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Uneven-aged forests are assumed to have a high stability against storm damage but have rarely been analysed for
vulnerability to storm damage due to a lack of a sufficient empirical database. Here we model storm damage in
uneven-aged forest to analyse major factors that may determine the sensitivity of this type of forests to storms
based on a broad database. Data are derived of public forests in the canton Neuchâtel in West Switzerland that
are dominated by silver fir and Norway spruce and managed since the beginning of the 20th century following a
single-tree selection system. A unique dataset of periodical (every 5–10 years) full inventories measuring the diam-
eter of every single tree including salvage cuttings was available for the investigation. The time series reached back
until 1920 and covered an area of 16 000 ha divided into 3000 divisions. The effect of a major winter storm
(‘Lothar’) in December 1999 on these forests was investigated using a subset of 648 divisions. The influence of
the vertical stand structure on the vulnerability of storm damage was studied using logistic regression models.
To facilitate the analyses, an index of closeness to a J-shaped distribution (LikeJ) based on the number of trees
in different diameter classes was developed. Besides structural indices, variables representing stand characteris-
tics, soil-related and topography-related variables were included. The results of our study show that the overall
damage level of the investigated forests was rather low. The variables that entered the model for the uneven-
aged stands were different to those that are normally significant for even-aged stands. While variables like
stand structure, the timing of the harvesting and topographic variables entered a multivariate statistical model
as significant predictors, standard predictors for storm damage in even-aged stands such as stand density, thin-
ning intensity or species composition were not significant. We hypothesize that the uneven-aged structure of the
investigated forests may be one reason for the low damage level we observed but emphasize the need for more
detailed research to support this conclusion.

Introduction
Stand structure is assumed to have an influence on the vulnerabil-
ity of forests to storm damage. Nolet et al. (2012)developed an ap-
proach in which information on stand structure in wind damaged
sugar maple poles was used as bio-indicator for wind intensity.
Bonnesoeur et al. (2013) investigated windfirmness of two differ-
ent stand structures in beech forests and found that the increase
of risk with the increase of the bending moment coefficient was
higher for high forests compared with coppice with standards.
Mason (2002) hypothesizes lower storm damage vulnerability in
uneven-aged forests due to a potentially higher individual stability
of the trees. This is supported by Kenk and Guehne (2001) who
show that especially large trees in irregular forests have favourable
relations between height and diameter (,80) indicating high indi-
vidual stability. In a study on the economic performance of
uneven-aged forests in the Black Forest area of Southwest
Germany (Hanewinkel, 2001), uneven-aged forests showed a
lower percentage of salvage cuttings than adjacent even-aged
forests (Hanewinkel, 2002). While there is an extensive literature

on storm damage vulnerability and storm damage modelling
(recently reviewed in Hanewinkel et al. (2011)) that mainly deals
with even-aged forests, empirical information on storm damage
in uneven-aged forests is rare. Only few regional case studies
with a limited database (Dvorak et al., 2001) specifically deal with
the vulnerability of uneven-aged forests on the stand level to
storm damage. This is a major research gap, as one of the main
reasons for the conversion of even-aged to uneven-aged forest
within ‘close-to-nature’ silvicultural programs that are currently
ongoing in large forest areas in Central Europe (Spiecker et al.,
2004) is an assumed lower vulnerability of the targeted highly
structured forest stands to abiotic disturbances such as storms.
Additional information on the stability of uneven-aged forests
under the influence of storms – including events with high wind
speeds – is therefore urgently needed.

Goal of the study and research questions

The goal of the study is to investigate how stable uneven-aged
forests that are characterized by trees of different sizes (diameter
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and height) on a limited area (so-called typical ‘Plenter’ – forests
after Schütz (2006) dominated by conifers) against storm
damage. Specifically, we investigate the following research ques-
tions:

(1) What is the influence of the vertical stand structure on storm
damage in uneven-aged stands?

(2) What is the influence of other stand characteristics (tree
species, stand density. . .) on storm damage in uneven-aged
stands?

(3) What is the influence of harvesting (intensity and timing) activ-
ities ?

(4) What is the influence of soil characteristics (moisture and
acidity) and of the topographic situation (exposure, shape of
terrain, slope and elevation)?

Thus, the study focuses on the analysis of uneven-aged forests and
does not provide for a comparison between even-aged and
uneven-aged stands in terms of windthrow probability.

