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We report on effects of mean shear on the turbulent entrainment process,
focusing in particular on their relation to small-scale processes in the proximity
of the turbulent/non-turbulent interface (TNTI). Three-dimensional particle tracking
velocimetry (3D-PTV) measurements of an axisymmetric jet are compared to data
from a direct numerical simulation (DNS) of a zero-mean-shear (ZMS) flow. First,
conditional statistics relative to the interface position are investigated in a pseudo-
Eulerian view (i.e. in a fixed frame relative to the interface position) and in a
Lagrangian view. We find that in a pseudo-Eulerian frame of reference, both vorticity
fluctuations and mean shear contribute to the vorticity jump at the boundary between
irrotational and turbulent regions. In contrast, the Lagrangian evolution of enstrophy
along trajectories crossing the entrainment interface is almost exclusively dominated by
vorticity fluctuations, at least during the first Kolmogorov time scales after passing
the interface. A mapping between distance to the instantaneous interface versus
conditional time along the trajectory shows that entraining particles remain initially
close to the TNTI and therefore attain lower average enstrophy values. The ratio
between the rate of change of enstrophy in the two frames of references defines the
local entrainment velocity vn = −(Dω2/Dt)/(∂ω2/∂ x̂n), where ω2 is enstrophy and x̂n

is the coordinate normal to the TNTI. The quantity vn is decomposed into mean and
fluctuating components and it is found that mean shear enhances the local entrainment
velocity via inviscid and viscous effects. Further, the analysis substantiates that for all
investigated flow configurations the local entrainment velocity depends considerably
on the geometrical shape of the interface. Depending on the surface shape, different
small-scale mechanisms are dominant for the local entrainment process, i.e. viscous
effects for convex shapes and vortex stretching for concave shapes, looking from
the turbulent region towards the convoluted boundary. Moreover, turbulent fluctuations
display a stronger dependence on the shape of the interface than mean shear effects.

Key words: shear layers, turbulent flows, wakes/jets

1. Introduction
Transport of irrotational fluid particles across the free stream boundary between

turbulent and non-turbulent flow regions is an important aspect of many engineering

† Email address for correspondence: wolf@ifu.baug.ethz.ch
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and geophysical flows, including jets, mixing layers, wakes, and boundary layers.
This process, commonly referred to as turbulent entrainment, occurs over a strongly
convoluted interface and directly affects dynamics and mixing of turbulent flows,
thereby controlling transport rates of energy, heat, and mass (Townsend 1976). Thus,
the study of the entrainment process is not only relevant from a basic point of view,
but also an important part of physical fundamentals of a great variety of technological
processes and their control (Hunt et al. 2011). Despite its importance, there are
still many open questions that significantly hinder fundamental understanding, proper
parametrization, and accurate modelling (Hunt, Eames & Westerweel 2006; da Silva
2009). As described in Ferrey & Aupoix (2006), standard turbulence models applied
in engineering problems depend upon small levels of eddy viscosity outside of the
turbulent region, which do not reflect the physical behaviour near the turbulent/non-
turbulent interface (TNTI) (see also Westerweel 2005). A number of recent studies
have provided new insights into the phenomenon of turbulent entrainment, improving
the conceptual understanding of the process (see e.g. Holzner et al. 2008; da Silva
2009; Westerweel et al. 2009; Philip & Marusic 2012, and references therein).

A long-standing question in this context is the interaction of small- and large-scale
eddy motions, both influencing the turbulent entrainment process. On one hand, it
is widely accepted that the main mechanism by which non-turbulent fluid becomes
turbulent as it crosses the interface is inferred to involve viscous diffusion (see e.g.
Corrsin & Kistler 1954; Dahm & Dimotakis 1990; Bisset, Hunt & Rogers 2002;
Westerweel 2005; Holzner et al. 2008; Tsinober 2009; da Silva, dos Reis & Pereira
2011). This is believed to be one of the reasons why the interface appears sharp. On
the other hand, it is also well known that at large Reynolds numbers the entrainment
rate and the propagation velocity of the interface relative to the fluid are independent
of viscosity (see e.g. Ricou & Spalding 1961; Coles 1962; Hinze 1975; Tritton 1988;
Govindarajan 2004; Hunt et al. 2006). From this it follows that the slow process
of diffusion into the ambient fluid must somehow be amplified. Townsend (1976)
explained that interacting velocity fields of eddies of all sizes, from viscous eddies
to the energy-containing eddies, produce a strongly contorted interface, resulting in
a higher overall entrainment. In other words, entrainment can be understood as a
diffusion process across a strongly convoluted interface, where presumably the large
surface area causes a cumulative effect that cancels out the viscosity dependence.
As outlined by Sreenivasan, Ramshankar & Meneveau (1989), the global entrainment
flux Q can either be determined by the mean entrainment velocity ue times a mean
projected area A0 or by a small-scale local entrainment velocity vn together with
the strongly convoluted instantaneous turbulent/non-turbulent interface area, so that
Q= ueA0 =

∫
vn dA. Hence, local entrainment velocity and instantaneous interface area

represent key parameters of the entrainment process linking small-scale processes of
the flow to the global entrainment rate. Holzner & Lüthi (2011) recently showed
that the instantaneous interface area is strongly convoluted to account for a large
entrainment flux with a small characteristic velocity comparable to the Kolmogorov
velocity, vn ∼ uη.

In an early experimental and theoretical study, Corrsin & Kistler (1954) postulated
that the local entrainment velocity in a free shear flow depends upon a shear force
that is fed from small-scale fluctuations as well as mean shear. Recent findings by da
Silva & Taveira (2010) support the concept that mean shear has an influence on the
entrainment process. In particular, they show that the thickness of the turbulent/non-
turbulent interface is related to large vorticity structures whose lifetimes depend on
Reynolds number and mean shear. Furthermore, a theoretical and experimental work
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by Westerweel et al. (2009) demonstrates that the propagation velocity of the turbulent
front in a jet flow has a contribution from turbulent fluctuations and from a jump in
the mean velocity across the turbulent boundary, which is essentially a mean shear.

