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Abstract. We construct finitely generated groups with arbitrary prescribed Hilbert
space compression a A ½0; 1�. This answers a question of E. Guentner and G. Niblo.
For a large class of Banach spaces E (including all uniformly convex Banach spaces), the
E-compression of these groups coincides with their Hilbert space compression. Moreover,
the groups that we construct have asymptotic dimension at most 2, hence they are exact. In
particular, the first examples of groups that are uniformly embeddable into a Hilbert space
(moreover, of finite asymptotic dimension and exact) with Hilbert space compression 0 are
given. These groups are also the first examples of groups with uniformly convex Banach
space compression 0.

1. Introduction

1.1. Uniform embeddings. The property of uniform embeddability of groups into
Hilbert spaces (and, more generally, into Banach spaces) became popular after Gromov
[Gr1] suggested that this property might imply the Novikov conjecture. Indeed, following
this suggestion, Yu [Yu] and later Kasparov and Yu [KY] proved that a finitely generated
group uniformly embeddable into a Hilbert space, respectively into a uniformly convex
Banach space, satisfies the Novikov conjecture.

This raised the question whether every finitely generated group can be embedded
uniformly into a Hilbert space, or more generally, into a uniformly convex Banach space.
Gromov constructed [Gr2] finitely generated random groups whose Cayley graphs (quasi)-
contain some infinite families of expanders and thus cannot be embedded uniformly into a
Hilbert space (or into any lp with 1e p < y, e.g. [Roe], Ch.11.3). The recent results of
V. La¤orgue [Laf ] yield a family of expanders that is not uniformly embeddable into any
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uniformly convex Banach space. Nevertheless, one cannot apply Gromov’s argument to
deduce that random groups corresponding to La¤orgue’s family of graphs do not embed
uniformly into any uniformly convex Banach space. Indeed, La¤orgue’s expanders are
Cayley graphs of finite quotients of a non-free group, therefore there are loops of bounded
size in all of them, and the graphs have bounded girth. On the other hand, Gromov’s
argument succeeds only if the girth of a graph in the family of expanders is of the same
order as the diameter of the graph.

1.2. Compression and compression gap.

Definition 1.1 (cf. [GuK]). Let ðX ; dX Þ and ðY ; dY Þ be two metric spaces and let
f : X ! Y be a 1-Lipschitz map. The compression of f is the supremum over all af 0
such that

dY

�
fðuÞ; fðvÞ

�
f dX ðu; vÞa

for all u, v with large enough dX ðu; vÞ.

If E is a class of metric spaces closed under rescaling of the metric, then the
E-compression of X is the supremum over all compressions of 1-Lipschitz maps X ! Y ,
Y A E. In particular, if E is the class of Hilbert spaces, we get the Hilbert space compression

of X .

The E-compression measures the least possible distortion of distances when one tries
to draw a copy of X inside a space from E. It is a quasi-isometry invariant of X and it takes
values in the interval ½0; 1�. Similar concepts of distortion have been extensively studied
(mostly for finite metric spaces mapped into finite dimensional Hilbert spaces) by combina-
torists for many years (see [Bou], [DL], for example).

Since any finitely generated group G can be endowed with a word length metric and
all such metrics are quasi-isometric, one can speak about the E-compression of a group G.
Guentner and Kaminker proved in [GuK] that if the Hilbert space compression of a finitely
generated group G is larger than 1=2 then the reduced C �-algebra of G is exact (in other
words, G is exact or G satisfies Guoliang Yu’s property A [Yu]).

One of the goals of this paper is to describe all possible values of E-compression for
finitely generated groups, when E is either the class of Hilbert spaces or, more generally, the
class of uniformly convex Banach spaces.

A very limited information was known about the possible values of Hilbert space
compression of finitely generated groups. For example, word hyperbolic groups have Hil-
bert space compression 1 [BS], and so do groups acting properly and co-compactly on a
CAT(0) cube complex [CN]; co-compact lattices in arbitrary Lie groups, and all lattices in
semi-simple Lie groups have Hilbert space and, moreover, L p-compression 1 [Te]; any
group that is not uniformly embeddable into a Hilbert space (such groups exist by [Gr2])
has Hilbert space compression 0, etc. (see the surveys in [AGS], [Te]). The first groups with
Hilbert space compressions strictly between 0 and 1 were found in [AGS]: R. Thompson’s
group F has Hilbert space compression 1=2, the Hilbert space compression of the wreath
product Z o Z is between 1=2 and 3=4 (later it was proved in [ANP] that it is actually 2=3),
the Hilbert space compression of Z o ðZ o ZÞ is between 0 and 1=2.
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The notion of E-compression can be generalized to the notion of E-compression gap

of a space X , where E is any class of metric spaces closed under rescaling of the metric (see
Definition 2.6). It measures even more accurately than the compression the best possible
(least distorted) way of embedding X in a space from E. For example, it is proved in
[AGS] that R. Thompson’s group F has Hilbert space compression gap ð

ffiffiffi
x

p
;
ffiffiffi
x

p
log xÞ.

This means there exists an 1-Lipschitz embedding of F into a Hilbert space with compres-
sion function

ffiffiffi
x

p
, and every 1-Lipschitz embedding of F into a Hilbert space has compres-

sion function at most
ffiffiffi
x

p
log x. This is much more precise than simply stating that the

Hilbert space compression of F is 1=2. Another example: it follows from [Te] that every

lattice in a semi-simple Lie group has a Hilbert space compression gap
xffiffiffiffiffiffiffiffiffiffi

log x
p

log log x
; x

 !
and the upper bound of the gap cannot be improved. This is a much more precise statement
than the statement that the Hilbert space compression of the lattice is 1.

In this paper, we show that a large class of functions appears as Hilbert space com-
pression functions of graphs of bounded degree, and as upper bounds of Hilbert space
compression gaps of logarithmic size of finitely generated groups. This class of functions
is defined as follows. We use the notation Rþ for the interval ½0;yÞ.

Definition 1.2. Let C be the collection of continuous functions r : Rþ ! Rþ such
that for some a > 0:

(1) r is increasing on ½a;yÞ, and lim
x!y

rðxÞ ¼ y.

(2) r is subadditive.

(3) The function tðxÞ ¼ x

rðxÞ is increasing, and the function
tðxÞ
log x

is non-decreasing
on ½a;yÞ.

Remark 1.3. The collection C contains all functions xa, for a A ð0; 1Þ, as well as

functions log x, log log x,
x

logbðx þ 1Þ
,

xa

loggðx þ 1Þ for a A ð0; 1Þ, b > 1, g > 0, etc.

1.3. Results of the paper. Let E be the class of all uniformly convex Banach spaces.

Proposition 1.4 (see Proposition 4.2). Let r be a function in C. There exists a graph

P of bounded degree such that r is the Hilbert space compression function of P, and also the

E-compression function of P.

In particular, for any a A ½0; 1� there exists a graph of bounded degree whose Hilbert

space compression equals the E-compression, and both are equal to a.

Using the construction of the graph in Proposition 1.4, we realize every function of C
as the upper bound of a Hilbert space compression gap of logarithmic size of a finitely gen-
erated group.

