In fact, the association of low HDL-C with increased risk of T2DM was
traditionally interpreted to be a bystander of insulin resistance rather
than an indication of pathogenic causality. Indeed, there are indications
forreversecausality,meaning that lowHDL-cholesterol levels are thecon-
sequence of the pre-diabetic and diabetic state rather than a cause of dia-
betes. In particular, indirect mechanisms involving triglyceride-rich
lipoproteins, free fatty acids, microRNA 33 (miR33), insulin resistance,
and the resulting hyperinsulinaemia may promote a decrease in
HDL-cholesterol (Figure 1). This may explain why research on the anti-
diabetic potential of HDL has been relatively neglected until recently
(i.e. the middle of the last decade). This contrasts with the research on
the anti-atherogenic role of HDLs that has been stimulated for more
than 50 years by the inverse association of low HDL-C and cardiovascular
risks. In this dispute of causality, one must also consider the option that
both relationships may be true: in a vicious cycle, increased insulin resist-
ance and hyperinsulinaemia compromise HDL metabolism and lead to
quantitative and qualitative alterations of HDL, which in turn interfere

Figure 1 Disturbed HDL metabolism in insulin resistance. Insulin resistance implies both reduced insulin sensitivity of some organs and increased re-
sponse of other organs to the compensatory hyperinsulinaemia. Hyperinsulinism increases hepatic production of triglycerides and very-low-density lipo-
proteins by up-regulating theexpression of the transcription factorSREBP1c (sterol regulatoryelement binding protein 1c) and the microRNAmiR33b that
is encoded by an intron of SREBP1c.17– 19 In the adipose tissue, insulin resistance is interfering with lipogenesis and enhances lipolysis so that the concen-
tration of circulating free fatty acids is increasing, which in turn results in the stimulation of hepatic lipogenesis and hence VLDL production. The increased
secretion of VLDL produces hypertriglyceridaemia, which is not sufficiently cleared because of reduced lipoprotein lipase (LPL) activity. LPL is released
from adipocytes upon insulin stimulation, but this is compromised in insulin resistance. Reduced lipolysis of VLDL decreases the production of surface
remnants that contribute to the maturation of HDL. Moreover, hypertriglyceridaemia increases the activity of cholesteryl ester transfer protein
(CETP) that exchanges cholesteryl esters of HDL against triglycerides of VLDL. This leads to a decrease in the concentration of HDL cholesterol.17

Finally, the production of HDL precursors in the liver and intestine is disturbed in insulin resistance states because the ATP-binding cassette transporters
A1 and G1 are inhibited by free fatty acids at both the transcriptional and post-translational levels, as well as by miR33 acting at the post-transcriptional
level18,20.
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with the production and action of insulin.17–19,21 The insulin-secreting
pancreatic beta cells and the cells that respond to insulin such as skeletal
muscle cells are two cell categories that could benefit from a beneficial
effect of HDLs in the context of glucose homeostasis and diabetes.22 Posi-
tive effects of HDLs on insulin-independent glucose uptake and utilization
byadipocytes,myocytes, andhepatocyteaswell asHDL-mediatedcontrol
of inflammation could also participate in the protection against dia-
betes.23–27 These latter effects have been the focus of recent excellent
review articles.22,28 Therefore and because it is beta-cell failure that deter-
mines the conversion of insulin-resistant pre-diabetes into manifest
T2DM, we here focus on the role played by HDLs in beta cells and on
the mechanisms that can be activated by HDLs in these cells to mediate
their beneficial effects. But before we move to the main topic of this
review, let us raise two points that are sometimes overlooked when
working with HDLs.