The goal of the presented work is to investigate effects of mean shear on the local
entrainment velocity. We compare experimental data of an axisymmetric jet to results
from a DNS of a flow with zero mean shear (ZMS). First, conditional enstrophy
profiles relative to the interface position are characterized in a pseudo-Eulerian view
(i.e. in a fixed frame relative to the interface position) and in a Lagrangian view.
Secondly, extending the analysis in Wolf et al. (2012), the local entrainment velocity
vn is investigated with respect to small-scale mechanisms such as vortex stretching and
viscous effects, as well as to the geometry of the interface. Effects of mean shear and
universal features of the entrainment process are discussed. The intention of the study
is to highlight some interesting effects of mean shear on the entrainment process.

The paper is organized as follows. In § 2 we describe the experimental jet
measurements, give information about direct numerical simulation (DNS), and discuss
the detection procedure of the entrainment interface as well as conditional sampling
of the flow data. In § 3 we assess conditional statistics in the pseudo-Eulerian and
Lagrangian frames of reference and discuss effects of mean shear on the local
entrainment velocity. Finally, a summary and some suggestions for future studies
are given in § 4.

2. Method
In this section we describe the experimental jet measurements and give information

about DNS of the ZMS flow. Both methods have been described in detail in Wolf
et al. (2012) (experiment) and in Holzner et al. (2008) (simulation) and only the main
features are presented in the following. Furthermore, the detection of the entrainment
interface, conditional sampling of flow data, and a mathematical description of the
local entrainment velocity are briefly summarized.

2.1. Experimental jet measurements
Experimental data of an axisymmetric jet flow was obtained from three-dimensional
particle tracking velocimetry (3D-PTV) measurements in a closed-loop jet facility
using water as the working fluid. An interrogation volume at the boundary between
the turbulent jet and irrotational ambient fluid was investigated, and instantaneous
distributions of velocity and velocity gradients were determined in the volume.

The test section of the experimental setup is illustrated in figure 1(a). A turbulent jet
emerges from the end of a thin pipe (inner diameter d = 3 mm, length l = 240 mm)
into a cylindrical glass tank of diameter D= 300 mm and length L= 2000 mm, which
contains quiescent ambient fluid. The fluid in the cylinder and the jet is water at room
temperature. The jet pipe and cylindrical water tank are each connected to a constant-
head reservoir. The two reservoirs are positioned at different heights producing a
constant hydrostatic pressure difference, which ensures a steady flow rate (constant-
head reservoirs are not shown in the sketch). In order to avoid image distortions
caused by the difference in index of refraction between the inside and outside of
the cylindrical water tank, a rectangular glass box, also filled with water, is fitted
around the cylinder. As described in Wolf et al. (2012), the experimental facility
was thoroughly tested and validated using two-dimensional PTV measurements at the
centre plane of the axisymmetric jet. It was shown that a self-preserving turbulent jet
is established for a downstream position larger than 30x/d and that velocity decay
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FIGURE 1. (Colour online) Sketch of experimental setup and PTV processing. (a) Sketch
of test section. (b) High-speed camera with image splitter, top view. (c) Multi-camera view
example: target block. (d) Two-dimensional trajectories as obtained by one camera view.
(e) Three-dimensional trajectories colour-coded with the velocity magnitude.

constant C1 = Uc ∗ (x − x0)/U0 ∗ d = 6.1, and spreading rate C2 = db0.5/dx = 0.09,
where U0 is the average exit velocity of the jet pipe, Uc the mean centreline velocity,
and b0.5 the velocity half-width, lie in the range reported in the literature (see e.g.
Wygnanski & Fiedler 1969; Hussein, Capp & George 1994; Xu & Antonia 2002).

Relevant processing steps of the 3D-PTV measurements are shown in figure 1(b–e).
A classical PTV system uses four synchronized cameras ensuring a robust stereoscopic
detection of flow tracers within the established seeding limit of ∼0.05 particles per
pixel (Maas, Gruen & Papantoniou 1993). For our measurements, we employ one
single camera in combination with a four-way image splitter to mimic the classical
four-camera setup, as illustrated in figure 1(b) and described in detail in Hoyer et al.
(2005). In this way, all four views of the interrogation volume are recorded onto a
single image simultaneously. An image example showing the target block used for the
calibration of the system is depicted in figure 1(c). In a first processing step, a spatio-
temporal tracking algorithm (Willneff & Gruen 2002) is used to determine particle
trajectories in image space for every camera view. An example of two-dimensional
trajectories at the jet interface is shown in figure 1(d). Subsequently, three-dimensional
trajectories are constructed in object space, and Lagrangian quantities such as velocity
and acceleration are calculated along the trajectory. The resulting trajectories in the
interrogation volume investigated are depicted in figure 1(e). The three-dimensional
trajectories are colour-coded with the velocity magnitude. In our measurements, the
average interparticle distance was of the order of the smallest length scales of the flow,
so that we also obtained spatial derivatives of velocity and acceleration; for details on
the calculation procedure see Lüthi, Tsinober & Kinzelbach (2005).
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Zero mean shear Jet Re 2000 Jet Re 5000 Jet Re 8000

η 1.51x 0.46 mm 0.33 mm 0.26 mm
τη 2501t 0.21 s 0.11 s 0.07 s
Reλ 50 60 80 100

TABLE 1. Kolmogorov scales and Reλ for the three jet experiments and the DNS of the
ZMS flow. 1x and 1t represent the grid spacing and time step of the simulation.

For the 3D-PTV measurements investigating the jet interface, we used a Photron
SA 5 camera (1024 × 1024 pixels2, object lens of 200 mm) in combination with the
above-mentioned image splitter. The camera was focused on an interrogation volume
of 11 mm × 11 mm × 4 mm, as indicated by a small square in figure 1(a). Using a
non-cubic observation volume reduces the number of ambiguities in the stereoscopic
detection procedure, which improves the establishment of correspondences in the
tracking process. This means that a higher number of particles can be tracked in
space and time, resulting in a better spatial resolution. The measurement volume was
situated 92x/d–96x/d downstream of the nozzle exit. Illumination of the interrogation
volume was provided by a continuous 15 W argon ion laser. The laser beam was
expanded through two spherical lenses. The jet flow and ambient fluid were seeded
with neutrally buoyant polystyrene tracer particles with an average diameter of 45 µm.
In our recordings, ∼200 particles could be tracked on average in the interrogation
volume, yielding an average particle distance of ∼1.3 mm. The particle position
accuracy of the measurements was 0.1 mm for the x1 and x2 components and 0.3 mm
for the x3 component respectively, where x1, x2 and x3 correspond to the radial, axial
and azimuthal jet axes. Measurements for three different jet velocities U0 (0.67, 1.67,
2.67 m s−1) were conducted, implying jet Reynolds numbers, Re= (U0 ∗ d)/ν, of 2000,
5000, 8000 respectively, where ν is the kinematic viscosity of the fluid. Table 1
lists Kolmogorov scales for length, η, and time, τη, as well as the estimated Taylor
Reynolds number, Reλ =

√
15(L/η)2/3, with L being the integral scale approximated

from the velocity half-width. Kolmogorov scales are determined from the average
dissipation rate in the turbulent region, ε = 2ν〈sijsij〉. Recordings were taken at a frame
rate of 500 Hz for the cases Re 2000 and Re 5000 and 1000 Hz for the case Re 8000,
corresponding to a temporal resolution faster than 1/10τη in each case. The spatial
resolution yields 2η, 4η and 5η for Re 2000, 5000 and 8000 respectively.