Theorem 1.5 (see Theorem 5.5). For every function r A C there exists a finitely gener-

ated group of asymptotic dimension at most 2 such that for every � > 0,
r

log1þ�ðx þ 1Þ
; r

 !
is a Hilbert space compression gap and an E-compression gap of the group.
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In particular, for every a A ½0; 1� there exists a finitely generated group Ga of asymptotic

dimension at most 2 and with the Hilbert space compression equal to the E-compression and

equal to a.

Since the groups Ga have finite asymptotic dimension, they are all exact and uni-
formly embeddable1) into Hilbert spaces even when a ¼ 0. Thus we construct the first ex-
amples of groups uniformly embeddable into Hilbert spaces, moreover exact and even of
finite asymptotic dimension, that have Hilbert space compression 0, and even {uniformly
convex Banach space}-compression zero. Note that since the construction in [Gr2] does
not immediately extend to uniformly convex Banach spaces, our groups seem to be the
only existing examples of groups with {uniformly convex Banach space}-compression 0.

1.4. The plan of the proofs. The plan for proving Proposition 1.4 and Theorem 1.5
is the following. We use a family of V. La¤orgue’s expanders Pk, k f 1, which are Cayley
graphs of finite factor-groups Mk of a lattice G of SL3ðFÞ for a local field F . La¤orgue
proved [Laf ] that this family of expanders does not embed uniformly into a uniformly con-
vex Banach space. Now taking any function r in C, we choose appropriate scaling con-
stants lk, k f 1, such that the family of rescaled metric spaces ðlkPkÞkf1 has {uniformly
convex Banach space}-compression function r and Hilbert space compression function r as
well. This gives Proposition 1.4.

The group satisfying the conditions of Theorem 1.5 is constructed as a graph of
groups. We use the fact that each Mk is generated by finitely many involutions, say m

(that can be achieved by choosing a lattice G generated by involutions). One of the vertex
groups of the graph of groups is the free product F of the groups Mk, other vertex groups
are m copies of the free product H ¼ Z=2Z � Z. Edges connect F with each of the m copies
of H. The edge groups are free products of countably many copies of Z=2Z. We identify
such a subgroup in H with a subgroup of F generated by involutions, one involution
from the generating set of each factor Mk. As a result, the group G is finitely generated,
and each finite subgroup Mk in G is distorted by a scaling constant close to lk. Hence
the Cayley graph of G contains a quasi-isometric copy of the family of metric spaces
ðlkPkÞkf1. This allows us to apply Proposition 1.4 and get an upper bound for a compres-
sion gap. A lower bound is achieved by a careful analysis of the word metric on G.

In order to show that G has asymptotic dimension at most 2, we use a result by
Dranishnikov and Smith [DS] on the asymptotic dimension of countable groups, and re-
sults by Bell and Dranishnikov [BD], as well as by Bell, Dranishnikov and Keesling [BDK]
on the asymptotic dimension of groups acting on trees.

1.5. Other Banach spaces. The class of Banach spaces to which our arguments apply
cannot be extended much beyond the class of uniformly convex Banach spaces; for instance
it cannot be extended to reflexive strictly convex Banach spaces. Indeed, our proof is based
on the fact that a family of V. La¤orgue’s expanders [Laf ] does not embed uniformly into a
uniformly convex Banach space. But by a result of Brown and Guentner [BG], any count-

1) A finitely generated group G of finite asymptotic dimension has Guoliang Yu’s property A [HR],

Lemma 4.2. That property is equivalent to the exactness of the reduced C �-algebra of G ([Oz], [HR]) and guaran-

tees uniform embeddability into a Hilbert space ([Yu], Th. 2.2).
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able graph of bounded degree can be uniformly embedded into a Hilbertian sum
L

l pnðNÞ
for some sequence of numbers pn A ð1;þyÞ, pn ! y. The Banach space

L
l pnðNÞ is re-

flexive and strictly convex, but it is not uniformly convex.

Acknowledgement. The authors are grateful to A. Dranishnikov, A. Lubotzky,
A. Rapinchuk, B. Remy, R. Tessera and D. Witte Morris for useful conversations and
remarks.

2. Embeddings of metric spaces

Given two metric spaces ðX ; dX Þ and ðY ; dY Þ and a 1-Lipschitz map f : X ! Y we
define the distortion of f [HLW] as follows:

dtnðfÞ ¼ max
x3y

dX ðx; yÞ
dY

�
fðxÞ; fðyÞ

� :ð1Þ

For a metric space ðX ; dÞ and a collection of metric spaces E we define the E-distortion

of ðX ; dÞ, which we denote by dtnEðX ; dÞ, as the infimum over the distortions of all
1-Lipschitz maps from X to a metric space from E. Note that given l a positive real num-
ber dtnEðX ; dÞ ¼ dtnEðX ; ldÞ provided that the class E is closed under rescaling of the met-
rics by l.

Remark 2.1. If E contains a space with n points at pairwise distance at least 1 from
each other then for every graph X with n vertices and edge-length metric, dtnE X e diam X .

The notion of distortion originated in combinatorics is related to the following notion
of uniform embedding with origin in functional analysis.

Definition 2.2. Given two metric spaces ðX ; dX Þ and ðY ; dY Þ, and two proper non-
decreasing functions rG : Rþ ! Rþ, with lim

x!y
rGðxÞ ¼ y, a map f : X ! Y is called a

ðr�; rþÞ-embedding (also called a uniform embedding or a coarse embedding) if

r�
�
dX ðx1; x2Þ

�
e dY

�
fðx1Þ; fðx2Þ

�
e rþ

�
dX ðx1; x2Þ

�
;ð2Þ

for all x1, x2 in X .

If rþðxÞ ¼ Cx, i.e. if f is C-Lipschitz for some constant C > 0, then the embedding is
called a r�-embedding.

Definition 2.3. For a family of metric spaces Xi, i A I , by a ðr�; rþÞ-embedding (resp.
r�-embedding) of the family we shall mean the ðr�; rþÞ-embedding (resp. r�-embedding) of
the wedge union of Xi.

Let ðX ; dX Þ be a quasi-geodesic metric space (e.g., the set of vertices of a graph). Then
it is easy to see that any ðr�; rþÞ-embedding of X is also a r�-embedding. The same holds
for a family of quasi-geodesic metric spaces.

Convention 2.4. Since in this paper we discuss mainly embeddings of graphs, in what
follows we restrict ourselves to r�-embeddings, and denote the function r� simply by r.
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Notation 2.5. For two functions f ; g : D ! R where DOR we write f f g if there
exist a; b; c > 0 such that f ðxÞe agðbxÞ þ c for every x A D. If f f g and gf f then we
write f � g.

Definition 2.6. Let ðX ; dÞ be a metric space, and let E be a collection of
metric spaces. Let f ; g : Rþ ! Rþ be two increasing functions such that f f g and
lim

x!y
f ðxÞ ¼ lim

x!y
gðxÞ ¼ y.

We say that ð f ; gÞ is an E-compression gap of ðX ; dÞ if

(1) there exists an f -embedding of X into a space from E;

(2) for every r-embedding of X into a space from E, we have rf g.

If f ¼ g then we say that f is the E-compression function of X .

The quotient g=f is called the size of the gap. The functions f and g are called, the
lower and upper bound of the gap respectively.

Remark 2.7. Assume that E is closed under rescaling of the metrics.

(i) If a is the supremum of all numbers such that xa f r and r is the E-compression
function of ðX ; dÞ then a is the E-compression of ðX ; dÞ.