Material and methods

Database

The study is based on repeated inventories in public forests in the canton
Neuchâtel in the Jura region of West Switzerland that are dominated by
silver fir (Abies alba Mill.), Norway spruce (Picea abies Karst) and European
beech (Fagus sylvatica L.). Since the beginning of the 20th century, these
forests have been managed following a single-tree selection system (‘Plen-
terwald’). Since 1920, the diameter at breast height (dbh) of all trees with
dbh ≥17.5 cm has periodically (every 5–10 years) been measured, and
salvage cuttings separately recorded, for 3000 divisions of 0.3–20 ha
(mean 6 ha) in an area of 16 000 ha. A division is an inventory unit that

may encompass several stands that can be separately described in a quali-
tative way (i.e. by a verbal stand description). However, the quantitative de-
scription (i.e. the inventory) and the management planning both take place
on a division level. Thus, the divisions in our case are comparable to forest
stands and are treated as such in our investigation. Callipering was done
in 5-cm-dbh classes, e.g. the 25-cm class includes all trees with dbh of
≥22.5 cm and ,27.5 cm. For this study, we analysed the effect of a
major winter storm (‘Lothar’) in December 1999 that caused
.200 million m3 of damage in Europe. We selected 648 divisions based
on the criteria: constant area, data consistency and inventory immediately
before the storm. Divisions that had significantly changed their area, those
with missing data or were the last inventory was .10 years before the
storm were thus excluded from the dataset.

In addition to the information from the forest inventories, we used infor-
mation on soils issued from site mapping in the region (Richard, 1965) and a
digital elevation model with 25-m grid (DHM25) to analyse the topography
of the study area in terms of exposure, slope, curvature and elevation.

Figure 1 shows a map of the study area (canton Neuchâtel) with the dif-
ferent forest areas.

The forests are mostly concentrated on the slopes and ridges of the Jura
mountain ranges between 700 and 1300 m a.s.l.

Statistical modelling approach

Target variable

As the target variable (dependent variable), we selected the damage sever-
ity S at the division level. The damage severity was defined as the sum of the
basal area of all damaged trees divided by the total basal area of the
division according to the most recent inventory before the storm ‘Lothar’,
i.e. in the years from 1990 to 1999. In our analysis, we use a logistic
regression technique with a binomial response, in which stands with a
damage severity S of ,5 per cent are classified as not damaged (n¼

Figure 1 Study area in the canton Neuchâtel. Different colours show the forested areas with the forest associations according to the regional site map
(Richard, 1965).
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509), and stands with a damage severity S of .5 per cent are considered
damaged (n¼ 139).

Predictors (independent variables)

We started with an initial set of 15 different predictors (independent or
explaining variables) to analyse the vulnerability of the forests to storm
damage in the study area. The initial selection was based on previous inves-
tigations of storm damage to forests that showed that, besides stand char-
acteristics, terrain- and site-related parameters mayaffect damage (König,
1995; Fridman and Valinger, 1998; Jalkanen and Mattila, 2000; Mitchell
et al., 2001; Dobbertin, 2002; Mason, 2002; Hanewinkel, 2005; Mayer
et al., 2005; Schütz et al., 2006;Schmidt et al., 2010;Klaus et al., 2011;Valin-
ger and Fridman, 2011; Albrecht et al., 2012; Albrecht et al., 2013). As reli-
able meteorological data such as high-resolution wind- or gust-speeds
were not available for the study area, we did not include these parameters
in our model. However, we checked whether there was a correlation
between elevation and damage intensity, which was not the case.

The 15 initial predictors consisted of 9 variables describing stand char-
acteristics, 4 variables concerning the topographic situation, 1 referring to
soil conditions and 1 to the spatial distribution of the damage. We put
special emphasis on describing the stand structure and investigated
several indices on structural diversity of forest stands.

Soil and terrain characteristics

The variables describing soil characteristics were derived from the site map
of the canton Neuchâtel. Using ArcGIS, the forest maps were intersected
with the site maps, and each division was assigned to the site unit with
the largest area in the division. Based on a regional description of the site
units (Richard, 1965), the forest sites in the study area were grouped into
four categories according to their position within the ecogram (Ellenberg
and Klötzli, 1972): 1 – acid, 2 – central, 3 – moist and 4 – dry.Thesecategor-
ies are standard categories that are used to classify soils and related plant
associations in Europe. Forest sites of Category 2 (central) are thus in the
centre of the ecogram, i.e. they occur on soils that are neither very moist
nor dry and are in a pH range between slightly acid and neutral.