A detailed accuracy analysis has been reported in Wolf et al. (2012) for the case of
Re 5000, assessing the quality of the performed 3D-PTV measurements. It was shown
that the random error in the determination of velocity and acceleration derivatives is
∼10 %, which lies in the range of other PTV and particle image velocimetry (PIV)
studies investigating small-scale aspects of turbulent flows (see e.g. Mullin & Dahm
2006; Ganapathisubramani, Lakshminarasimhan & Clemens 2007; Holzner et al. 2009;
Liberzon et al. 2012). Random errors for the cases of Re 2000 and Re 8000 are
comparable to the ones obtained for Re 5000. As an example of the applied accuracy
checks, we show in figure 2 the joint probability density functions (joint p.d.f.s) of the
total velocity derivative versus local and convective acceleration. It can be seen that
the data points are distributed along the diagonal for all three cases, i.e. no systematic
error is apparent. Furthermore, the aspect ratios of the distributions, which give an
indication of the random error, are similar for the three Reynolds numbers. Correlation
factors of the checks lie in the range of 0.84–0.94 for all three Reynolds numbers.
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FIGURE 2. (Colour online) Accuracy checks: joint p.d.f.s of total velocity derivative Dui/Dt
versus local and convective acceleration ∂ui/∂t + uj(∂ui/∂xj), depicted for the velocity
component in the x2 direction. (a) jet Re 2000, (b) jet Re 5000, (c) jet Re 8000.

2.2. Direct numerical simulation of a flow with ZMS
In addition to the experimental jet data, this study relies upon data from DNS of a
ZMS flow. Previous studies conducted by some of the authors have already employed
the same numerical data set to examine small-scale features of turbulent entrainment
(Holzner et al. 2007, 2008, 2009; Holzner & Lüthi 2011). In the current study we
compare the simulations to the jet experiments described above in order to investigate
certain aspects of the influence of mean shear on local entrainment. In summary,
the DNS was performed in a box (side lengths 5L, 3L, 5L) of fluid initially at rest.
Random (in space and time) velocity perturbations were applied at the boundary
x2 = 0, which were generated as follows. For a fixed time and in the discrete
set of points, i.e. x1 = k1l, x3 = l1l (k, l are integers), each velocity component
ui (i = 1, 2, 3) is calculated as ui = Viξ , where ξ is a random number within the
interval [−1, 1] and Vi is a given velocity amplitude. For other times and spatial
points (x1, x3) boundary velocities are obtained by cubic interpolation in time and
bilinear interpolation in space. At each time, the three boundary velocity components
yield zero average value over the boundary plane. Periodic boundary conditions are
applied for the directions x1 and x3. Shear-free conditions δu1/δx2 = δu3/δx2 = u2 = 0
are set at the boundary x2 = L2. The Navier–Stokes equations were solved with a
finite difference scheme and with time advancement computed by a semi-implicit
Runge–Kutta method (Nikitin 2006). The resolution is 256 × 256 × 256 grid points.
Kolmogorov scales and Taylor Reynolds numbers for the ZMS flow are depicted in
table 1. The subsequent analysis was carried out for time steps when the advancing
turbulent front is about half a box size away from the forcing plane.

2.3. Interface detection and conditional sampling
Like Bisset et al. (2002), Holzner et al. (2007), da Silva & Pereira (2008), and
others, we identify the interfacial region between turbulent flow (i.e. jet or ZMS flow)
and irrotational ambient flow by using a threshold on enstrophy, ω2 = ω · ω, where
ω is the vorticity vector. Similar to Holzner et al. (2009) and Wolf et al. (2012),
the threshold is set to ∼2 % of the mean enstrophy value in the turbulent region.
The value is used to determine an enstrophy iso-surface situated in the outer section
of the interfacial region between turbulent and irrotational flows. This iso-surface
is subsequently tracked in space and time for measurements as well as simulations.
Please note that the standard deviation of the measured enstrophy fluctuations in the
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FIGURE 3. (Colour online) (a) Conditional averages of total enstrophy 〈ω2〉 and squared
vorticity fluctuations 〈(ω′)2〉 in the normal direction to the interface; Eulerian frame of
reference. (b) Conditionally averaged Lagrangian evolutions of total enstrophy 〈ω2〉 and
squared vorticity fluctuations 〈(ω′)2〉; Lagrangian frame of reference. Enstrophy values are
normalized by its average in the turbulent region 〈ω2

turb〉. Relative distance and time are
normalized by Kolmogorov scales. Negative values represent potential flow and positive
values turbulent regions, respectively.

ambient flow region, due to measurement noise, are about four times smaller than the
chosen thresholds for the three jet cases.

Furthermore, flow properties are analysed relative to the interface and conditional
statistics are computed by averaging data at fixed distances to the interface position.
We define a new coordinate system x̂, where the origin is located at the iso-surface
and the normal direction is given as x̂n. Negative values of x̂n represent the potential
flow region and positive values the turbulent region; see e.g. figure 3(a). Following
the approach of Bisset et al. (2002) and Westerweel et al. (2009), we decompose the
instantaneous velocity field into

u= U + u′, (2.1)

where U is the conditional average relative to the interface, U = 〈u〉, and u′ is the
corresponding fluctuating component, 〈u′〉 = 0. In other words, the brackets 〈· · ·〉
define the ensemble average for a fixed normal distance to the interface, i.e. for a
fixed x̂n value.