3. Signalling molecules carried
by high-density lipoproteins: the
problem of heterogeneity and
scarcity
HDL particles are the most complex and heterogeneous lipoproteins.
More than 80 different proteins and hundreds of different lipid species
have been found associated with HDL particles.29 In addition, HDLs
can carry various miRNAs and deliver them to different tissues.30,31

HDL particles are mainly produced by the liver, but also, to a lower
extent, by the intestine. These tissues produce the major HDL-protein
component, apolipoprotein A-I (ApoA-I), as well as its major lipids
(phosphatidylcholine and cholesterol). Many minor HDL components
are not only produced by hepatocytes (e.g. paraoxonase) but also by
other organs [e.g. ApoM both in the liver and kidney; clusterin and
sphingosine-1-phosphate (S1P) almost ubiquitously]. HDLs acquire
these bioactive molecules by interacting with other cell types. For
example, both native and reconstituted HDLs were found to induce
S1P efflux from cardiomyocytes and erythrocytes [Ref.32 and Suter
and von Eckardstein (unpublished results)]. Hence, HDLs can locally
induce the release of bioactive molecules (e.g. S1P, phosphatidylserine,
clusterin, or ApoE) and incorporate them in their structure. In this scen-
ario, even artificial HDL consisting only of ApoA-I and phosphatidylcho-
line may acquire additional bioactive molecules when exposed to target
cells (e.g. pancreatic beta cells). They can then present these bioactive
molecules to cells in an autocrine manner or transport them to other
cells to elicit paracrine or endocrine effects.

A given HDL particle may not carry all the molecules identified by iso-
lation of HDLs through ultracentrifugation, gel filtration, or affinity chro-
matography. Indeed, some bioactive components are only carried by a
minority of HDL particles.29 For example, S1P, which has been reported
to mediate the capacity of HDLs to induce NO release and relaxation of
the vascular endothelium,33 is found on �2% of circulating HDLs,29 po-
tentially even less if there is a sub-group of HDL particles that is ‘specia-
lized’ in carrying S1P and therefore carries more than one S1P molecule
per HDL particle. The scarcity of some bioactive molecules may greatly
complicate the interpretation of studies assessing the signalling capaci-
ties of HDLs because the concentration of HDL particles carrying a
given bioactive molecule is rarely determined. It should, however, not
be concluded that if a bioactive molecule is rarely encountered on
HDL particles, it should not play a physiological role. If we take S1P

for example, the concentration of HDLs carrying this lipid is about
500 nM. This should be amply sufficient to induce vasorelaxation of
vessels as the half-maximal response induced by purified S1P is
�100 nM.33

4. The high-density lipoprotein
concentration conundrum
A rather wide range of concentrations of native or reconstituted HDL as
well as lipid-free apolipoproteins has been used by various laboratories
to induce specific cellular responses such as cholesterol efflux, cell pro-
tection, and the stimulation of various signal transduction pathways. Yet,
it is often difficult to compare the experimental settings from various
publications because the amounts of HDLs reported in the literature
are calibrated in multiple ways based on either total protein, ApoA-I,
cholesterol, or phosphatidylcholine using mass ormolar concentrations.
As HDLs are quite heterogeneous in composition, it is difficult to give
exact conversion numbers but roughly one can calculate, based on the
content of cholesterol vs. protein in HDLs (18 vs. 52%),34 that 1 mM
(�0.4 mg/mL) HDL-cholesterol corresponds to �1.2 mg/mL HDL-
protein, about 80% of which corresponds to ApoA-I. Efficacious doses
range from around 50 mg/mL HDL-protein (�0.06 mM HDL-choles-
terol) to 1 mg/mL HDL-protein (�1.2 mM HDL-cholesterol). The
maximal HDL concentrations used experimentally are within the
range of plasmatic concentrations (1–2 mM HDL-cholesterol). Are
non-endothelial cells exposed to such plasmatic concentrations in vivo?
HDL concentrations have been determined in a few extravascular
compartments. For example, there are 0.4, 0.7, and 0.3–0.6 mM
HDL-cholesterol in the lymph, the synovial fluid, and the ovarian folli-
cular fluid, respectively.35 –38 Hence, these concentrations amount to
only 20–50% of the intravascular ones. If one considers that the islets
of Langerhans are vascularized by fenestrated capillaries, HDL con-
centrations in the vicinity of beta cells may, however, not be far from
1 mg/mL HDL-protein or 1 mM HDL-cholesterol.39

Importantly, the different HDL concentrations eliciting given cellular
responses in specific cell types may point to different mechanism of
action. Responses that are elicited at low concentrations may be
mediated by interactions of HDL with specific receptors (e.g. SR-BI,
S1P receptors), while responses to high HDL concentrations could be
receptor-independent, as a consequence for example of alterations in
cellular cholesterol homeostasis resulting from aqueous diffusion of
cholesterol from the plasma membrane to HDL particles.29 Discrepant
responses to HDLs in different beta-cell types, e.g. primary cells from
human or murine islets, rat (INS1E) or mouse (MIN6) insulinomas, in
the context of different stress stimuli (e.g. thapsigargin, tunicamycin,
cytokines, LDLs)maypoint todifferent modesof action andmechanisms
elicited by HDLs.