In order to describe the topographic situation of the study area, the vari-
ables exposure, slope, elevation (height above sea level) and curvature were
calculated for each division, using ArcGIS and a digital elevation model with
25-m resolution (DGM25). Exposure was defined as a categorical variable
with two categories: 1 – NE–E–SE–S and 2 – SW–W–NW–N, according
to the major wind direction (SW–W–NW) in the study area. The curvature
of the divisions describes forest areas with a positive curvature as convex
(i.e. ridges) and those with a negative curvature as concave (i.e. hollows).
The curvature was calculated as the (horizontal) curvature at the right
angle in the direction of the maximum slope (for details of the calculation
see ESRI (2012)).

We made no effort to include wind-related parameters like wind speed
or gustiness in our model. We know from a reanalysis of the wind speeds on
26th of December 1999 (Meteoswiss, 2009) that the wind speeds in the
study area were particularly high and that they did not much differ
between lower and higher elevations. The cold front of the winter storm
hit Switzerland at �09.00 UTC in the area of the Neuchâtel Jura and
crossed the mountain range within half an hour. In La Brévine (1043 m
a.s.l.), maximum wind speeds of 157 km h21 were measured, in Delémont
(413 m) even 170 km h21 and on the Chasseral at 1600 m a.s.l. only mar-
ginally higher 177 km h21. The rather high spatial resolution of ourdata (the
average size of a division is�5 ha) wouldhave required a grid of 200×200 to
300×300 m for wind data of the storm Lothar, a resolution that is at the
moment impossible to reach, even with very advanced meso-scaled
models (see e.g. Schmoeckel and Kottmeier (2008)).

Stand characteristics

Besides basal area (m2 ha21), standing volume (m3 ha21), tree species
composition (per cent of basal area of Norway spruce, silver fir and Euro-
pean beech), the intensity of harvesting (per cent of basal area removed
in the 8 years before the storm) and time (years) without harvesting (calcu-
lated as the mean of the time difference between the year(s) of the
intervention(s) and the year 2000, weighted with the intensity of the inter-
vention when more than one intervention had taken place) were used as
predictors. A co-linearity between the three predictors describing the tree
species is likely (because theysum up to 100 percent in most stands); there-
fore, we tested also two orthogonal contrast, i.e. indictor variables for
stands with a percentage of broadleaves (beech) of .25 per cent vs.
stands with a percentage of broadleaves of ,25 percent, and a second vari-
able indicating stands with a proportion of spruce that is higher than the
proportion of fir vs. stand with a proportion of fir being lower than the pro-
portion of spruce. The proportions are defined on the amount of basal area
in both variables.

Stand structure

We tested several indices to describe the stand structure of uneven-aged
stands. In a first approach, we tried the coefficient of variation of the
diameter distribution (CDBH) according to Sterba and Zingg (2006), a
distance-independent indicator for the vertical structure of a forest stand
that is calculated as follows:

CDBH = 100 × sDBH/�XDBH, (1)

with sDBH¼ standard deviation of the DBH classes and �XDBH = mean DBH.
However, we found that this coefficient, as many other indices that we ini-
tially analysed, does not really characterize the diameter distribution that is
used as a guideline for forest management in the study area that is strictly
based on an inverse J-shaped distribution of the diameter classes. For an
analysis testing structural diversity in a very broad sense, a simple, model-
free index would have been better. However, ouraim wasto investigate how
the management leading to a very specific type of structural diversity (i.e.
the typical inverse J-shaped diameter distribution) that guarantees the ne-
cessary equilibrium to keep the steady state of the uneven-aged stand
would influence storm damage vulnerability. We therefore developed a
simple index describing the vertical structure of an uneven-aged stand
based on the number of stems per hectare in different diameter classes
that we called index of closeness to J shape (LikeJ).

This index is based on the diameter distribution (number of stems dis-
played as a function of diameter classes) of the stands, which describes
the vertical stand structure of uneven-aged forests. LikeJ includes three dif-
ferent criteria that are combined using a scoring system:

(i) the numberof small trees, i.e. in the diameterclasses 20, 25 and 30 cm
(ii) the number of large trees, i.e. trees in the diameter classes ≥55 cm
(iii) the diameter class with the maximum number of trees

For each of these criteria, a scoring system was developed based on refer-
ence values for uneven-aged forests in a ‘Plenter’-equilibrium according
to the model by Schütz (1975) from the municipal forests of Couvet
(Favre and Oberson, 2002). The forests of Couvet grow in the centre of the
study area and have been managed as model ‘Plenter’-forests over the
last century. The reference number of stems for criterion (i) (small trees –
diameter classes 20, 25 and 30 cm) is between 150 and 170, and for criter-
ion (ii) (large trees ≥55 cm) is between 25 and 45 per hectare (Favre and
Oberson, 2002), which resulted in a maximum score of 4 for both criteria
(Table 1).