(ii) If f is the E-compression function of a metric space ðX ; dÞ, and a is the supremum
over all numbers b such that xb f f then a is the compression of ðX ; dÞ in the sense of
Definition 1.1.

3. Embeddings of expanders

For every finite m-regular graph, the largest eigenvalue of its incidence matrix is m.
We denote by l2 the second largest eigenvalue.

We start by a well known metric property of expanders.

Lemma 3.1 ([Lub], Ch. 1). Let � > 0 and let Gm; � be the family of all m-regular

graphs with l2 em � �. Then there exist two constants k, k 0 such that for any graph P in

Gm; � with set of vertices V , and any vertex x A V , the set fy A V j dðx; yÞf k diamPg has

cardinality at least k 0jV j.

We now recall properties of expanders related to embeddings into Hilbert spaces. We
denote by H the class of all separable Hilbert spaces.

Theorem 3.2 ([LLR], Theorem 3.2(6), [HLW], Theorem 13.8 and its proof). Let

� > 0 and let Gm; � be the family of all m-regular graphs with l2 em � �.

(i) There exist constants c > 0 and d > 1 such that for any graph P in Gm; � with set of

vertices V

c logjV je dtnH Pe diamPe d logjV j:ð3Þ
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(ii) Moreover, there exists r > 0 such that for every 1-Lipschitz embedding f of P into

a Hilbert space Y there exist two vertices v1 and v2 in V with dðv1; v2Þf k diamP (where k

is the constant in Lemma 3.1) and

kfðv1Þ � fðv2Þke r:

Remark 3.3. Thus for all expanders in Gm; � the canonical embedding

P ,! 1ffiffiffi
2

p l2ðVÞ

has optimal distortion, see Remark 2.1.

V. La¤orgue [Laf ] proved that for some smaller family of expanders one can re-
place H by a large class of Banach spaces. Namely, for every prime number p and nat-
ural number r > 0, he defined a class of Banach spaces Ep; r ¼

S
a>0

Ep; r;a satisfying the
following:

(1) For any p, r, the class Ep; r contains all uniformly convex Banach spaces2) (includ-
ing all Hilbert spaces, and even all spaces l q, q > 1).

(2)
S
r

E2; r is the set of all B-convex Banach spaces.

La¤orgue’s family of expanders that does not embed uniformly into any Banach
space from Ep; r is constructed as follows. Given numbers p and r as above, let F be a
local field such that the cardinality of its residual field is pr. Let G be a lattice in
SLð3;FÞ.

The group G is residually finite with Kazhdan’s property (T). In fact, G satisfies the
Banach version of property (T) with respect to the family Ep; r ([Laf ], §3 and Proposition
4.5).

Let ðGkÞkf1 be a decreasing sequence of finite index normal subgroups of G such thatT
kf1

Gk ¼ f1g, and let Mk ¼ G=Gk, k f 1, be the sequence of quotient groups. Given a finite

symmetric set of generators of G of cardinality mf 2, we consider each Mk endowed with
the induced set of m generators; we denote by dk the corresponding word metric on Mk and
by Pk the corresponding m-regular Cayley graph. Since G has property (T), the family
ðPk; dkÞkf1 is a family of expanders ([Lub], Proposition 3.3.1). Moreover, the Banach ver-
sion of property (T) for G yields Proposition 3.4 below, which implies that the family
ðPk; dkÞkf1 cannot be uniformly embedded into a Banach space from Ep; r (see Remark
3.6).

2) A Banach space is uniformly convex if for every R > 0 and every d > 0 there exists e ¼ eðR; dÞ > 0 such

that if x, y are two points in the ball around the origin of radius R at distance at least d then their middle point

1

2
ðx þ yÞ is in the ball around the origin of radius R � e.
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Proposition 3.4 ([Laf ], Proposition 5.2). For every a > 0 there exists a constant

C ¼ CðaÞ such that for any k f 1 and any space Y from Ep; r;a a 1-Lipschitz map

f : Pk ! Y satisfies:

1

ðcardPkÞ2

P
x;y APk

kfðxÞ � fðyÞk2
eC

1

cardPk

P
x;y neighbors

kfðxÞ � fðyÞk2:ð4Þ

Corollary 3.5. (i) For every a > 0 there exists a constant D ¼ DðaÞ such that for any

k f 1,

D diamPk e dtnEp; r; a Pk e diamPk:ð5Þ

(ii) Moreover, there exists R ¼ RðaÞ such that for every 1-Lipschitz embedding f of Pk

into a space Y A Ep; r;a there exist two vertices v1 and v2 in Pk with dðv1; v2Þf k diamPk,
where k is the constant from Lemma 3.1, and

kfðv1Þ � fðv2ÞkeR:ð6Þ

Proof. The second inequality in (5) follows from Remark 2.1 and from the fact that
no Banach space can be covered by finitely many balls of radius 1. We prove the first in-
equality in (5). Let Y be an arbitrary space from Ep; r;a and let f : Pk ! Y be a 1-Lipschitz
map. Inequality (4) implies that

1

½dtnðfÞ cardPk�2
P

x;y APk

dkðx; yÞ2
eCm:ð7Þ

Recall that each graph Pk is m-regular. Lemma 3.1 and (7) imply that
Cm½dtnðfÞ�2 f k2k 0ðdiamPkÞ2.

Now take R >
1

k

ffiffiffiffiffiffiffiffi
Cm

k 0

r
, where k, k 0 are the constants from Lemma 3.1 and C is the

constant from (4). Assume that there exists a 1-Lipschitz embedding f of Pk into a space
Y A Ep; r;a such that for any two vertices v1 and v2 in Pk with dkðv1; v2Þf k diamPk the
following inequality holds:

dkðv1; v2Þ
kfðv1Þ � fðv2Þk

<
1

R
diamPk:

Inequality (4) implies that

Cm >
1

ðcardPkÞ2

P
dkðv1; v2Þfk diamPk

R2dkðv1; v2Þ2

½diamPk�2
fR2k2k 0:

This contradicts the choice of R.

Therefore there exist two vertices v1 and v2 in Pk with dkðv1; v2Þf k diamPk and
such that:

dkðv1; v2Þ
kfðv1Þ � fðv2Þk

f
1

R
diamPk:

The last inequality implies that kfðv1Þ � fðv2ÞkeR. r
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Since ðPk; dkÞkf1 is a family of expanders, it is contained in some family Gm; �. Then
according to Theorem 3.2, we have diamPk � logjVkj.

Remark 3.6. Theorem 3.2(ii) implies that no sub-family of the family Gm; � can be
uniformly embedded into a Hilbert space, in the sense of Definition 2.3.

Similarly, Corollary 3.5(ii) implies that no sub-family of the family ðPkÞkf1 can be
uniformly embedded into a space from Ep; r.

The construction in the following lemma was provided to us by Dave Witte-
Morris.

Lemma 3.7. Let F be a nonarchimedean local field of characteristic 0. There exists a

lattice in the group SLð3;FÞ containing infinitely many noncentral involutions.

Proof. Choose an algebraic number field K , such that

� F is one of the (nonarchimedean) completions of K , and

� F is totally real.