In experimentsusing lipid-freeApoA-I, awide rangeof concentrations
has also been used: 10 mg/mL (2 mM) to 900 mg/L (32 mM). However, in
this case, only the lower concentration appears to reflect physiological
situations. Higher concentrations correspond to total plasmatic ApoA-I
that is both lipid-free and lipid-bound. However, only 5–10% of total
plasma ApoA-I occurs in a lipid-free form which, by its electrophoretic
preb1-mobility, can be differentiated from the lipidated ApoA-I of thea-
orevenpre-a-migrating HDL particles.40,41 In extravascular and intersti-
tial fluids, the proportion of preb1-HDL (i.e. lipid-free ApoA-I) is higher
than in plasma but does not amount to 100% of total ApoA-I42 and is
diluted when compared with plasma (because the HDL concentration
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in the extravascular space is lower than in plasma; see above). Moreover,
due to its much smaller structural heterogeneity, cellular responses to
lipid-free ApoA-I appear to be initiated by less diverse mechanisms
than responses to the highly heterogeneous HDL particles: as yet only
ATP-binding cassette sub-family A member 1 (ABCA1) and the
ectopic b-chain of the F0F1 ATPase have been identified as cell proteins
interacting with lipid-free ApoA-I.43– 45 In these cases, these interactions
could be detected at rather low ApoA-I concentrations (10–30 mg/mL)
in all cell types, but beta cells where 10-fold higher concentrations were
used to enhance glucose-stimulated insulin secretion.46

5. High-density lipoproteins
are potent beta-cell protectors
The majority of data reporting a beneficial effect of HDLs in beta cells
concern their survival. Numerous studies have indeed shown that
HDLs are very efficient in inhibiting apoptosis of beta cells. Figure 2
reports the capacity of HDLs to counteract beta-cell death induced by
a variety of stimuli. These include inflammatory cytokines, free fatty
acids (e.g. palmitate), thapsigargin, tunicamycin, protein overexpression,
etc. Many of these stimuli induce endoplasmic reticulum (ER) stress. As
ER stress has been proposed to be a driving parameter in beta-cell dys-
function and death in the course of diabetes development,59–61 the cap-
acity of HDLs to protect beta cells from ER stressors could be one
mechanism underlying their potential ability to prevent type 2 diabetes
(see below).

As can be seen in Figure 2, the beta-cell protective concentrations of
HDLs are around 1 mM HDL-cholesterol in most cases. In Min6 cells,
the protection against thapsigargin and tunicamycin decreases at
lower HDL concentrations,52 indicating that 1 mM HDL-cholesterol is
the optimal protective concentration in these particular conditions.
Interestingly, however, about 10 times loweramounts of HDLs werene-
cessary to inhibit thapsigargin-induced apoptosis in the rat INS1e insuli-
noma cell line. Maximal anti-apoptotic effects were seen at HDL-protein
concentrations as low as 100 mg/L (corresponding to 0.12 mM HDL-
cholesterol) (Annema and von Eckardstein, unpublished results).
Whether this is a reflection of different mechanisms of protection in
INS1 cells compared with other insulinoma cells remains to be deter-
mined. Protection of rat beta cells against LDL-mediated death by
doses that are 100-fold lower than 1 mM HDL-cholesterol56 (Figure 2)
is an odd, and as yet not reproduced, observation.