Table 1 gives a detailed overview of the scoring system. The highest
index of LikeJ is reached at a score of 10 in divisions with a structure resem-
bling a model Plenter-forest structure, while divisions that deviate from
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such model structures, e.g. by fewer or more large trees, have lower scores.
Table 1 shows that criteria (i) and (ii) are weighted twice compared with cri-
terion (iii). For criterion (iii), only divisions with the maximum number of
trees in the smallest diameter classes (20 or 25 cm) scored to guarantee
the typical inverse j-shaped diameter–distribution curve. Divisions with
.170 small trees per hectare also achieved the maximum score for criter-
ion (i). The index – including the scoring and weighting system – was devel-
oped in an iterative process such that stands with a reverse J-diameter
distribution according to the model by Schütz (1975) should get the
maximum scores whereas uniform forests should achieve the minimum
scores.

Spatial distribution of the damage
As storm damage cannot be expected to be evenly distributed over the
whole study area, we tested the spatial autocorrelation of the damage
severity S (see the target variable section) with two different definitions
of neighbour divisions and two test statistics. Both neighbour definitions
were based on distances between division centroids, once including the
next (closest) k¼ 3 divisions and on the other hand including divisions
within a distance between 100 and 2100 m, the latter resulting in an
average number of 33 neighbours per division (4 divisions with only 1
neighbour, 1 division with 99 neighbours). The two test statistics were
Moran’s I and Geary’s C. The statistics standard deviates are between
8.2 (Geary’s C, k¼ 3) to 20.1 (Moran’s I, 100–2100 m) and indicate a
highly significant spatial autocorrelation between the division’s damage
severities S.

Therefore, we introduced an auto-covariate (Dormann et al., 2007) in
the logistic regression, which is, foreachdivision, the mean damageseverity
S over the k¼ 3 neighbouring divisions.

Table 2 gives an overview of all variables that were initially included in
the statistical analysis.

Choice of the model

In order to investigate the influence of the predictors on the observed stand
damages, we fitted a generalized linear regression model of the form

logit(y) = Xb+ rA+ 1, (2)

where b is the vector of coefficients for an intercept term and the explana-
tory variable X, and r is the coefficient of the auto-covariate A addressing
the spatial-autocorrelation of damage severities in the study area. y is
the binary response, i.e. the likelihood that a storm damage of .5 per
cent will occur and an error term e.

All calculations have been done with the procedure GLM of the R statis-
tical package R (Bivand, 2013;R_development_core_team, 2013)

To develop the final model, we started with a first model that included all
predictors except for standing volume as it is strongly correlated with basal
area. Checking for multiple interactions between predictors, we developed
an initial set of 21 candidate models. We used Akaike’s Information Criter-
ion (AIC) (Akaike, 1974) to compare the performance of the models for best
data fit (Anderson et al., 2000). From the candidate models with the best
AIC scores, we developed the final model by stepwise backward regression,
consecutively excluding the predictors that did not improve the perform-
ance of the model.

Thus, the predictors: soil condition, coefficient of variation of the diam-
eter distribution (CDBH), basal area and standing volume, height above sea
level and harvesting intensity were removed from the model. From the vari-
ables describing the tree species mixture, the percentage of beech (basal
area) remained as a significant predictor for storm damage severity. We
checked the residuals of the models to analyse further needs for transform-
ing input variables, which proved to be unnecessary, and we also found that

Table 1 Scoring system for the index of closeness to J shape (LikeJ)

Number of small
trees (20–30 cm)

Number of large
trees (.55 cm)

Dbh class with max. N

(N ha21) Score (N ha21) Score Dbh class (cm) Score

≥170 4 ≥65 0 ≥30 0
160–170 4 60–65 0.8 25 1
150–160 4 55–60 1.6 20 2
140–150 3.6 50–55 2.4
130–140 3.2 45–50 3.2
120–130 2.8 40–45 4
110–120 2.4 35–40 4
100–110 2 30–35 4
90–100 1.6 25–30 4
80–90 1.2 20–25 3.2
70–80 0.8 15–20 2.4
60–70 0.4 10–15 1.6
,60 0 5–10 0.8

,5 0

The overall score is calculated by summing up the sub-scores for the three
different columns (number of small trees, number of large trees and
diameter (dbh) class with the maximum number of trees (max. N)).
Maximum score (max. closeness) is 10. References numbers for the
number of trees in the sub-scores are based on Favre and Oberson (2002).