Let p be the characteristic of the residue field of F , and let c ¼ 1 � p3. Thus c < 0, but c is
a square in F . Consider L ¼ K ½

ffiffiffi
c

p
�, and denote by t the Galois involution of L over K . We

likewise denote by t the involution defined on the 3 � 3 matrices by applying t to each
entry. Let G ¼ SUð3;L; tÞ ¼ fg A SLð3;LÞjtðgTÞ � g ¼ Id3g. Then:

(a) G is a K-form of SLð3Þ.

(b) GF ¼ SLð3;FÞ.

(c) G is compact at each real place.

Properties (a), (b), (c) can be proved using arguments similar to the ones in [Wi],
Chapter 10.

Let S be the collection of all the Archimedean places of K and the place correspond-
ing to F . According to the theorem due to Borel, Harish-Chandra, Behr and Harder ([Ma],
§I.3.2), the S-integer points of G form a lattice G in SLð3;FÞ. By [Ta], any lattice in a
p-adic algebraic group is co-compact, in particular it is the case for G. The lattice G obvi-
ously contains noncentral diagonal matrices that are involutions.

Let s be one of these involutions and let ZðsÞ be its centralizer in SLð3;FÞ. The sub-
group GXZðsÞ has infinite index in G. Otherwise, for some positive integer n one would
have that gn A ZðsÞ for any g A G. Since ZðsÞ is an algebraic subgroup in SLð3;FÞ and
since G is Zariski dense in SLð3;FÞ, it would follow that gn A ZðsÞ for any g A SLð3;FÞ.
This is impossible.

For a sequence ðgnÞn AN of representatives of distinct left cosets in G=
�
GXZðsÞ

�
the

involutions in the sequence ðgnsg
�1
n Þn AN are pairwise distinct. r
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Lemma 3.8. For every prime number p and natural number r > 0, there exists

m ¼ mðp; rÞ > 0 and a lattice G in SLð3;FÞ such that F is a local field with residue field of

cardinality pr, and G is generated by finitely many involutions s1; . . . ; sm.

Proof. Let G be a lattice of SLð3;FÞ containing infinitely many non-central involu-
tions. According to Lemma 3.7 such a lattice exists. Consider the (infinite) subgroup G 0 of
G generated by involutions. Since G 0 is a normal subgroup in G, by Margulis’ Theorem G 0

has finite index in G, thus it is a lattice itself. r

Notation 3.9. Let G be one of the lattices from Lemma 3.8. We keep the notation
given before Proposition 3.4, referring, in addition, to the generating set consisting of invo-
lutions. More precisely, consider a maximal ideal I in the ring of S-integers of the global
field defining G (S is the corresponding set of valuations containing all Archimedian ones)
and the congruence subgroup Gk of G corresponding to the ideal I k. Let Mk ¼ G=Gk,
k f 1. Let Uk ¼ fs1ðkÞ; . . . ; smðkÞg be the image of the generating set of G in Mk (each
siðkÞ is an involution). We shall denote the corresponding word metric on Mk again by
dk. Since each siðkÞ is an involution, the Cayley graph Pk of Mk is m-regular. Let vðkÞ de-
note the cardinality of the group Mk.

Remark 3.10. It is easy to see that vðkÞ ¼ jMkj satisfies

ck � c1 < log vðkÞ < ck þ c1

for some constants c, c1.

4. Metric spaces with arbitrary compression functions

Let ðX ; dÞ be a metric space and l > 0. We denote by lX the metric space
ðX ; ldÞ.

Let ðPnÞnf1 be the sequence of Cayley graphs of finite factor groups Mn, nf 1, of the
lattice G from Lemma 3.8, see Notation 3.9.

Let r be a function in C (see Definition 1.2). For every nf 1, let xn be a fixed vertex
in Pn. We are going to choose appropriate scaling constants ln, nf 1, so that the wedge
union P of the metric spaces lnPn, obtained by identifying all the vertices xn to the same
point x, has the required compression function r.

Notation 4.1. Throughout this section we denote log vðnÞ by yn. According to Re-
mark 3.10, cn � c1 < yn < cn þ c1 for some constants c, c1.

We are looking for a sequence of rescaling constants ln satisfying ln ¼ rðlnynÞ. This

is equivalent to the fact that tðlnynÞ ¼ yn, where tðxÞ ¼ x

rðxÞ . Since tðxÞ is increasing by

the definition of C, continuous and lim
x!y

tðxÞ ¼ þy, t�1ðxÞ exists for large enough x.

Thus, we can take ln :¼ t�1ðynÞ
yn

.
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Proposition 4.2. Let P be the wedge union of lnPn, nf 1. Then r is both the Hilbert

space compression function and the Ep; r-compression function of P (up to the equivalence re-

lation �).

In particular, r is the {uniformly convex Banach space}-compression function of P.

The proof of Proposition 4.2 will show that the same conclusions hold if we replace
the sequence ðlnÞnf1 by any sequence of numbers ðmnÞnf1 satisfying mn � ln.

Proof of Proposition 4.2. We are going to prove that r is the Hilbert space compres-
sion function of P. The proof that r is the Ep; r-compression function is essentially the same
(with reference to Theorem 3.2 replaced by a reference to Corollary 3.5).

Let dt be the canonical distance on P, and let V be the set of vertices of P. Consider
the map f from V to l2ðVÞ defined as follows. For every nf 1 and every v A Vnnfxng let
f ðvÞ be equal to lndv, where dv is the Dirac function at v. Also let f ðxÞ ¼ 0.

We prove that the following inequalities are satisfied, with d f 1 the constant in The-
orem 3.2(i).

1ffiffiffi
2

p r
dtðv; v 0Þ

d

� �
e k f ðvÞ � f ðv 0Þke

ffiffiffi
2

p
dtðv; v 0Þ:ð8Þ

Assume that v; v 0 A Pn for some n. Then k f ðvÞ � f ðv 0Þke ln

ffiffiffi
2

p
(when one of the

vertices is xn the first term is ln). Since dtðv; v 0Þf ln, we get the second inequality in
(8).

To prove the first inequality, recall that by Theorem 3.2 the diameter of lnPn is at
most dln yn. Hence

r
dtðv; v 0Þ

d

� �
e rðlnynÞ ¼ ln e k f ðvÞ � f ðv 0Þk:

Assume now that v A Pmnfxmg and v 0 A Pnnfxng. Then

k f ðvÞ � f ðv 0Þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

m þ l2
n

q
e lm þ ln e dtðv; xÞ þ dtðx; v 0Þ ¼ dtðv; v 0Þ:

On the other hand

k f ðvÞ � f ðv 0Þkf 1ffiffiffi
2

p ðlm þ lnÞ ¼
1ffiffiffi
2

p
�
k f ðvÞ � f ðxÞk þ k f ðv 0Þ � f ðxÞk

�
:

By the previous case, the last term is at least

1ffiffiffi
2

p r
dtðv; xÞ

d

� �
þ r

dtðx; v 0Þ
d

� �� �
f

1ffiffiffi
2

p r
dtðv; v 0Þ

d

� �
:

The latter inequality is due to the sub-additivity and the monotonicity of r.
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This proves that r has property (1) of the Hilbert space compression function of P,
see Definition 2.6(1).

To prove property (2) of the Hilbert space compression function, let us consider an
increasing function r : Rþ ! Rþ with lim

x!y
rðxÞ ¼ y, and a 1-Lipschitz r-embedding g of

P into a Hilbert space. For any pair of vertices v, v 0 in P we have

r
�
dtðv; v 0Þ

�
e kgðvÞ � gðv 0Þke dtðv; v 0Þ:ð9Þ

We shall prove that rf r.