Little information is available on the molecules carried by HDLs that
mediate their anti-apoptotic effect. The inhibitory effect of HDL on
IL1b- and high glucose-induced apoptosis of primary beta cells in
murine islets was found in both the protein and lipid fractions of HDLs
and mimicked by both lipid-free ApoA-I (at a concentration of
20 mg/L) and S1P (at a 1 mM concentration, which is in the upper physio-
logical concentration range).57 In contrast, the components mediating
the protective effect of HDLs against the ER stressors thapsigargin, tuni-
camycin, palmitic acid, and oxidized LDL have not yet been identified.

In the previous paragraph, we have proposed that responses induced
by mM ranges of cholesterol could be HDL receptor-independent.
SR-BI, the HDL receptor mediating, for example, eNOS activation in
CHO cells and human microvascular endothelial cells,62 may therefore
not be involved in HDL-mediated protection of beta cells. Indeed, this
has been verified experimentally. Beta cells lacking SR-BI, either as a
result of gene knock-out or siRNA-mediated silencing, are protected

by HDLs as efficiently as control SR-BI-positive cells.53,57 The way
HDL particles engage beta cells remains therefore mysterious.

6. High-density lipoprotein and
anti-apoptotic signalling pathways:
still a black box!
How do HDLs induce their anti-apoptotic activity in beta cells? What is
the signalling mode employed? Anti-apoptotic signalling pathways
include NFkB signalling,63 Akt signalling,64 and the unfolded protein
response (UPR), but which ones are involved in HDL-mediated beta
cell protection?

The NFkB transcription factors can inhibit cell death responses by in-
ducing the expression of anti-apoptotic genes, such as those coding for
inhibitor of apoptosis family members, but they can also induce
pro-apoptotic genes, such as death receptors.65 Hence depending on
the cell type and how the cells are stimulated, NFkB can either
promote or inhibit apoptosis. Pancreatic beta cells appear not very tol-
erant to NFkB stimulation, especially when this signalling route is sus-
tained or strongly activated.66–68 NFkB activation has indeed been
shown to induce beta-cell apoptosis in a number of situations.69,70

One could argue that these responses require a strong NFkB stimulation
and that NFkB could be protective when stimulated to low extent.
However, even when mildly activated, NFkB does not contribute to
cell survival.71 Therefore, NFkB is an unlikely target of HDLs in beta
cells and indeed HDLs do not appear to stimulate this transcription
factor in beta cells54 (nor do they do in other cell types72).

Akt (also known as PKB) is a kinase family of proteins with powerful
anti-apoptotic activities.73,74 For example, the anti-apoptotic RasGAP
fragment generated by the caspase-3/RasGAP stress sensing module74

protects cells, including beta cells, in an Akt-dependent manner.70,75–77

Other protective responses in beta cells that require Akt include
those activated by Cyclin-dependent kinase 5,78 Glucose metabolism-
related protein 1,79 Erythropoietin,80 Adiponectin,81 Glucose-
dependent insulinotropic polypeptide,82 Cxcl12,83 FGF-21,84 and even
glucose itself.85 It has to be noted that Akt activation can, in some situa-
tions, lead to beta cells death. For example, palmitate appears to require
Akt to induce apoptosis in the rat insulinoma INS-1 cell line.86 Addition-
ally, forced expression of a constitutive active Akt mutant in INS-1 cells
causes their death, unless NFkB is inhibited.70 Hence, Akt modulates
beta-cell apoptosis in a context-dependent manner. Nevertheless, as
Akt is involved in beta-cell survival in many instances, it is conceivable
that HDLs use Akt to protect beta cells, especially since it is known
that this kinase is activated by HDLs in other cell types87– 90 and this
has, at least on one instance, shown to be required for the
HDL-mediated anti-apoptotic response.91 To our knowledge, there is
only one published study that assessed Akt activation by HDLs in beta
cells.56 This was done by immuno-precipitating Akt and assessing the
ability of the pulled down material to phosphorylate glycogen synthase
kinase, one of the Akt substrates. Using this methodology, the authors
reported an augmentation of Akt activity induced by HDLs but the
data were neither quantitated nor was the number of replicated experi-
ments mentioned. Moreover, whether Akt was involved in the protect-
ive activity of HDLs was not investigated in this study. The implication
of Akt in the anti-apoptotic response mediated by HDLs remains
therefore to be demonstrated (Figure 3).