Table 2 Overview on the explaining variables (predictors) initially tested
within the statistical modelling

Name Acronym Type – unit (Range)

Soil and terrain characteristics
Soil type St Category (1–4)
Exposure exp Category (1–2)
Curvature cur Continuous1 (24 to +4)
Elevation hasl Continuous (m)
Slope slo Continuous (%)

Stand characteristics
Standing volume vol Continuous (m3 ha21)
Basal area ba Continuous (m2 ha21)
% basal area beech %be Continuous (%)
% basal area spruce %sp Continuous (%)
% basal area fir %fi Continuous (%)
Intensity of harvesting iha Continuous (%)
Time without harvesting tli Continuous (y)

Stand structure
Coefficient of variation of the
dbh

Cdbh Continuous (%)

Index of closeness to J shape LikeJ Continuous1 (1–10)
Spatial distribution of damage

Mean damage intensity of
geographical neighbours

h Continuous (%)

Detailed descriptions see text.
1dimensionless.
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the auto-covariate completely removed the spatial autocorrelation from
the residuals.

Results

Distribution of the target variable

The overall level of damage is rather low (Figure 2). In almost 80 per
cent of the divisions, the damage severity is ,5 per cent. Fourteen
per cent of the divisions have not been damaged at all by the storm
‘Lothar’. The highest damage severity is 42 percent and occurred in
only 1 division.

Statistical model

The statistical parameters (coefficients, P-values, level of signifi-
cance) for the final selected model with the lowest AIC score are
given in Table 3.

The final model with significant predictors for storm damage
includes the following:

† the severity of storm damage in neighbouring stands (f): the oc-
currence of storm damage in neighbouring stands increases the
probability for storm damage in a given stand;

† the exposure of the stand (asp): (North) West exposition (asp1) –
in contrast to (South) East exposition slightly increases the like-
lihood of storm damage;

† the slope of the terrain (slo): the likelihood for storm damages
decreases with the slope of the terrain for eastern exposed
stands (less storm damage on steep slopes) and increases with
the slope for western exposed stands (higher storm damage on
steep slopes);

† the curvature of the terrain (cur): the likelihood for storm
damage increases with a curvature of the ground surface chan-
ging from an extremely concave (ground depression) to an ex-
tremely convex surface (hill);

† the percentage of beech (ghe): storm damage likelihood
decreases with a higher percentage of beech (basal area).

† number of years since the last intervention (lot): storm damage
likelihood decreases with the number of years passed since the
last sivicultural intervention;

† Index of closeness to J shape (LikeJ): the likelihood for storm
damage decreases with increasing index of LikeJ, i.e. the
stand’s DBH distribution approaching the optimal DBH distribu-
tion (according to a model for uneven-aged stands developed
based on long-term observations in the region).

Overall evaluation of the model

Under logistic regression, the residual deviance under the model
compared with the null deviance (intercept term only) can be
used as a measure for the strength of the model (pseudo-
coefficient of determination 1 2 (residual deviance/null devi-
ance)). We get a pseudo-coefficient of determination of 0.38,
which indicates a reasonable fit, but also means that some import-
ant factors may not have been available in this study.

Effect of closeness to J shape and years without
harvest – descriptive statistics

In order to get a more detailed impression of the strength of the
effect of some of the significant parameters, we looked into the
boxplots of the predictors ‘index of closeness to J shape – LikeJ’
and time without harvest.

The damage severity decreases by .50 percent from 0.2 (Index
of LikeJ¼ 0–1) to ,0.1 (LikeJ¼ 7–8) (Figure 3a – left). For LikeJ –
values of .8, no further decrease of the damage severity can be
observed. Interestingly, the damage severity already decreases
to a level of ,0.1 from LikeJ-class (0–1) to class (1–2). However,
looking at the frequency distribution of the LikeJ-values
(Figure. 3b – right), we can detect that the first two classes each
makes up for ,1 per cent of the divisions, which makes interpret-
ation difficult. Looking at Figure. 3b, we concede that the distribu-
tion of the divisions is skewed towards highly uneven-aged stands
and that the number of divisions with a distinct even-aged struc-
ture is low. A further analysis of the strength of the effect of the par-
ameter unevenness using the response function of the regression
coefficient showed that the effect of LikeJ is limited to a
maximum of 1 per cent change of damage severity per LikeJ –
class, i.e. an overall maximum impact of 10 per cent of the param-
eter unevenness between the lowest class (LikeJ¼ 0) and the
highest class (LikeJ¼ 10).

Furthermore, damage severity decreases with increasing time
elapsed since the last harvest intervention (Figure. 4).

The severity constantly decreases from 1 to 8 years without
harvest before the storm event (Figure 4) showing a clear,
though not strong effect of the timing of the harvest. On
average, 1 year more time decreases the damage severity by �1
per cent (s. Table 2).