2.4. Local entrainment velocity
A short discussion of the local entrainment velocity is given in the following to
introduce main variables needed for the subsequent analysis. A detailed mathematical
derivation of vn as well as its connection to small-scale processes can be found
in Pope (1988), Dopazo (2006) (scalar iso-surface), and Holzner & Lüthi (2011).
The evolution of the turbulent/non-turbulent interface results from advection due to
the underlying flow field and a movement relative to the fluid caused by turbulent
entrainment. From this it follows that the velocity of an iso-surface element, us, can
be written as the sum of fluid velocity, u, and velocity of the area element relative
to the fluid, V = vnn, that is, us = u + V , where n = ∇ω2/|∇ω2| the surface normal.
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As shown in Holzner & Lüthi (2011), one can derive an expression for the relative
velocity by looking at the movement of the enstrophy iso-surface in a Lagrangian
frame of reference, i.e. ‘sitting’ on the iso-surface, which leads to

vn =−
Dω2

Dt
|∇ω2| . (2.2)

Please note that vn adopts positive values for an orientation in the direction of the
enstrophy gradient. This implies that vn of a surface spreading into the irrotational
region is on average negative. With the use of the enstrophy transport equation one can
decompose vn into the sum of an inviscid and a viscous contribution:

vn =−2ωiωjsij

|∇ω2| −
2νωi∇2ωi

|∇ω2| = v
inv
n + vvis

n . (2.3)

3. Results
In the following section, the local entrainment velocity is analysed from different

perspectives in order to highlight the effects of mean shear on the entrainment
process. First, we address vn by its definition given in (2.2) and discuss in this
context conditional enstrophy profiles in a pseudo-Eulerian and a Lagrangian frame
of reference. Subsequently, the local entrainment velocity and its components are
characterized with respect to the geometrical shape of the interface and to conditional
averages of strain and vorticity.

3.1. Enstrophy jump in a pseudo-Eulerian and in the Lagrangian frames of reference
In order to get a first insight into the local entrainment process, we investigate
conditional enstrophy profiles once relative to the interface location, i.e. conditionally
averaged with respect to the moving interface (which would be the pseudo-Eulerian
view), and once in a Lagrangian view, where we look at the evolution of ω2 along
trajectories crossing the entrainment interface (see figure 3a,b). As shown in (2.2), the
gradients of these curves are directly linked to the local entrainment velocity, since
vn is defined by the norm of the enstrophy gradient, |∇ω2| = ∂ω2/∂ x̂n, and the total
derivative of enstrophy, Dω2/Dt. In the following, enstrophy profiles of the ZMS flow
and the jet Re 5000 are investigated to highlight governing entrainment effects in the
respective frame of reference.

Figure 3(a) depicts conditional averages of enstrophy in the pseudo-Eulerian view.
The profiles are normalized by the average enstrophy value in the turbulent region
〈ω2

turb〉, i.e. averaged over all x̂n > 0, and the distance is normalized by the Kolmogorov
length scale η. The solid red and the dashed blue line depict ensemble averages of
the total enstrophy 〈ω2〉 for jet and ZMS respectively. The dot-dashed black curve
shows the conditional squared vorticity fluctuations 〈(ω′)2〉 for the jet experiment. In
the case of ZMS, the conditionally averaged total enstrophy is equal to the vorticity
fluctuations, hence only total enstrophy is depicted. Comparing conditional averages of
total enstrophy and of vorticity fluctuations for the jet, one can see that mean shear
influences the enstrophy distribution in the interfacial region. Due to the presence of
mean enstrophy, the characteristic jump of ω2 after x̂n = 0 is more pronounced and
reaches a maximum of 1.1〈ω2

turb〉 at ∼15η into the turbulent region. The profile of the
squared vorticity fluctuations reaches a value of 0.8〈ω2

turb〉 at 15x̂n/η, which illustrates
that a large part of the sudden increase of total enstrophy is due to small-scale eddy
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motions. Therefore, we note that small scales seem to be governing the entrainment
process, which fits the findings by Westerweel et al. (2009), who demonstrated that
so-called ‘small-scale nibbling processes’ dominate the entrainment of irrotational fluid
into the turbulent region.

Figure 3(a) also shows that mean enstrophy contributes significantly to the strong
increase of total enstrophy in the interfacial region, even producing a local maximum
at 15x̂n/η. The peak in the enstrophy profile is usually attributed to large vortex
sheet structures that are situated in the interfacial region (Hunt, Eames & Westerweel
2008; da Silva & Taveira 2010). Findings of Westerweel et al. (2009) suggest that
this effect can be associated with a jump in the conditional mean velocity. For our
analysis we can conclude that in the pseudo-Eulerian frame of reference, both mean
and fluctuating components of ω2 seem to influence the conditional enstrophy profile.
Interestingly, there is also a difference between vorticity fluctuations of the jet and
the ZMS flow. The enstrophy increase for ZMS occurs over a considerably shorter
distance than the augmentation of vorticity fluctuations in the jet, which means that
the ZMS interface is thinner. This finding is reminiscent of results by da Silva &
Taveira (2010), who show conditional mean profiles of one vorticity component for
jets and shear-free isotropic turbulence. They argue that large-scale vorticity structures
affect the distance over which the enstrophy increase occurs. Further, they explain that
these large-scale vorticity structures have a longer lifetime in jets, therefore exhibiting
a higher probability of influencing the entrainment process, which might be a possible
explanation for the observed difference.

The Lagrangian evolution of enstrophy along trajectories crossing the entrainment
interface is shown in figure 3(b). All trajectories are centred at time t̂, when the
fixed threshold of ω2 is exceeded for the first time. For the statistical analysis, all
trajectories are ensemble-averaged, conditioned on t̂. Please note that we only take into
account particles that cross the interface from the irrotational ambient to the turbulent
region. Detraining particles are discarded from the statistics. When particles reach
the entrainment interface, their enstrophy level increases on average quite rapidly for
about one τη and grows more gradually inside the turbulent region. This behaviour
is observed for jets as well as for ZMS. In contrast to the pseudo-Eulerian view, the
temporal enstrophy gradient of the ZMS appears to be slightly smaller than for the jet
flow. A stronger spatial gradient in the normal direction in combination with a smaller
gradient in the Lagrangian description suggests that the local entrainment velocity
attains lower average values for ZMS compared to the jet, which will be further
investigated in the subsequent sections. Interestingly, the enstrophy level of entraining
particles in the jet flow results almost exclusively from vorticity fluctuations. This
means that from a Lagrangian perspective small-scale eddy motions appear to govern
the entrainment process, with only a little influence from mean shear. Moreover, one
can see that within the first 8τη after crossing the entrainment interface, entraining
particles reach considerably smaller enstrophy levels compared to levels seen in the
turbulent region of the pseudo-Eulerian reference frame. Since vorticity is a Galilean
invariant, one would expect similar enstrophy levels to be obtained for both frames of
reference. One possible reason for the difference is that the ensemble average in the
Lagrangian analysis comprises only particles that recently crossed the entrainment
interface, whereas in the pseudo-Eulerian view (figure 3a) the ensemble average
consists of all particles present, i.e. of recently entrained particles and particles that
have originally been in the turbulent region. A second possible reason is that within
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FIGURE 4. (Colour online) Mapping between normal distance to the instantaneous interface
(x̂n) versus conditional time along the trajectory (t̂). Values are normalized with the respective
Kolmogorov scales: (a) ZMS; (b) jet Re 5000.