Oxidized LDLs were reported to reduce the expression of the anti-
apoptotic Bcl2 protein and induce apoptosis of MIN6 cells. This was
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Figure 2 HDLs are potent inhibitors of beta cell death. This figure depicts the effect of HDLs against apoptosis induced by the stimuli reported in the
right-most column in the indicated cell types. When HDLs protect a given cell type, a green light is shown, while when there is no protection, a red light is
depicted. In the left-most column, the HDL concentration used is indicated by the cursor. When the cursor is yellow, the HDL concentration used in the
studies reporting the effect of HDL on beta-cell apoptosis was determined based on the cholesterol content of the particles. When the cursor is blue, this
concentration was based on the protein content of the particles but was converted here back to HDL-cholesterol concentrations. Min6 cells are derived
from pancreatic tumours of C57BL/6 mice expressing the SV40 large T antigen under the control of the human insulin promoter.47 The bTC3 cell line is
derived from pancreatic tumours of B6D2F1/J mice expressing the SV40 large T antigen under the control of the rat insulin II promoter.48,49 INS1 cells are
derived from X-ray-induced NEDH rat pancreatic tumors.50,51 References for the data presented in this figure: Min6 cells52–55;bTC354,56; INS1e (Annema
and von Eckardstein, unpublished results); mouse b cells57 rat b cells53,58; human b cells.53,57
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reported to be mediated by an up-regulation of JNK [c-Jun N-terminal
kinase; also known as mitogen-activated protein kinase 8 (MAPK8)] as
a consequence of a decrease in the expression of islet-brain 1 (IB1;
also known as MAPK8 interacting protein 1). HDL counteracted the
pro-apoptotic effects of oxidized LDLs on Bcl2, JNK, and IB1.
However, it has not been clarified if these anti-apoptotic effects of
HDLs on the JNK pathwayare exerted directly on the beta cells by inter-
ferencewith the apoptotic signallingor indirectly by inactivatingoxidized
LDLs.55

In murine islets, HDLs were found to down-regulate the extrinsic
death receptor FAS and to up-regulate its inhibitor FLIP.57 Additionally,
IL1b-induced up-regulation of iNOS (inducible nitric oxide synthase)
was suppressed by HDLs. However, no interference experiments
were reported to show that HDLs inhibit IL1b-induced apoptosis
through these pathways. Interestingly, the expression of Bcl-2 and
SOCS-3, which are also known to inhibit apoptosis in beta cells in re-
sponse to cytokines,76,92,93 were not altered.57

7. High-density lipoprotein and the
endoplasmic reticulum connection
As indicated above, many apoptotic inducers in beta cells induce ER
stress which leads to the activation of a conserved physiological stress
response called the UPR. The UPR is activated when the functionality
of the ER is perturbed such as when too much protein misfolding in
the ER takes place. The UPR consists in the activation of three main sig-
naling arms depending on three key proteins: inositol-requiring protein
1a (IRE1a), protein kinase RNA-like ER kinase (PERK), and activating
transcription factor 6 (ATF6).94,95 These proteins are kept inactive
when binding to the Bip (GRP78) chaperone. In the presence of an ER

stress, the ER accumulates misfolded protein. Bip binds these misfolded
proteins and this frees and activates IRE1a, PERK, and ATF6. The initial
consequence of this activation is to induce the expression of genes that
will help restoring the folding capacity of the ER and the elimination of
terminally misfolded proteins on the one hand and to decrease the
loading of the ER with newly synthesized proteins by inhibiting global
translation on the other hand.94,95 If this ‘repair’ phase fails, the UPR
eventually activates an apoptotic response leading to the elimination
of the non-functioning cell.94,95 The initial phase of the UPR may also
be involved in physiological adaptation to metabolic changes and in
several differentiation and cellular activation processes.94

Many of the apoptotic stimuli that can be counteracted by HDLs
(Figure 2) are able to induce ER stress. This raises the possibility that
HDL modulate such ER stress responses to exert their protective func-
tion in beta cells. Recent data show this to be true in certain cases but not
in others.52,53