For every nf 1, for any two vertices v, v 0 in the same graph lnPn, the inequality (9)
can be re-written as:

r
�
lndðv; v 0Þ

�
e kgðvÞ � gðv 0Þke lndðv; v 0Þ:ð10Þ

We denote by h the restriction of g to lnPn, rescaled by the factor 1=ln. The sequence
of inequalities (10) divided by ln yields

1

ln

r
�
lndðv; v 0Þ

�
e khðvÞ � hðv 0Þke dðv; v 0Þ:ð11Þ

Theorem 3.2 implies that for some constants r, d and k there exist vertices v1 and v2

such that

kyn e dðv1; v2Þe dyn and khðv1Þ � hðv2Þke r:

From (11) and the monotonicity of r, we get

rðklnynÞe r
�
lndðv1; v2Þ

�
e lnkhðv1Þ � hðv2Þke rln ¼ rrðlnynÞ:

Denote by zn the product lnyn, also equal to t�1ðynÞ, by the definition of ln. Then we
get

rðkznÞe rrðznÞ:ð12Þ

We have that yn e cn þ c1 e yn�1 þ C1 where C1 ¼ c þ 2c1.

By property (3) of Definition 1.2, tðxÞ ¼ x=rðxÞ is an increasing map defining a
bijection ½a;yÞ ! ½b;yÞ. Moreover, the condition that tðxÞ=log x is non-decreasing
easily implies that for some y > 1, tðxÞ þ 1e tðyxÞ for every xf a. It follows that
tðxÞ þ C1 e tðCxÞ for every xf a, where C is a power of y depending on C1. This
implies that for every yf b, t�1ðy þ C1ÞeCt�1ðyÞ. Consequently, for n large enough,
zn ¼ t�1ðynÞe t�1ðyn�1 þ C1ÞeCt�1ðyn�1Þ ¼ zn�1. We thus get

zn

zn�1
eC:
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Now take any su‰ciently large x > 0. Then for some n, x is between zn�1 and zn.
Hence (by the monotonicity of r and r), we get:

rðkxÞe rðkznÞe rrðznÞe rrðCzn�1Þf rðCxÞ:

Therefore, rf r as required. r

One can obviously replace P in Proposition 4.2 by a uniformly proper space (graph
of bounded degree) with the same property.

The following corollary immediately follows from Proposition 4.2.

Corollary 4.3. For every number a in ½0; 1� there exists a proper metric space (graph of

bounded degree) whose Hilbert space compression and the Ep; r-compression are equal to a.

Note that a ¼ 0 can be obtained by taking, say, rðxÞ ¼ log x in Proposition 4.2. To
achieve a ¼ 1 take the one-vertex graph.

5. Discrete groups with arbitrary Hilbert space compressions

For every prime number p and every natural number r > 0, we denote Ep; r simply by
E in what follows. Recall that E contains all uniformly convex Banach spaces.

Pick a function r A C. For simplicity we assume that rð1Þ > 0. As in Definition 1.2,
we denote by t the function x=rðxÞ.

Let ðMk; dkÞkf1 be the sequence of finite groups defined as above, for fixed p and r,
see Lemma 3.8 and Notation 3.9. Recall that dk is the word metric associated to the gen-
erating set Uk ¼ fs1ðkÞ; . . . ; smðkÞg consisting of m ¼ mðp; rÞ involutions, and that vðkÞ is
the cardinality of Mk.

Notation 5.1. We denote by j � jk the length function on Mk associated to Uk.

Notation 5.2. Let us fix three sequences of numbers: ðlkÞkf1, ðmkÞkf1, and ðmkÞkf1.

For k f 1, we set lk such that r
�
lk log vðkÞ

�
¼ lk; equivalently lk ¼

t�1
�
log vðkÞ

�
log vðkÞ

with vðkÞ as above. Without loss of generality we assume (by taking a suitable subsequence
of Mk) that for every k f 1, lkþ1 � lk f 4.

For every k f 2, let mk be the integer part of
lk � 1

2
, and let m1 ¼ 0. Then we put

mk ¼ 2mk þ 1 for every k f 1.

According to our choice, for every k f 2

mk e lk < mk þ 2:ð13Þ

We are now ready to construct our group.
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Let F be the free product of the groups Mk, k f 1.

For every i A f1; . . . ;mg, consider a copy Hi of the free product Z=2Z � Z, where the
generator of the Z=2Z-factor of Hi is denoted by si, while the generator of the Z-factor of
Hi is denoted by ti.

Notation 5.3. We denote by j � jHi
the length function on Hi relative to the generat-

ing set fsi; tig. For every k A Z, we denote the element tk
i sit

�k
i in Hi by s

ðkÞ
i . Note that

jsðkÞi jHi
¼ 2k þ 1, and that Hi is the semidirect product of hsðkÞi ; k A Zi and htii.

Let G be the fundamental group of the following graph of groups (see [Ser], Ch. 5.1,
for the definition). The vertex groups are F and H1; . . . ;Hm, the only edges of the graph are
ðF ;HiÞ, i ¼ 1; . . . ;m. The edge groups F XHi are free products �

kf1
ðZ=2ZÞk of countably

many groups of order 2, where the k-th factor ðZ=2ZÞk is identified with hsiðkÞi < Mk in F

and with hsðmkÞ
i i in Hi.

Notation 5.4. We denote by dG and by j � jG the word metric and respectively the
length function on G associated to the generating set U ¼ fs1ð1Þ; . . . ; smð1Þ; t1; . . . ; tmg.

Theorem 5.5. With the notation above and the terminology in Definition 2.6, the fol-

lowing hold:

(I) The group G has as a Hilbert space compression gap, and an E-compression gap

ð ffiffiffi
r

p
; rÞ.

(II) The group G has as a Hilbert space compression gap, and an E-compression gap

r

log1þ�ðxÞ
; r

 !
, for every � > 0. Hence the Hilbert space compression and the E-compression

of G are equal to the supremum over all the non-negative numbers a such that xa f r.

(III) The asymptotic dimension of G is at most 2.

We start our proof by describing the length function j � jG.

By the standard properties of amalgamated products ([LS77], Ch. IV, Th. 2.6), the
free product F ¼ �

kf1
Mk and the groups Hi, i A f1; 2; . . . ;mg, are naturally embedded into

G. Moreover, the subgroup T ¼ hti; 1e iemi is free of rank m and a retract of G, so its
length function coincides with j � jG restricted to T .

Definition 5.6. With every element s A Mk we assign the weight wtðsÞ ¼ mkjsjk. With
every element b A Hi we assign the weight wtðbÞ ¼ jbjHi

. The weight wtðWÞ of any word

W ¼ s1b1 . . . snbn with s1 and bn possibly trivial and n A N is the sum
Pn
i¼1

½wtðsiÞ þ wtðbiÞ�.

Let F 0 be the free product of F ¼ �
kf1

Mk and all the 2-element groups hsðkÞi i with

k A Znfmk; k f 1g and i A f1; . . . ;mg. Then G is the multiple HNN extension of F 0 with
free letters t1; . . . ; tm shifting s

ðkÞ
i . This is the presentation of G used in the following lemma.
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A subword tG1
i s

ðkÞ
i tH1

i of a word in generators s
ðkÞ
i , ti of G is called a pinch. It can be

removed and replaced by s
ðkG1Þ
i ; we call this operation removal of a pinch.