the given time span, newly entrained fluid particles may not move on average very
deeply into the turbulent region, which is analysed in the subsequent paragraph.

In order to investigate how far entrained particles move away from the interface into
the turbulent flow region, figure 4 maps normal distance to the instantaneous interface
(x̂n) versus conditional time along the trajectory (t̂). The mapping is presented for (a)
ZMS and (b) jet Re 5000, respectively. The red line represents the ensemble average
and the shaded grey area corresponds to the standard deviation. As entraining particles
cross the turbulent/non-turbulent interface, i.e. the origin, they seem to decelerate
quickly and maintain a short, almost constant distance to the interfacial region for
several Kolmogorov times after crossing the interface. This is consistent with the lower
conditional enstrophy value seen in figure 3(b). After a time period of ∼5τη, entrained
particles are on average no more than ∼2η away from the interface. Consequently,
their mean enstrophy level seen in figure 3(b) fits the value in the pseudo-Eulerian
frame of reference depicted in figure 3(a). In summary, it is observed that entraining
particles initially stay close to the entrainment interface and therefore develop only
lower average enstrophy values. This behaviour is apparent both for ZMS and jet.
Differences between the flow types in the irrotational flow region, i.e. for negative x̂n

and t̂ values, might result from tracking limitations in the PTV measurements. For the
jet experiments, trajectory lengths were limited to 500 time steps, which corresponds
to 10τη. Further, the interrogation domain was also limited to a small volume around
the interfacial region. Hence, entraining particles were only detected when they were
in the proximity of the entrainment interface. These constraints do not exist for the
DNS of the zero mean shear flow, therefore we believe that the mapping for the
ZMS is more accurate, especially for the mapping before the crossing of the interface.
Nevertheless, both flows show a similar behaviour for positive x̂n and t̂ values.

3.2. Local entrainment velocity and its components in the normal direction
Figure 5 shows conditional profiles of vn, vinv

n and vvis
n relative to the interface for jet

Re 5000. We observe that the local entrainment velocity as well as its components
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FIGURE 5. (Colour online) Profiles of vn, vinv
n and vvis

n in the normal direction, jet Re 5000.

depend on the distance to the interface. Close to the interface, both inviscid and
viscous entrainment velocity drive the outward spreading of the turbulent front. Further
inside the turbulent region, vinv

n tries to steepen the enstrophy gradient, whereas vvis
n

counteracts the process causing a reduction of the gradient. Sufficiently deep into the
turbulent flow (x̂n/η > 9), the two processes are in balance and the local entrainment
velocity becomes zero. Clearly the choice of the enstrophy threshold influences the
position of the origin in this plot and affects the relative balance between viscous
and inviscid effects. We want to investigate what happens with vinv

n and vvis
n at the

outer region of the TNTI, where viscous effects are known to be dominating on
average (Corrsin & Kistler 1954; Holzner & Lüthi 2011). We have therefore selected a
fairly low threshold value (∼2 % of the mean enstrophy value in the turbulent region),
where viscous effects dominate, yet inviscid effects start to contribute. Furthermore,
for a comparison of different flows the respective enstrophy threshold has to be
chosen in such a way that inviscid and viscous components of vn show comparable
characteristics at the interface for all investigated cases. Only then can resulting
differences in the entrainment process for the different configurations be attributed
to the character of the flow. For the subsequent analysis, enstrophy thresholds were
selected with respect to the condition that ratios of vinv

n /vn and vvis
n /vn yield values of

∼0.4 and 0.6 for all four flow configurations. Exact ratios are depicted in table 2.

3.3. Local entrainment velocity conditioned on surface shapes
In the following section, we discuss the dependence of the local entrainment velocity
on the geometrical shape of the instantaneous entrainment interface. The authors have
already shown in Wolf et al. (2012) that for a jet flow with a Reynolds number
of 5000, the local entrainment velocity changes considerably depending on the local
shape of the interface. In the current study, it is investigated how the geometrical
dependence of vn changes for different flow types. Figure 6(a) shows a snapshot of
an enstrophy iso-surface representing the instantaneous TNTI of jet Re 5000. The
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FIGURE 6. (Colour online) (a) Snapshot of enstrophy iso-surface representing the
instantaneous entrainment interface of jet Re 5000. The turbulent region is indicated by
end-caps colour-coded with the ω̂2 value, adapted from Wolf et al. (2012). (b) Basic surface
types depending on Gaussian and mean curvatures K and H, adapted from Dopazo, Martin &
Hierro (2007).

turbulent region is indicated by caps colour-coded with ω2. The surface normal of
the iso-surface element points in the direction of the positive enstrophy gradient.
Different areas of the iso-surface are classified by either concave or convex areas,
which is the shape observed when looking from the turbulent region towards the
iso-surface. Examples of the respective surface types are indicated in figure 6(b). For
the subsequent analysis, the local entrainment velocity is conditioned on the curvature
of the local iso-surface element. Specifically, vn is conditioned on mean curvature,
H = ∇ · n/2 = (κ1 + κ2)/2, and Gaussian curvature, K = κ1κ2, where n is the iso-
surface normal vector and κ1 and κ2 are the principal curvatures. Figure 6(b) shows the
different iso-surface geometries in the H–K plane. The zone K > H2 in the H–K plane
implies complex curvatures, which do not occur for the investigated iso-surface.

We used a paraboloid fitting procedure to estimate Gaussian and mean curvature
values of the triangular mesh of the enstrophy iso-surface. Curvatures of each vertex
on the triangulated surface are estimated by a least-squares fitting of an osculating
paraboloid to the vertex and its surrounding neighbours. Details about the procedure
are given in Stokely & Wu (1992) and Magid, Soldea & Rivlin (2007), for example.