Thapsigargin is an irreversible inhibitor of SERCA (sarco/ER Ca2+-
ATPase), an ER-associated calcium pump.96 SERCA inhibition leads to
disruption of the calcium gradient between the ER and the cytoplasm
and this causes profound ER stress as assessed by increased activation
of IRE1, PERK, and ATF6.53,97– 100 HDLs were found to fully block
thapsigargin-induced apoptosis of beta cells, with a concomitant inhib-
ition of UPR activation and restoration of the capacity of the ER to
fold proteins and to export them further down the secretory
pathway.53 Blocking trafficking between the ER and the Golgi with Bre-
feldin A prevented HDLs from inhibiting thapsigargin-induced beta-cell
death.53 This is an indication that HDLs need to preserve the function-
ality of the ER to counteract the apoptotic response induced by thapsi-
gargin. However, since Brefeldin A can affect cell activity and viability on
its own,101 –104 this interpretation should be taken with caution.
Palmitate, a patho-physiological relevant pro-diabetogenic compound,

Figure 3 HDLs and beta-cell protection: a series of missing links. HDLs exert potent anti-apoptotic signals in beta cells and they may favour insulin se-
cretion. At present, virtually nothing is known on how this is achieved at the molecular level (see the question mark inside a puff of smoke). At the cellular
level, HDLs can maintain the ER functionality in response to certain types of stresses (e.g. palmitate) and thereby diminish ER stress and apoptosis. This will
obviously also have a positive impact on insulin secretion but other mechanisms (e.g. cooperation with ABC transporters) can conceptually also participate
in enhanced insulin secretion. Even in the presence of an ER stress can HDLs inhibit apoptosis (e.g. when cells are stimulated with the tunicamycin ER stres-
sor). HDLs can also protect beta cells against stimuli that do not induce an ER stress response such as some inflammatory cytokines (e.g. IL1b) or starvation.
Whether the anti-apoptotic activity of HDLs in beta cells relies on specific receptors, whether there is a signalling cascade that is activated following binding
of HDLs to their putative receptors, or whether bioactive molecules (e.g. S1P) are transferred from the HDL particle to the beta cell to mediate the pro-
tective response will need to be investigated. Note that in beta cells SR-BI, the classical HDL docking platform/receptor, is dispensable for the
HDL-mediated effects.
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induced, similarly to thapsigargin, the activation of the UPR.53,105 In this
case too, HDLs fully prevented stimulation of ER stressors and apoptosis
induced by palmitate and they maintained the functionality of the ER in
terms of protein folding and protein trafficking.53 These results
suggest that HDLs protect beta cells by allowing them to retain a func-
tional ER despite the presence of stressful conditions, an obviously
clear benefit for professional secretory cells that beta cells are (Figure 3).

Is the capacity of HDLs to maintain ER functionality its only mode of
protection in beta cells? The answer to this question is certainly no. First,
some apoptotic stimuli, such as starvation oreven basal apoptosis, which
are counteracted by HDLs, have not been reported to induce an ER
stress response. Second, HDLs, while blocking beta-cell death induced
by the ER stressor tunicamycin, does not modulate the UPR response
activated by tunicamycin. In other words, HDLs inhibit tunicamycin-
induced beta-cell apoptosis without a significant reduction in the induc-
tion of stress markers (such as Xbp1 splicing, Bip expression, PERK
activation, and CHOP induction).52 In this case, it can be concluded
that the protection conferred by HDLs occurs distally to the UPR
(Figure 3). HDLs therefore use multiple routes of protection in beta
cells, including one that maintains the functionality of the ER.