Lemma 5.7. For every k f 1 and g A Mk, jgjG ¼ wtðgÞ ¼ mkjgjk.

Proof. Let s ¼ jgjk and let g ¼ si1ðkÞsi2
ðkÞ . . . sisðkÞ be a shortest representation of g

as a product of generators of Mk. Then we can represent g as

tmk

i1
si1ð1Þt

�mk

i1
tmk

i2
si2

ð1Þt�mk

i2
. . . tmk

is
sisð1Þt

�mk

is
:

Hence jgjG e ð2mk þ 1Þs ¼ mkjgjk.

Let W be any shortest word in the alphabet U representing g in G. Since g A F , there
exists a sequence of removals of pinches and subwords of the form aa�1 that transfers W

into a word W 0 in generators of F (i.e. letters of the form sjðlÞ) representing g. Since the
weight of every sið1Þ and tG1

i is 1, the total weight of the word W is the length of W . The
removal of a pinch does not increase the total weight, and the removal of a word aa�1 de-
creases it. Hence the total weight of the letters in W 0 is at most jW j. On the other hand,
since W 0 is a word in generators of the free product F representing an element of one of
the factors Mk, all letters from W 0 must belong to Mk, i.e. they have the form siðkÞ with
i A f1; . . . ;mg. Therefore the total weight of W 0 is mkjW 0j. Since W 0 represents g in Mk, we
have that the total weight of W 0 is at least mkjgjk. Hence jgjG ¼ jW jf mkjgjk as required.

r

The choice of mk given by (13), Proposition 4.2 and the construction in its proof, and
Lemma 5.7 imply the following.

Lemma 5.8. (1) The function r is the E-compression function and the Hilbert space

compression function of S ¼
S

kf1

Mk endowed with the restriction of the metric dG.

(2) The map f : S ! l2ðSÞ defined by f ð1Þ ¼ 0 and f ðsÞ ¼ mkds for every s A Mknf1g
is a r-embedding of ðS; dGÞ.

Lemma 5.8 immediately implies

Lemma 5.9. The function r is an upper bound for an E-compression gap of G (in par-

ticular, also for a Hilbert space compression gap of G).

Definition 5.10. We are going to use the standard normal forms of elements in the
amalgamated product G (see [LS77], Ch. IV.2):

s1b1 . . . snbnð14Þ

where:

(N0) Possibly s1 ¼ 1 or bn ¼ 1.

(N1) si A Mki
and bi A Hli (si, bi are called syllables).
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(N2) If bi ¼ 1, i < n, then si and siþ1 are not in the same Mk; if si ¼ 1, i > 1, then
bi�1, bi are not in the same Hk.

One can get from one normal form to another by sequences of operations as fol-
lows:

(r1) Replacing sibi with
�
siskðpÞ

��
skðpÞbi

�
(left insertion).

(r2) Replacing bisiþ1 with
�
biskðpÞ

��
skðpÞsiþ1

�
(right insertion).

(r3) Replacing two-syllable words with syllables from the same factor by the one-
syllable word, their product.

One can easily check that this collection of moves is confluent, so one does not need
the inverse of rule (r3).

Choose one representative for each left coset of Mk=hsiðkÞi and one representative in
each left coset of Hi=hsiðkÞi, the representative of hsiðkÞi is 1. Let M be the set of all these
representatives. We consider only the normal forms (14) in which all the si and bi (except
possibly for the last non-identity syllable) are in M. We shall call these normal forms good.
Every element of G has a unique good normal form.

Lemma 5.11. Let V ¼ s1b1s2 . . . snbn be the good normal form of an element g in the

amalgamated product G. Then the length jgjG is between wtðVÞ=3 and wtðVÞ, i.e.

Pn
i¼1

mki
jsijki

þ
Pn
i¼1

jbijHli
f jgjG f

1

3

�Pn
i¼1

mki
jsijki

þ
Pn
i¼1

jbijHli

�
:ð15Þ

For every normal form V 0 of g, the length of g is between wtðV 0Þ=9 and wtðV 0Þ.

Proof. The first inequality in (15) follows from Lemma 5.7 and it holds for every
normal form.

Consider a shortest word W in the generators of G representing g. Making moves of
type (r3), we rewrite W in a normal form W 0 without increasing its weight (note that a
removal of pinches can be seen as a succession of two (r3)-type moves). We have that
jgjG ¼ wtðW ÞfwtðW 0Þf jgjG; the last inequality holds because any word of the form
(14) and of weight l is equal in G to a word of length l in the generators in U and their
inverses. It follows that wtðW 0Þ ¼ jgjG. By doing insertion moves (r1) and (r2), we can
rewrite the normal form W 0 into the good normal form V of g. Note that each syllable
is multiplied by at most two involutions during the process. The weight of each of these
involutions does not exceed the weight of the syllables si, siþ1 involved in the moves.
Hence the total weight of the word cannot more than triple during the process. Hence
wtðVÞe 3 wtðW 0Þ ¼ 3jgjG which proves the second inequality in (15).

The second statement is proved in a similar fashion: one needs to analyze the proce-
dure of getting the good normal form from any normal form, and then use the first part of
the lemma. r
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Definition 5.12. Let s1b1 . . . snbn be the good normal form of g. Represent each bi as
the shortest word wðbiÞ in the alphabet of generators fsli ; tlig of the corresponding subgroup
Hli . Then the word s1wðb1Þ . . . snwðbnÞ in the alphabet

S
kf1

Mk W fsi; ti; i A f1; 2; . . . ;mgg is
called the extended normal form of g.

The unicity of the good normal form and of each word wðbiÞ implies that every ele-
ment in G has a unique extended normal form.

Definition 5.13. For every pair of elements g and h in G with extended normal forms
g ¼ s1wðb1Þ . . . slwðblÞ and h ¼ s 01wðb 0

1Þ . . . s 0nwðb 0
nÞ let pðg; hÞ ¼ pðh; gÞ be the longest com-

mon prefix of these words, of length iðg; hÞ. Thus

g1 pðg; hÞf ðg; hÞqðg; hÞ and h1 pðg; hÞ f ðh; gÞqðh; gÞ

where the words f ðg; hÞqðg; hÞ, f ðh; gÞqðh; gÞ have di¤erent first syllables f ðg; hÞ and
f ðh; gÞ respectively. Here the syllables are either in some Mk, k f 1, or they are in
ftG1

1 ; tG1
2 ; . . . ; tG1

m g.

Note that pðg; hÞ, qðg; hÞ, qðh; gÞ are extended normal forms; f ðg; hÞ (resp. f ðh; gÞ) is
either an element in Mk for some k f 1 or it is in fsi; tG1

i g for some i A f1; 2; . . . ;mg.

Definition 5.14. Let s1wðb1Þ . . . snwðbnÞ be the extended normal form of g. Then for
every i let g½i� be the i-th letter of the extended normal form, let ĝgi be the prefix ending in
g½i�, and let gi be the su‰x starting with g½i� of the extended normal form.