Figure 2 Damage severities in the forest divisions (n¼ 648) of the study
area.
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Discussion

Database of the investigation

The dataset that was available for the present investigation cover-
ing 3000 forest divisions on .16 000 ha, and several decades is
certainly unique. Even the reduction to 648 divisions byconcentrat-
ing on one major storm event and the years 1990–1999 makes for
a substantial database for the analysis of uneven-aged stands.
However, because the dataset mainly originates from inventory
and booking data, it has some limitations that influence the
results: the inventory threshold of dbh¼ 17.5 cm is particularly
high compared with other investigations (Fridman and Valinger,
1998;Jalkanen and Mattila, 2000; Dvorak et al., 2001; Dobbertin,
2002; Valinger and Fridman, 2011). This affects structural indices

like CDBH (Sterba and Zingg, 2006) as it influences the relation of
mean and standard deviation. The overall damage level of the
forests in this study was rather low for this storm event, which
had an influence on the discriminatory power of the variables
under investigation. The population of forests included in this
study was biased towards uneven-aged stands. This again limits
the efficiency of classical structural indices, as we were not able
to cover the full range from highly structured stands – that were
well represented in our dataset – to structurally more uniform
even-aged stands that are underrepresented. Furthermore, the
data did not contain information on tree height, a parameter
that has proven to be significant in many studies (Jalkanen and
Mattila, 2000; Mitchell et al., 2001; Dobbertin, 2002; Mayer et al.,
2005; Schmidt et al., 2010; Valinger and Fridman, 2011; Albrecht

Table 3 Statistical parameters of the predictors of the final selected model, including interactive effects

Coefficients Estimate Standard error Z-value Pr(.|z|) Level of significance

Intercept 1.35290 0.71619 1.889 0.058890 ****
Auto-covariate f 0.25670 0.03111 8.250 ,2e-16 ***
Curvature cur 1.95866 0.59838 3.273 0.001063 **
Closeness to J shape LikeJ 20.15997 0.05958 22.685 0.007259 **
Time without harvest lot 20.16152 0.05813 22.779 0.005461 **
Share of beech ghe 20.03563 0.01223 22.913 0.003580 **
Exposition asp1 21.31395 0.65628 22.002 0.045273 *
Slope slo 20.13707 0.04128 23.320 0.000899 ***
Exposition : slope asp1:slo 0.15656 0.04502 3.477 0.000506 ***

Exposure 1¼ easterly exposed sites. Estimated coefficients, including standard error and P-values, n¼ 648. Significance levels: ***¼ 0.001, **¼ 0.01,
*¼ 0.05, ****¼ 0.1

Figure 3 (a)(left): Effect of the closeness to J shape (LikeJ – see text) on the damage severity (n¼ 648). For reasons of clarity, damage severity (y-axis) is
depicted using the arc-sine-root transformation (Mosteller and Tukey, 1977). Note: The classes for damage severities are different to those in Figure. 2. (b)
(right): Number of divisions (n¼ 648) according to classes of closeness to J shape (LikeJ – see text).
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et al., 2012) nor on the spatial distribution of the trees. However, as
we developed a stand-based model, the influence of individual tree
positions as well as mean values for tree height (or for the highly
correlated dbh) especially for these uneven-aged stands are very
difficult to interpret. We would certainly have to expect differences
in damage severities if our divisions had shown distinct differences
in mean or absolute tree height.

Modelling approach

We used a Generalized Linear Model (GLM) with a logistic regression
as a link function, a standard approach that has been applied in
many studies on storm damage vulnerability of forests (König,
1995; Fridman and Valinger, 1998; Jalkanen and Mattila, 2000;
Dvorak et al., 2001; Mitchell et al., 2001; Mayer et al., 2005; Schütz
et al., 2006; Schmidt et al., 2010; Klaus et al., 2011; Valinger and
Fridman, 2011;Albrechtet al., 2012). As an alternative to statistical
models, ‘artificial neural networks’ have been used, specifically
with incomplete and noisy datasets (Hanewinkel et al., 2004;Hane-
winkel, 2005), which was not the case in this study. Other authors
(Dobbertin, 2002;Albrecht et al., 2012)have studied storm damage
in forests using ‘classification and regression trees’. Besides the ad-
vantage of being easier to interpret, the great disadvantage of this
approach is that you do not get any probabilities from these
models. While only few studies exclusively rely on a literature ana-
lysis (Mason, 2002), mechanistic models (Peltola et al., 1999; Gar-
diner et al., 2008) are a common approach to investigate storm
damage vulnerability of forests. However, so far these models
are restricted to model storm damage vulnerability in rather
uniform even-aged forests.