Figure 7 depicts joint p.d.f.s of mean and Gaussian curvatures H and K for the four
flow configurations investigated (ZMS, jet Re 2000, Re 5000, Re 8000). Contours are
in logarithmic scale. All samples in the joint p.d.f. are below the parabola K = H2,
which separates real and complex curvature regions. It can be seen for all four
cases that iso-probability contours surround the origin and decrease in magnitude
for increasing curvature values. Areas of highest probability are shifted towards small
negative mean curvature values, whereas the entire joint distribution is moderately
skewed towards positive H values. These features are most visible for the DNS data of
the ZMS flow, which presumably reflects the slightly higher spatial resolution of the
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Zero mean shear Jet Re 2000 Jet Re 5000 Jet Re 8000

〈vn〉
uη

−0.15 −0.26 −0.50 −0.52

〈vinv
n 〉
〈vn〉 0.37 0.39 0.40 0.35

〈vvis
n 〉
〈vn〉 0.63 0.61 0.60 0.65

inv1

〈vn〉 0.37 0.23 0.19 0.21

inv2

〈vn〉 0.00 0.20 0.18 0.16

inv3

〈vn〉 0.00 −0.02 0.00 −0.02

inv4

〈vn〉 0.00 0.00 0.00 0.00

inv5

〈vn〉 0.00 0.01 0.00 0.01

inv6

〈vn〉 0.00 −0.03 0.03 −0.01

vis1

〈vn〉 0.63 0.31 0.34 0.41

vis2

〈vn〉 0.00 0.31 0.27 0.24

vis3

〈vn〉 0.00 0.00 0.00 0.01

vis4

〈vn〉 0.00 −0.01 −0.01 −0.01

TABLE 2. Conditional mean values for vn normalized by uη as well as ratios of vinv
n and

vvis
n and their components for the position at the interface, i.e. x̂n = 0.

simulation. By and large, distributions of H and K seem unaffected by the different
flow configurations.

In contrast, conditional averages of vn with respect to surface curvatures H and
K show a considerable dependence on flow configurations, as shown in figure 8.
It is found that with increasing Taylor Reynolds number Reλ, i.e. from ZMS with
Reλ = 50 to jet Re 8000 with Reλ = 100, the local entrainment velocity reaches higher
negative values. This implies that, while uη seems to be the correct scaling parameter
for vn, i.e. vn/uη = O(1), the precise ratio may depend on Reynolds number, at
least for the moderate Re investigated here. In addition, the decrease of the velocity
from negative to positive H values becomes more pronounced with higher Re. This
trend will be discussed in more detail in § 3.4, figures 9–11. The results for the
jet at Re = 5000 and Re = 8000 depict very similar distributions of vn. A possible
explanation is that these two configurations lie in the range of the so-called ‘mixing
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FIGURE 7. (Colour online) Conditional average of Gaussian and mean curvature K and H:
(a) ZMS; (b) jet Re 2000; (c) jet Re 5000; (d) jet Re 8000.

transition Reynolds number’. As discussed in Dimotakis (2005), flow dynamics of
partly turbulent flows seem to change beyond a Taylor Reynolds number of ∼100,
resulting in a broader spectrum of eddying scales and a weaker Reynolds number
dependence of various flow phenomena including turbulent entrainment. In short, we
see a Reynolds number dependence of vn for the investigated flows, reflecting a
possible effect of the increasing mean shear. Whether the trend continues for higher
Reynolds numbers remains to be seen.

Some features of the distribution seem to be independent of the flow type. For all
flow configurations, the local entrainment velocity is observed to depend on the local
shape of the interface. In particular, vn tends towards values around zero for concave
surface shapes (H ∗ η < 0) and attains higher negative values in areas of convex shape
(H ∗ η > 0). From this it follows that in convex areas local entrainment of irrotational
fluid into the turbulent flow region is higher than for convex shapes. Moreover, this
finding is an indication that vn counteracts the convolution of the iso-surface, since
convex shapes advance into the ambient fluid with a higher speed than concave shapes.
Mean curvature H appears to be the main parameter for the change of vn.

3.4. Decomposition of the local entrainment velocity
In order to directly relate effects of mean shear on the local entrainment velocity,
we present a decomposition of vn into conditional mean and fluctuating quantities as
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FIGURE 8. (Colour online) vn conditioned on Gaussian and mean curvature K and H,
normalized by uη: (a) ZMS; (b) jet Re 2000; (c) jet Re 5000; (d) jet Re 8000.

described in (2.1). Inviscid and viscous contribution of the local entrainment velocity,
vinv

n and vvis
n , are divided into conditional averages and fluctuations of strain and

vorticity. The resulting expression for vinv
n reads

vinv
n =−

2ωiωjsij

|∇ω2|
= −2(ω′i +Ωi)(ω

′
j +Ωj)(s′ij + Sij)

|∇ω2|
= −2

ω′iω
′
js
′
ij + ω′iω′jSij + 2ω′iΩjs′ij + 2ω′iΩjSij +ΩiΩjs′ij +ΩiΩjSij

|∇ω2| . (3.1)

Taking the mean of the inviscid entrainment velocity, we obtain the following six
terms: 〈

vinv
n

〉=−2
[〈
ω′iω

′
js
′
ij

|∇ω2|
〉
+
〈
ω′iω

′
jSij

|∇ω2|
〉
+ 2

〈
ω′iΩjs′ij
|∇ω2|

〉
+ 2

〈
ω′iΩjSij

|∇ω2|
〉
+
〈
ΩiΩjs′ij
|∇ω2|

〉
+
〈
ΩiΩjSij

|∇ω2|
〉]

= inv1 + inv2 + inv3 + inv4 + inv5 + inv6. (3.2)
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FIGURE 9. (Colour online) vn, vinv
n and vvis

n conditioned on mean curvature H, normalized by
uη: (a) ZMS; (b) jet Re 2000; (c) jet Re 5000; (d) jet Re 8000. Concave regions (H ∗ η < 0),
convex regions (H ∗ η > 0).