8. Other beneficial effects
of high-density lipoproteins in beta
cells
Besides protecting beta cells from death, HDLs may also favour their
survival and function by augmenting their proliferation or their
insulin secretory capacity.22 Whereas a stimulatory effect of HDL on
beta-cell proliferation was ruled out,57 in vivo and in vitro evidence has
been provided for stimulation of insulin production and secretion. In-
fusion of reconstituted HDLs in type 2 diabetes patients increased their
HOMA-B index, an indirect measurement of pancreatic beta-cell func-
tion.106 Also, the treatment of healthy volunteers for 2 weeks with an
inhibitor of cholesteryl ester transfer protein (CETP) was found to in-
crease postprandial insulin and C-peptide levels.107 Treatment with a
CETP inhibitor (CETPi) increased plasma HDL-cholesterol by 46%
and HDL-associated ApoA-I by 22% as well as insulin levels by 30%
when compared with placebo. The plasma of CETPi-treated volun-
teers had an increased capacity to stimulate cholesterol efflux and
glucose-stimulated insulin secretion from the MIN6 cell. The CETPi
itself did not stimulate insulin secretion leading the authors to conclude
that the improved secretory potential was caused by an increase in
HDL particle size and/or concentration.107 This small short-term
study in normolipidaemic and euglycaemic volunteers mirrors the
results of a post hoc analysis of the large ILLUMINATE trial.108 In this
randomized controlled endpoint study, the CETPi torcetrapib was
found to increase cardiovascular mortality and morbidity of statin-
treated patients despite substantial increase in HDL-cholesterol
levels, possibly due to off-target effects on aldosterone production
and blood pressure. In a post hoc analysis of a sub-group of diabetic
ILLUMINATE participants, atorvastatin + placebo treatment led to
an increase in glucose and HbA1c levels which were not observed in
the atorvastatin + torcetrapib treated probands.108

In vitro data on the effects of HDL or ApoA-I on insulin secretion are
however controversial. HDL-treated bTC3 cells and MIN6 cells were
found to express more insulin mRNA than untreated control
cells.55,56 Stimulation of the Min6 insulinoma cell line for 1 h with
4–32 mM lipid-free recombinant ApoA-I, ApoA-II, or discoidal

reconstituted HDLs dose-dependently increased both basal and
glucose-stimulated insulin secretion.46 The supraphysiological dosages
of 32 mM increased basal and glucose-stimulated insulin secretion by a
factorof 4 and 3, respectively. A concentration of 1 mg/mL HDL-protein
(�1.2 mM HDL-cholesterol) led to a doubling of insulin secretion but
this particular experiment was only performed once.46 By RNA interfer-
ence, the authors showed that the stimulatoryeffect of lipid-free ApoA-I
and reconstituted HDLs on insulin secretion depended on ATP-binding
cassette (ABC) transporters A1 and G1, respectively.46

Min6 cells incubated 3 days with 50 mg/mL HDL-protein (�60 mM
HDL-cholesterol) boosted acute glucose-induced insulin secretion by
approximately six-fold.106 However, it is not clear how specific this
HDL effect on insulin secretion is. Bovine serum albumin was able to in-
crease glucose-stimulated insulin secretion in Min6 cells (50–60% more
than glucose alone),46 indicating that the mere presence of proteins can
positively affect insulin secretionby Min6 cells. Taking into consideration
an earlier study reporting no effect of HDLs (0.8–1 mM HDL-
cholesterol) on basal or glucose-stimulated insulin secretion by
mouse and human islet cells,57 it appears premature to conclude
that HDLs have a direct effect on the insulin secretory capacity of
beta cells. In this context, a hyperinsulinaemic euglycaemic clamp in
human individuals injected or not with reconstituted HDLs would be
particularly informative.

Although the stimulatoryeffectofHDLon insulin secretion is still con-
troversial, there is good evidence that the ABC transporters ABCA1and
ABCG1 modulate insulin secretion from pancreatic beta cells. These
transporters mediate cholesterol efflux, in cells such as macrophages
for example, in the presence of lipid-free apolipoproteins (ApoA-I in
particular) and HDLs, respectively.109,110 However, we will see that in
beta cells, ABCA1 favours insulin secretion by promoting cholesterol
efflux while ABCG1 does so by inducing cholesterol transfer to insulin
granules. The evidence for these notions has been generated both
in vivo and in vitro. Mice with a targeted knock-out of ABCA1 in pancreatic
beta cells and cross-bred with LDL-receptor knock-out mice to induce
hypercholesterolaemia were found to be less glucose tolerant than LDL
receptor knock-out only mice.111 The beta cell-specific ABCA1 knock-
out mice also showed reduced insulin secretion in response to glucose
administration. Islets isolated from these mice showed altered choles-
terol homeostasis and impaired insulin secretion in vitro.111 Later
studies by the same group showed that the lack of b-cell ABCA1
results in impaired depolarization-induced exocytotic fusion of insulin
granules, disturbances in membrane micro-domain organization, and al-
teration in Golgi and insulin granule morphology. Acute cholesterol de-
pletion rescued the exocytotic defect in b-cells lacking ABCA1,
suggesting that elevated islet cholesterol accumulation directly impairs
granule fusion and insulin secretion.112 In vitro, adenoviral overexpres-
sion in beta cells of microRNAs 33a and 145 (miR-33a and miR145),
which target ABCA1, led to increased cholesterol levels and to
decreased glucose-stimulated insulin secretion.113,114 This compro-
mised insulin secretion was again rescued by cholesterol depletion. In-
hibition of miR-33a expression in apolipoprotein E knock-out islets
and ABCA1 overexpression in b-cell-specific ABCA1 knock-out islets
rescued normal insulin secretion and reduced islet cholesterol.114