We used AIC as the criterion for model selection, a parameter
that only delivers information on the relative strength of the

winner model compared with other models but does not inform
about the effective predictive power of the final model. However,
the primary goal of this study was not to develop a model to
predict storm damage in forest stands, but rather to analyse
major influencing factors of the vulnerability of uneven-aged
stands to storm damage.

Influence of the predictors

In the following sections, we discuss the influence of the different
predictors on storm damage vulnerability along with the research
questions that we have developed in the introduction.

Vertical stand structure

Looking at our research question 1, we can conclude that the – ver-
tical – stand structure has a significant influence on storm damage
vulnerability of uneven-aged stands. Due to the high minimum size
threshold during inventories in our study, the value range of exist-
ing structural indices like the CDBH is distinctly lower than that in
investigations with lower thresholds. Sterba and Zingg (2006)
found mean values for CDBH of 38.2 for even-aged and 72.9 for
uneven-aged stand, whereas the divisions in our study showed
values between 23.1 and 56.9. Unlike other authors (Dvorak
et al., 2001; Dobbertin, 2002) who individually grouped the stand
structure of the investigated forests based on field measurements,
we developed a structural index using model-based reference
numbers. Our index of closeness to J shape (LikeJ) entered our
model as a statistically significant variable, indicating that stands
with a structure closer to a J-shaped stem-distribution are less
prone to storm damage than more uniform stands, which is in
line with findings of other studies (Dvorak et al., 2001; Dobbertin,
2002). However, the influence of the stand structure is rather
small. Under ceteris-paribus conditions (i.e. all other influencing
variables are kept constant), the maximum influence of the
stand structure on the vulnerability, i.e. the difference between a
stand with the highest and lowest unevenness, is at �10 per cent
of damage severity. This means that the damage level can be
decreased from 20 per cent in LikeJ-class 2 to 10 per cent in
LikeJ-class 10 (Figure. 3a). The potentially higher stability of
uneven-aged forests is often assigned to a higher individual stabil-
ityof the single trees (Mason, 2002), e.g. characterized bya lower h/
d-value, a factor that we did not investigate in our study.

We did not include a comparison between even-aged and
uneven-aged forests in our study, as this cannot be made at the
stand level only. Even-aged management leads to the develop-
ment of stands of various ages at the landscape level that will
have very different susceptibilities to windthrow. A full comparison
between even-aged and uneven-aged management should con-
sider all states of development of even-aged stands.

Other stand characteristics

With respect to research question 2 of our study, the influence of
other stand characteristics on storm damage vulnerability of
uneven-aged stands was surprisingly low. We were not able to
identify an effect of the stand density, a factor that appears to be
significant in several studies (Dvorak et al., 2001; Mitchell et al.,
2001; Mason, 2002; Valinger and Fridman, 2011). The overall influ-
ence of the predictor ‘species’ is rather low, except for a significant

Figure 4 Influence of the timing of harvest (time elapsed since the last
harvesting intervention) on the damage severity. For reasons of clarity,
damage severity (y-axis) is depicted using the arc-sine-root
transformation (Mosteller and Tukey, 1977).
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influence of the percentage of beech. No influence of the percent-
age of Norway spruce was detected, which is partly contradictory
to many studies dealing with storm damage to forests (König,
1995; Jalkanen and Mattila, 2000; Dvorak et al., 2001; Dobbertin,
2002; Mayer et al., 2005; Schütz et al., 2006; Hanewinkel et al.,
2008; Schmidt et al., 2010;Klaus et al., 2011). The reason therefore
might be that the distribution of the tree species in our dataset with
a large amount of mixed stands and a lack of pure stands is rather
uniform across the divisions in our study compared with other
investigations that were able to compare pure and mixed stands
of different tree species.

Harvesting

Concerning research question 3, only the timing of the harvesting,
i.e. the number of years elapsed since the last harvesting, had a
clear significant influence on the vulnerability. This effect can be
found in many studies on storm damage (König, 1995; Dvorak
et al., 2001; Mitchell et al., 2001; Valinger and Fridman, 2011;
Albrecht et al., 2012). Our study shows a destabilizing effect for a
time of up to 8 years, whereas Albrecht et al. (2012) found an influ-
ence of that factor of up to 10 years. Usually this is – at least for
even-aged stands – assigned to the temporary interruption of
the canopy. In contrast to the results of other studies (e.g. Albrecht
et al. (2012)), we did not detect an influence of the harvesting in-
tensity. Here we hypothesize that harvesting in developed
uneven-aged stands is a rather uniform type of intervention that
does not vary in the same way as in even-aged forests where thin-
ning intensity strongly varies according to the type of the applied
thinning (e.g. high thinning, thinning from below, target diameter
harvesting. . .).