Lemma 5.15. For every g; h A G, the distance dGðg; hÞ is in the interval ½A=9;A� where

A is equal to

(S) mkdk

�
f ðg; hÞ; f ðh; gÞ

�
þ wt

�
qðg; hÞ

�
þ wt

�
qðh; gÞ

�
if f ðg; hÞ; f ðh; gÞ A Mk, or

(B) wt
�

f ðg; hÞqðg; hÞ
�
þ wt

�
f ðh; gÞqðh; gÞ

�
otherwise.

Proof. In Case (S), qðg; hÞ�1�
f ðg; hÞ�1

f ðh; gÞ
�
qðh; gÞ becomes a normal form for

g�1h if we combine all neighbor letters from the same Hk into one syllable, and
f ðg; hÞ�1

f ðh; gÞ into one syllable. In Case (B), qðg; hÞ�1
f ðg; hÞ�1

f ðh; gÞqðh; gÞ becomes a
normal form for g�1h after a similar procedure. Then one can use Lemma 5.11. r

For every element g in G whose extended normal form has the last syllable in Y ,
where Y ¼ Mk for some k f 1 or Y ¼ fsi; tG1

i g for some i A f1; . . . ;mg, we consider a
copy fg of a 1-Lipschitz embedding of Y into a Hilbert space Hg with optimal distortion:
either the embedding from Remark 3.3 rescaled by the factor mk if Y ¼ Mk (i.e. the embed-
ding sending all non-trivial elements in Mk in pairwise orthogonal vectors of length mk) or
the embedding defined by any choice of an orthonormal basis in a copy of R2 otherwise.
Note that since m1 ¼ 1 this is coherent with the identification of si A Hi with sið1Þ A M1.

Let H be the Hilbertian sum of all Hg. Consider the following map from G into H:
for every g A G let

cðgÞ :¼
P

i

fĝgi
ðg½i�Þ:ð16Þ
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We use the map c to prove the following.

Lemma 5.16. The group G has as a Hilbert space and an E-compression gap ð ffiffiffi
r

p
; rÞ.

Proof. In view of Lemma 5.9, it su‰ces to show that c is a
ffiffiffi
r

p
-embedding to finish

the proof.

Let g; h A G. Then, by (16), since any two elements of H of the form fĝgi
ðg½i�Þ,

fĥhj
ðh½ j�Þ either coincide or are orthogonal to each other, we have:

kcðgÞ � cðhÞk2 ¼
��fpðg;hÞ f ðg;hÞ

�
f ðg; hÞ

���2 þ
��fpðg;hÞ f ðh;gÞ

�
f ðh; gÞ

���2

þ
P

j>iðg;hÞþ1

kfĝgj
ðg½ j�Þk2 þ

P
j>iðg;hÞþ1

kfĥhj
ðh½ j�Þk2

eCdGðg; hÞ2

for some constant C (by Lemma 5.15 and the fact that all embeddings f are 1-Lipschitz).
Thus c is a Lipschitz embedding.

To prove the lower bound, note that for g½i� in Hk,

jg½i�jG ¼ kfĝgi
ðg½i�Þk ¼ 1g rðjg½i�jGÞ:

Also if g½i� A Mk then by Lemma 5.8 (2), and by the definition of fg we may write

jg½i�jG ¼ mkjg½i�jk ¼ kfĝgi
ðg½i�Þkg rðjg½i�jGÞ:

Thus, in all cases,

kfĝgi
ðg½i�Þkg rðjg½i�jGÞ:

Now, in case (B),

kcðgÞ � cðhÞk2 g r
�
dG

�
f ðg; hÞ; f ðh; gÞ

��2 þ
P

j>iðg;hÞþ1

rðjg½ j�jGÞ
2 þ

P
j>iðg;hÞþ1

rðjh½ j�jGÞ
2:

The fact that rðg½i�Þf rð1Þ for non-identity g½i�, and the subadditivity of r (plus Lemma
5.15) imply

kcðgÞ � cðhÞk2 g r
�
dGðg; hÞ

�
as desired. In case (S), the proof is similar, only one needs to take into account that

��fpðg;hÞ f ðg;hÞ
�

f ðg; hÞ
���2 þ

��fpðg;hÞ f ðh;gÞ
�

f ðh; gÞ
���2

¼
��fpðg;hÞ f ðg;hÞ

�
f ðg; hÞ

�
� fpðg;hÞ f ðh;gÞ

�
f ðh; gÞ

���2

f r
�
dG

�
f ðg; hÞ; f ðh; gÞ

��2
: r

Lemma 5.16 gives part (I) of Theorem 5.5.
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Let us prove part (II). For simplicity, we take � ¼ 1. The reader can easily modify the

proof to make it work for every � > 0. Thus, we are going to prove that
rðxÞ

log2ðx þ 1Þ
is a

lower bound for a Hilbert space compression gap and an E-compression gap of G. That is,

we are going to prove that there exists a
rðxÞ

log2ðx þ 1Þ
-uniform embedding of G in a Hilbert

space.

Consider the same Hilbert space H and the same embeddings fg for g A G as before.
Let us define an embedding p of G into H. Let g be given in an extended normal form.
Then we set

pðgÞ :¼
P

j

kjfĝgj
ðg½ j�Þ

where the coe‰cients kj are defined as follows:

kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgjÞ

q
log
�
wtðgjÞ þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðg½ j�Þ

p :

We shall need the following two elementary inequalities, the first of which is obvious.

Lemma 5.17. For every sequence of positive numbers a1; . . . ; an, we have

Pn
i¼1

�Pn
r¼i

ar

�
ai e

�Pn
r¼1

ai

�2

:

Lemma 5.18. Let a1; . . . ; an be positive real numbers with an f 1. Then

a1

ða1 þ � � � þ anÞ log2ða1 þ � � � þ an þ 1Þ
ð17Þ

þ a2

ða2 þ � � � þ anÞ log2ða2 þ � � � þ an þ 1Þ
þ � � � þ an

an log2ðan þ 1Þ
eC

for some constant C.

Proof. For every k ¼ 1; . . . ; n denote sk ¼ ak þ � � � þ an. Then (17) can be rewritten
as follows:

s1 � s2

s1 log2ðs1 þ 1Þ
þ � � � þ sn�1 � sn

sn�1 log2ðsn�1 þ 1Þ
þ 1

log2ðsn þ 1Þ
:ð18Þ

Since the function
1

x log2ðx þ 1Þ
is decreasing, one can estimate (provided bf af 1)

b � a

b log2ðb þ 1Þ
e
Ðb
a

dx

x log2ðx þ 1Þ
e 2

Ðb
a

dx

ðx þ 1Þ log2ðx þ 1Þ
¼ 2

logða þ 1Þ �
2

logðb þ 1Þ :

Applying this inequality to (18) and using an f 1, we get (17). r
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Let g, h be two elements in G given in their extended normal forms. Let i ¼ iðg; hÞ,
f ¼ f ðg; hÞ, f 0 ¼ f ðh; gÞ, p ¼ pðg; hÞ, q ¼ qðg; hÞ, q 0 ¼ qðh; gÞ.