Therefore, cholesterol seems to be one of the bad guys negatively affect-
ing beta-cell function. However, the situation is much more complex
than this simple interpretation. Indeed, mice lacking another cholesterol
transporter, ABCG1, were also found to be glucose-intolerant due to
reduced insulin secretion, but this resulted from an inefficient transfer
of cholesterol to insulin granules, which negatively impacted on their
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beta-cell insulin secretory capacity.115 These defects could be rescued
by exogenous addition of cholesterol.115 Hence, when beta cells lack
ABCA1, the ensuing insulin secretion dysfunctionality can be alleviated
by depleting cells from cholesterol. Yet, when beta cells lack ABCG1,
insulin secretion is restored by exogenous addition of cholesterol.
These studies show that a delicate balance of cholesterol concentrations
between different sub-cellular compartments must be achieved to allow
optimal beta-cell functionality. Whether HDLs cooperate with ABCA1
or ABCG1 to induce their cellular effects in beta cells is unknown
(Figure 3).

As expected from the data presented above, the ABCA1 and ABCG1
cholesterol transporters playnon-redundant functions in beta-cell activ-
ity. Combined deficiency of ABCA1 and ABCG1 aggravated the diabetic
phenotype found in the single knock-out animals.116 This also resulted in
significant cholesterol accumulation in beta cells. Islet inflammation was
also increased as indicated by augmented expression of interleukin-1b
and macrophage infiltration.116

Taken together, these findings indicate that cholesterol homeostasis
and its regulation by ABCA1 and ABCG1 are critical for the secretory
b-cell function. The relevance of these findings in humans is unclear
however. On the one hand, decreased glucose-induced insulin secretion
is reported in ABCA1-deficient patients with Tangier disease or hetero-
zygous carriers of ABCA1 mutations.117,118 On the other hand, muta-
tions in ABCA1 have not been associated with increased risk of
diabetes.119 Nevertheless, data on the role of ABCA1 and ABCG1
may be of special importance for patients treated with statins, which
appear to interfere with insulin secretion by inhibiting the production
of cholesterol for granules as well as sterol intermediates which are im-
portant for insulin secretion, and by enhancing the uptake of LDL.21,120

9. Conclusion
The beneficial effect of HDLs on beta cells is undisputable. Numerous
studies have shown that HDLs induce potent anti-apoptotic signals in
beta cells stressed by a plethora of stressful stimuli. HDLs may also
favour their insulin secretory function. In humans, there is a strong as-
sociation with low HDL levels and an increase in the risk of developing
several diseases, including type 2 diabetes. While it is clear that HDLs
induce protective signals in beta cells, our knowledge on the molecular
mechanisms underlying the beneficial functions of HDLs in beta cells is
at best rudimentary. We need now to invest time and resources to de-
cipher the protective signalling pathways activated by HDLs in beta
cells. Not only will this increase our fundamental understanding on
how pancreatic beta cells can be spared from stress-induced death,
this may also lead to the identification of markers associated with dia-
betes development, with the hope that some of which can be used as
prognostic markers. Finally, knowing exactly how beta cells are pro-
tected by HDLs is a pre-requisite for the development of drugs that
stimulate or mimic the anti-diabetic effects of HDLs in order to
lower the risk, for example in overweight patients, to manifest this
disease.
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