Soil and topography

Our research question 4 deals with the influence of soil and topog-
raphy. Soil is a predictor that is included in many investigations on
storm damage (Fridman and Valinger, 1998; Jalkanen and Mattila,
2000; Dvorak et al., 2001; Mitchell et al., 2001; Dobbertin, 2002;
Hanewinkel, 2005; Mayer et al., 2005; Schütz et al., 2006; Schmidt
et al., 2010; Klaus et al., 2011; Albrecht et al., 2012). Generally soil
moisture is assumed to have a significant influence on storm
damage probability, specifically when highly vulnerable species
such as Norway spruce grow on waterlogged soils (Hanewinkel
et al., 2008;Schmidt et al., 2010). Although wet soils showed a ten-
dency towards higher damage severity than dry soils in our study,
this effect was masked by other effects in the multivariate analysis
and did not enter the final model. Soil acidity, a predictor that was
significant in one investigation (Mayeret al., 2005), did not have any
effect in our study that took place in a relatively uniform region,
characterized by limestone with little variation in soil acidity.

Topography is a predictor that also entered many statistical
storm damage models (König, 1995; Fridman and Valinger, 1998;
Jalkanen and Mattila, 2000; Dvorak et al., 2001; Mitchell et al.,
2001; Dobbertin, 2002; Hanewinkel, 2005; Mayer et al., 2005;
Schütz et al., 2006; Schmidt et al., 2010; Klaus et al., 2011; Albrecht
et al., 2012). As the storm ‘Lothar’ was a typical winter storm that
reached the study area from West (Meteoswiss, 2009), it is not sur-
prising that westerly exposed divisions displayed a higher damage
severity than those exposed to the East. However, in the multivari-
ate statistical model, the predictor exposure entered the model in
combination with the share of silver fir and slope. In combination

with slope, exposure reveals significantly lower damage intensities
of steep slopes, an effect that has often been observed for storm
damage (Dvorak et al., 2001; Dobbertin, 2002; Mayer et al., 2005;
Schütz et al., 2006; Klaus et al., 2011). However, in our study, the
predictor is only significant in interaction with exposure to the
East, whereas westerly exposed slopes do not show any higher
damage severity than areas with less steep sites. We also detected
a significant influence of the curvature of the terrain, with higher
damage intensities on convex than on concave slopes, a predictor
that also entered the multivariate model and that was also signifi-
cant in other studies (Dobbertin, 2002;Klaus et al., 2011).Although
increasing elevation can be generally linked to higher wind speeds,
the variable was not significant in our study. Elevation as a predict-
or shows both directions as a predictor. In one study (Klaus et al.,
2011), it was linked to higher storm damage, whereas in another
investigation (Mayer et al., 2005), it was associated with lower
damage intensities. The latter may be a sign of an adaptation of
the root system to constantly higher wind speeds in higher eleva-
tions or simply the result of a general difficulty to get reliable infor-
mation of the parameter ‘wind’ that includes aspects like gustiness
that are very difficult to assess (Schütz et al., 2006; Gardiner et al.,
2008; Albrecht et al., 2012; Kamimura et al., 2013).

Conclusions

Our investigation contributes to the knowledge of the vulnerability
of uneven-aged forests to storm damage, a field of research that is
currently characterized by empirical investigations dealing with
either small areas (Dvorak et al., 2001) or with datasets containing
almost no or only very few really uneven-aged forests (Dobbertin,
2002).

The results of our studyshow that uneven-aged stands displaya
specific vulnerability towards storm damage that differs in some
aspects from that of even-aged stands. Stand structure (the
index of closeness to J shape – LikeJ – as developed for this
study,) the timing of the harvesting and topographic variables
entered a multivariate statistical model as significant predictors
in our investigation. However, standard variables that occur in
many statistical models for storm damage in even-aged stands
such as stand density, thinning intensity or species composition
were not significant at all or only in interaction with other para-
meters. Looking at the comparably low damage level of the
forests that we investigated and taking into account the rather
high wind speeds in the area on the day of the storm ‘Lothar’
(Meteoswiss, 2009), we might conclude that long-term single-tree
selection forestry has led to stable stand structures that were able
to cope with a major storm event in the study area. However, in
order to allow for general conclusions on the vulnerability of
uneven-aged compared with even-aged forests, we intend to
enlarge our database with more uniform forests stands, to investi-
gate additional storm events and to include stand height values as
predictor. The latter should be feasible by taking advantage of
LIDAR information.
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