Then pðgÞ � pðhÞ ¼ S1 þ S2 þ S3 where

S1 ¼
Pi

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgrÞ

p
log
�
wtðgrÞ þ 1

��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðhrÞ

q
log
�
wtðhrÞ þ 1

�
0
@

1
A 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wtðg½r�Þ
p fĝgr

ðg½r�Þ;

S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgiþ1Þ

p
log
�
wtðgiþ1Þ þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðg½i þ 1�Þ

p fpf ð f Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðhiþ1Þ

q
log
�
wtðhiþ1Þ þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðh½i þ 1�Þ

p fpf 0 ð f 0Þ;

S3 ¼
P

rfiþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgrÞ

p
log
�
wtðgrÞ þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðg½r�Þ

p fĝgr
ðg½r�Þ �

P
rfiþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðhrÞ

q
log
�
wtðhrÞ þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðh½r�Þ

p fĥhr
ðh½r�Þ:

Lemma 5.19 (Upper bound). kpðgÞ � pðhÞkf dGðg; hÞ, that is p is Lipschitz.

Proof. Since G is finitely generated, it su‰ces to prove that the norm kpðgÞ � pðgsÞk
is bounded uniformly in s A U WU�1 and g A G. In this case the sum S3 does not appear,

and S2 ¼ 1

log 2
fgsðsÞ has norm

1

log 2
. By eventually replacing g with gs and s with s�1, we

can always assume that h ¼ gs satisfies wtðhrÞ ¼ wtðgrÞ þ 1 for all re i. Then

kS1k2 ¼
Pi

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgrÞ þ 1

p
log
�
wtðgrÞ þ 2

��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgrÞ

p
log
�
wtðgrÞ þ 1

�
 !2

wtðg½r�Þ:

Since the function x 7!
ffiffiffi
x

p

logðx þ 1Þ is increasing for xf e2 � 1 it follows that

kS1k2 f
Pi

r¼1

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgrÞ þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wtðgrÞ

p
�2

log2
�
wtðgrÞ þ 1

� wtðg½r�Þe
Pi

r¼1

wtðg½r�Þ
wtðgrÞ log2

�
wtðgrÞ þ 1

� :
Lemma 5.18 implies now that

kS1k2 ¼ Oð1Þ: rð19Þ

Lemma 5.20 (Lower bound). kpðgÞ � pðhÞkg
r
�
dGðg; hÞ

�
log2

�
dGðg; hÞ þ 1

� if g3 h.

Proof. We can write

kS3k2 g
P

rfiþ2

wtðgrÞ
log2

�
wtðgrÞ þ 1

�
wtðg½r�Þ

r
�
wtðg½r�Þ

�2ð20Þ

þ
P

rfiþ2

wtðhrÞ
log2

�
wtðhrÞ þ 1

�
wtðh½r�Þ

r
�
wtðh½r�Þ

�2
:
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If g, h are in Case (B) then

kS2k2 g
wtðgiþ1Þ

log2
�
wtðgiþ1Þ þ 1

�
wtð f Þ

r
�
wtð f Þ

�2 þ wtðhiþ1Þ
log2

�
wtðhiþ1Þ þ 1

�
wtð f 0Þ

r
�
wtð f 0Þ

�2
:

Thus in case (B) we have

kS2k2 þ kS3k2 g
P
r>i

wtðgrÞ
log2

�
wtðgrÞ þ 1

�
wtðg½r�Þ

r
�
wtðg½r�Þ

�2

þ
P
r>i

wtðhrÞ
log2

�
wtðhrÞ þ 1

�
wtðh½r�Þ

r
�
wtðh½r�Þ

�2
:

By the subadditivity of r, we have

F ¼
�P

r>i

r
�
wtðg½r�Þ

�
þ
P
r>i

r
�
wtðh½r�Þ

��2

f r
�
dGðg; hÞ

�2
:

By the Cauchy-Schwartz inequality, the squared sum F does not exceed the product
F1F2 where

F1 ¼
P
r>i

wtðg½r�Þ log2
�
wtðgrÞ þ 1

�
wtðgrÞ

þ
P
r>i

wtðh½r�Þ log2
�
wtðhrÞ þ 1

�
wtðhrÞ

;

F2 ¼
P
r>i

wtðgrÞ
log2

�
wtðgrÞ þ 1

�
wtðg½r�Þ

r
�
wtðg½r�Þ

�2 þ
P
r>i

wtðhrÞ
log2

�
wtðhrÞ þ 1

�
wtðh½r�Þ

r
�
wtðh½r�Þ

�2
:

Then
r
�
dGðg; hÞ

�2

log4
�
dGðg; hÞ þ 1

� does not exceed
1

log4
�
dGðg; hÞ þ 1

�F that, in turn, does not

exceed

1

log4
�
dGðg; hÞ þ 1

�F1F2 e

�P
r>i

wtðg½r�Þ
log2

�
wtðgrÞ þ 1

�
wtðgrÞ

þ
P
r>i

wtðh½r�Þ
log2

�
wtðhrÞ þ 1

�
wtðhrÞ

�
F2:

By Lemma 5.18, the latter sum does not exceed a constant times F2 that, in turn does
not exceed a constant times kS2k2 þ kS3k2.

Combining all these inequalities, we get

kpðgÞ � pðhÞk2
f kS2k2 þ kS3k2

f
r
�
dGðg; hÞ

�2

log4
�
dGðg; hÞ þ 1

� :
Assume that g, h are in case (S), so f ; f 0 A Mk for some k f 1. Theorem 3.2 implies

that diamðMk; dkÞe d log vðkÞ. Therefore by inequalities (13)

r
�
dGð f ; f 0Þ

�2
e rðmk diam MkÞ2

e r
�
dlk log vðkÞ

�2
e ðd þ 1Þ2ðlkÞ2 f ðmkÞ

2:

The last but one inequality above follows by monotonicity and sub-additivity of r, as well
as by the equality lk ¼ r

�
lk log vðkÞ

�
.
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Therefore

kS2k2 g
wtðgiþ1Þ

log2
�
wtðgiþ1Þ þ 1

�
wtð f Þ

r
�
dGð f ; f 0Þ

�2ð21Þ

þ wtðhiþ1Þ
log2

�
wtðhiþ1Þ þ 1

�
wtð f 0Þ

r
�
dGð f ; f 0Þ

�2
:

An argument similar to the one in case (B) allows to obtain the lower bound in this
case also. r

Lemma 5.20 completes the proof of Part (II) of Theorem 5.5.

Now let us prove Part (III).

Lemma 5.21. Consider the group F (the free product of finite groups Mk, k f 1) with

the metric induced by the word metric on G. Then F has asymptotic dimension one.

Proof. It is a straightforward consequence of [DS], Theorem 2.1, stating that the
asymptotic dimension of a countable group endowed with a proper left invariant metric is
the supremum over the asymptotic dimensions of its finitely generated subgroups. Any
finitely generated subgroup of F is inside a free product of finitely many Mk (hence of
asymptotic dimensione 1, according to [BDK]). r

Note that the asymptotic dimension of each Hi is 1 by [BDK]. It remains to use [BD],
Corollary 24, and conclude that the asymptotic dimension of G is at most 2.

Theorem 5.5 is proved.

We conclude with some open questions.

Question 5.22. Does every finitely generated group have a Hilbert space compression

gap of the form
f

log x
; f

� �
for some function f : Rþ ! Rþ?

Question 5.23. Is there an amenable group with Hilbert space compression <
1

2
?

Question 5.24. What is a {uniformly convex Banach space}-compression of R.
Thompson’s group F or of the wreath product Z o Z?
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