The viscous component of the local entrainment velocity, vvis
n , can be decomposed as

vvis
n =−

2νωi∇2ωi

|∇ω2|
= −2ν(ω′i +Ωi)∇2(ω′i +Ωi)

|∇ω2|

= −2ν
ω′i∇2ω′i +Ωi∇2Ωi +Ωi∇2ω′i + ω′i∇2Ωi

|∇ω2| . (3.3)

Taking the mean of the viscous entrainment velocity, we get

〈
vvis

n

〉=−2ν
[〈
ω′i∇2ω′i
|∇ω2|

〉
+
〈
Ωi∇2Ωi

|∇ω2|
〉
+
〈
Ωi∇2ω′i
|∇ω2|

〉
+
〈
ω′i∇2Ωi

|∇ω2|
〉]

= vis1 + vis2 + vis3 + vis4. (3.4)
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Table 2 shows conditional mean values for the local entrainment velocity as well
as ratios of inviscid and viscous contributions and their components (equations (3.2)
and (3.4)) for the position at the interface, i.e. x̂n = 0. Consistent with the findings
in § 3.3, it can be seen that conditional averages of vn normalized by uη grow in
magnitude from the case of ZMS to the case of jet Re = 8000. Zero-mean-shear flow
and jet Re= 2000 have similar Taylor Reynolds numbers, i.e. Reλ = 50 in comparison
to Reλ = 60, which indicates that not only the augmentation of the Reynolds number
but also the effect of mean shear contributes to an enhanced local entrainment velocity.

Looking at the decomposition of the inviscid entrainment velocity for the three
jet cases, we can see that in addition to the term comprising only fluctuations,
inv1 =−2〈ω′iω′js′ij/|∇ω2|〉, the term consisting of vorticity fluctuations and mean strain,
inv2 = −2〈ω′iω′jSij/|∇ω2|〉, also has a significant influence on the inviscid entrainment
component. The picture is similar for the viscous component, where we identify
the term comprising only fluctuations, vis1 = −2ν〈ω′i∇2ω′i/|∇ω2|〉, and also the term
comprising only mean values, vis2 = −2ν〈Ωi∇2Ωi/|∇ω2|〉, to be the dominating
components of vvis

n . This illustrates that for the viscous component too, mean shear
seems to have a significant influence on the entrainment process. Interestingly, mean
strain seems to be the influencing factor for vinv

n , whereas mean vorticity is of less
importance for the inviscid component and shows an impact only on vvis

n . Furthermore,
the influence of mean quantities appears to slightly decrease for higher Reynolds
numbers. The ZMS case has by its very nature only a contribution of solely
fluctuating components, i.e. inv1 = −2〈ω′iω′js′ij/|∇ω2|〉 and vis1 = −2ν〈ω′i∇2ω′i/|∇ω2|〉.
In conclusion, table 2 illustrates a direct effect of mean shear on small-scale processes
of the local entrainment process resulting in an enhanced entrainment velocity with
respect to the case of ZMS. The findings described are in accordance with the
proposition of Corrsin & Kistler (1954), who postulated that the local entrainment
velocity depends on mean and fluctuating shear forces at the turbulent boundary.

In the following, we investigate the dependence of vn, vinv
n and vvis

n on the
local shape of the convoluted entrainment interface. The analysis focuses on the
mean curvature, since it appears to be the governing parameter, as seen above in
§ 3.3. Figure 9 shows the local entrainment velocity as well as its inviscid and
viscous components conditioned on mean curvature. Looking at inviscid and viscous
components of the local entrainment velocity, one can see that, independent of the
curvature value, vinv

n is on average negative for all four flow configurations and
therefore always contributes to the outward spreading of the turbulent front. In
contrast, vvis

n attains positive values for concave surface shapes, which implies that
it even counteracts the entrainment process at those curvatures. In summary, we find
for all flow configurations that, depending on the surface shape, different small-scale
mechanisms control the local entrainment process. The viscous component of the local
entrainment velocity related to viscous effects, νωi∇2ωi, governs local entrainment for
convex shapes (H ∗ η > 0) and the inviscid component related to vortex stretching,
ωiωjsij, does the same for concave shapes (H ∗ η < 0). In other words, vortex stretching
tries to convolute the interface, whereas viscous effects appear to flatten it. The
characteristics described exist in more or less strong manifestations for all four flow
configurations. Conversely, the local entrainment velocity of the ZMS flow attains on
average positive values in the region of higher negative H values, suggesting that iso-
surface elements of distinct concavity even tend to move towards the turbulent region.
From the jet experiments, we see that mean shear adds to the outward spreading of the
interface by shifting vn to purely negative values.
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FIGURE 10. (Colour online) vinv
n and its components conditioned on mean curvature H,

normalized by uη: (a) ZMS; (b) jet Re 2000; (c) jet Re 5000; (d) jet Re 8000. Concave regions
(H ∗ η < 0), convex regions (H ∗ η > 0).

Looking at mean and fluctuating components of vinv
n and vvis

n , the effect of mean
quantities with respect to the surface shape becomes directly visible. Figure 10 depicts
average profiles of vinv

n and its components conditioned on mean curvature H. For the
ZMS case, vinv

n is equal to inv1 = −2〈ω′iω′js′ij/|∇ω2|〉, since mean values are zero for
the flow. The jets show an additional influence of inv2 = −2〈ω′iω′jSij/|∇ω2|〉 related
to mean strain, which shifts the inviscid entrainment component to higher negative
values, which supports the observation from figure 9. Furthermore, it is found that,
independently of the curvature value, inv1 and inv2 contribute at similar proportions to
the inviscid component of the local entrainment velocity.

The curvature effect is stronger for mean and fluctuating components of the
viscous entrainment velocity. Figure 11 shows average profiles of vvis

n and its
components conditioned on mean curvature H, normalized by uη. Again, the only
non-zero component of the viscous entrainment velocity for the ZMS flow is
vis1. The main components influencing the viscous entrainment process for jets
are vis1 = −2ν〈ω′i∇2ω′i/|∇ω2|〉 and vis2 = −2ν〈Ωi∇2Ωi/|∇ω2|〉. Interestingly, the
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FIGURE 11. (Colour online) vvis
n and its components conditioned on mean curvature H,

normalized by uη: (a) ZMS; (b) jet Re 2000; (c) jet Re 5000; (d) jet Re 8000. Concave
regions (H ∗ η < 0), convex regions (H ∗ η > 0).

characteristic of the two terms differs considerably depending on the mean curvature.
Component vis2 shows a nearly constant contribution to the viscous entrainment
process independent of the curvature value. In contrast, component vis1 highly depends
on the shape of the interface, adopting positive values for concave shapes (H ∗ η < 0)
and negative values for convex shapes (H ∗ η > 0). From this we conclude that viscous
effects due to vorticity fluctuations try to flatten or at least not to further convolute
the interface. Figures 10 and 11 show that mean shear contributes to both the inviscid
and the viscous entrainment velocity, shifting them to higher negative values, i.e.
increasing the entrainment process at the interface.

4. Conclusion
This paper investigates effects of mean shear on the local turbulent entrainment

process. Three-dimensional particle tracking velocimetry measurements of an
axisymmetric jet are compared to the results of a DNS of a ZMS flow. Quality checks
of the jet experiments show that the accuracy of the obtained data is sufficiently
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high to study small-scale mechanisms of the entrainment process, which are related to
velocity derivatives.

In summary, three main effects of mean shear on the local entrainment process are
demonstrated. First, investigating conditional enstrophy profiles relative to the interface,
it is found that in a pseudo-Eulerian frame of reference, vorticity fluctuations as well
as mean shear contribute to the vorticity jump at the boundary between irrotational and
turbulent regions. Secondly, consistent with the postulate in Corrsin & Kistler (1954),
mean shear enhances the local entrainment velocity by contributing to its inviscid
and viscous components. This reflects the influence of mean quantities on small-scale
processes such as vortex stretching and viscous effects. Thirdly, mean shear causes
entrainment in surface areas where vorticity fluctuations are counteracting the average
interface movement into the non-turbulent flow region.

Two observations of the entrainment process were made independent of the flow
type, which suggest that they possibly reflect universal features of the turbulent
entrainment process. First, we found that during the first Kolmogorov times after
passing the interface, the evolution of enstrophy along trajectories crossing the
entrainment interface is almost exclusively governed by vorticity fluctuations, and that
enstrophy values in the turbulent region are considerably smaller than in the pseudo-
Eulerian frame of reference. A mapping between normal distance to the instantaneous
interface versus conditional time along the trajectory showed that entraining particles
tend to stay in close proximity to the entrainment interface, which explains the
resulting lower average enstrophy values compared to the pseudo-Eulerian view.
Second, we saw for all investigated flow configurations that local entrainment depends
on the local shape of the interface, increasing for convex surface elements, looking
from the turbulent region towards the convoluted boundary. Furthermore, depending
on the surface shape, different small-scale mechanisms are dominant for the local
entrainment process, i.e. viscous effects for convex shapes and vortex stretching for
concave shapes.

The presented study is limited to a maximum Taylor Reynolds number of 100.
We confirm that vn/uη = O(1) also for flows with mean shear. The precise ratio
may depend on the Reynolds number, at least for the moderate Re investigated
here. The influence of mean quantities on inviscid and viscous components of the
entrainment velocity appears to decrease slightly for higher Reynolds numbers. The
question remains whether the trend continues for higher values of Reλ.

Most studies so far have used an Eulerian description to investigate turbulent
entrainment. Our results suggest that new insights into the entrainment process can
be found if Eulerian and Lagrangian views are compared to each other.
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HOLZNER, M. & LÜTHI, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett.
106 (13), 1–4, 134503.
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LÜTHI, B., TSINOBER, A. & KINZELBACH, W. 2005 Lagrangian measurement of vorticity dynamics
in turbulent flow. J. Fluid Mech. 528, 87–118.

MAAS, H. G., GRUEN, A. & PAPANTONIOU, D. 1993 Particle tracking velocimetry in
three-dimensional flows. Part 1. Photogrammetric determination of particle coordinates. Exp.
Fluids 15, 133–146.

MAGID, E., SOLDEA, O. & RIVLIN, E. 2007 A comparison of Gaussian and mean curvature
estimation methods on triangular meshes of range image data. Comput. Vis. Image Underst.
107, 139–159.

MULLIN, J. A. & DAHM, W. J. 2006 Dual-plane stereo particle image velocimetry measurements of
velocity gradient tensor fields in turbulent shear flow. Part 2. Experimental results. Phys.
Fluids 18, 035102.

NIKITIN, N. 2006 Finite-difference method for incompressible Navier–Stokes equations in arbitrary
orthogonal curvilinear coordinates. J. Comput. Phys. 217 (2), 759–781.

PHILIP, J. & MARUSIC, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets
and wakes. Phys. Fluids 24, 055108.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
4:

14
:3

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
36

5

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.365


116 M. Wolf, M. Holzner, B. Lüthi, D. Krug, W. Kinzelbach and A. Tsinober

POPE, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445–469.
RICOU, F. & SPALDING, D. 1961 Measurements of entrainment by axisymmetric turbulent jets.

J. Fluid Mech. 11, 21–32.
DA SILVA, C. B. 2009 The behaviour of subgrid-scale models near the turbulent/nonturbulent

interface in jets. Phys. Fluids 21, 081702.
DA SILVA, C. B. & PEREIRA, C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and

rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5),
1–18, 055101.

DA SILVA, C. B., DOS REIS, R. J. N. & PEREIRA, J. C. F. 2011 The intense vorticity structures
near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165–190.

DA SILVA, C. B. & TAVEIRA, R. R. 2010 The thickness of the turbulent/nonturbulent interface is
equal to the radius of the large vorticity structures near the edge of the shear layer. Phys.
Fluids 22, 121702.

SREENIVASAN, K. R., RAMSHANKAR, R. & MENEVEAU, C. 1989 Mixing, entrainment and fractal
dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421 (1860), 79–108.

STOKELY, E. & WU, S. Y. 1992 Surface parametrization and curvature measurement of arbitrary
3-D objects: five practical methods. IEEE Trans. Pattern Anal. Mach. Intell. 14 (8), 833–840.

TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University
Press.

TRITTON, D. J. 1988 Physical Fluid Dynamics, 2nd edn. Clarendon.
TSINOBER, A. 2009 An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer.
WESTERWEEL, J. 2005 Mechanics of the turbulent–nonturbulent interface of a jet. Phys. Rev. Lett.

95, 174501.
WESTERWEEL, J., FUKUSHIMA, C., PEDERSEN, J. & HUNT, J. 2009 Momentum and scalar

transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230.
WILLNEFF, J. & GRUEN, A. 2002 A new spatio-temporal matching algorithm for 3D-particle

tracking velocimetry. In The 9th International Symposium on Transport Phenomena and
Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.
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