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We study the conditions under which discontinuous mechanical properties of a
collapsible tube can induce transcritical flows, i.e. the transition through the critical
state where the speed index (analogous to the Mach or the Froude numbers for
compressible and free surface flows, respectively) is one. Such a critical transition
may strongly modify the flow properties, cause a significant reduction in the cross-
sectional area of the tube, and limit the flow. General relationships are obtained for a
short segment using a one-dimensional model under steady flow conditions. Marginal
curves delimiting the transcritical regions are identified in terms of the speed index
and the cross-sectional area ratio. Since there are many examples of such flows in
physiology and medicine, we also analyse the specific case of prosthesis (graft or
stent) implantation in blood vessels. We then compute transcritical conditions for
the case of stiffness and reference area variations, considering a collapsible tube
characterized by physiological parameters representative of both arteries and veins.
The results suggest that variations in mechanical properties may induce transcritical
flow in veins but is unrealistic in arteries.

Key words: biological fluid dynamics, blood flow, flow–vessel interactions

1. Introduction
Most physiological flows are characterized by the transport of fluids through flexible

tubes. Prominent examples are air flow in the airways, urine flow in the ureter and
urethra, and blood flow in arteries and veins (Grotberg & Jensen 2004). In this
context the fluid–structure interaction plays an important role (Heil & Hazel 2011).
In fact, interactions between the pressure of the fluid and compliant walls determine
the velocity profiles and wall displacement patterns. The equations governing the
fluid–structure interaction problem in the one-dimensional case are the continuity
and momentum equations and a tube law closure which describes how the pressure
changes with the cross-sectional area. A detailed analysis of the solutions of these
governing equations under steady conditions, assuming incompressible and inviscid
flows, has been developed by Shapiro (1977). He described the solutions in terms
of the dimensionless parameter speed index, S, which controls the flow conditions,
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showing that different patterns are possible for flows which are subcritical (S < 1)
rather than supercritical (S > 1). Moreover, he showed that smooth or abrupt
transitions through critical conditions (S = 1) along the tube are possible under
particular geometrical and mechanical conditions (e.g. cross-sectional area restriction).
Shapiro also describes some peculiarity of collapsible-tube flows when S = 1, namely
(i) choking, and (ii) elastic jumps. In the first case a smooth transition connects a
subcritical to a supercritical flow and a flow limitation occurs: given the conditions
upstream of the critical point (where S = 1), there is a maximum steady flow rate
that the tube can convey independently of the difference between upstream and
downstream pressures. In the second case, a rapid transition from supercritical to
subcritical flow occurs, imposing a rapid change of cross-sectional area, and this is the
only mechanism of significant energy dissipation in the inviscid solution.

Steady-state analysis has been widely employed for investigating problems relevant
from a physiological point of view. Among them, a detailed study of choking and
elastic jumps occurring through stenotic arteries is given in Ku, Zeigler & Downing
(1990), and an analysis of choking phenomena in a lung-like model has been carried
out by Elad, Kamm & Shapiro (1987). The behaviour of blood pressure and flow
rate in the jugular vein of the giraffe has been investigated by Pedley, Brook &
Seymour (1996), while a mathematical simulation of forced expiration is performed
in Elad, Kamm & Shapiro (1988), and an analysis of forced expiration under steady
compressible flow is provided in Elad, Kamm & Shapiro (1989). The study of steady
flows and of the threshold of stability giving oscillatory states has been analysed
in Cancelli & Pedley (1985) and Jensen & Pedley (1989). Numerical unsteady
calculations to study the influence of different physiological parameters on a forced
expiration are given in Elad & Kamm (1989).

The aim of this work is to present an analytical approach for determining when
a fluid flowing inside a compliant tube can pass through critical conditions due to
mechanical discontinuous variations. Therefore we analyse the conditions under which
flow limitations (choking) and elastic jumps can occur. The approach we use is
similar to the one proposed by Marchi (1968) for determining when the reduction
in width due to the presence of bridge piers in rivers can induce transition through
critical conditions. The approach resembles, while being more general, that proposed
by Pedley (2000) for studying the effects of a non-uniform external pressure applied to
a uniform collapsible tube. We perform a one-dimensional analysis under steady flow
conditions, assuming that the mechanical variations occur in such a short distance that
friction plays a negligible role and the total pressure stays reasonably constant.

We are motivated by situations of medical interest since flow limitations and elastic
jumps can have adverse physiological effects. Our analysis is focused on physical
situations in which certain mechanical properties that characterize the tube material
change rapidly, or even discontinuously. Physical quantities of interest are vessel wall
thickness and Young’s modulus. Prominent examples arise in the surgical treatment
of abdominal aortic aneurysms (AAA) (e.g. Sakalihasan, Limet & Defawe 2005). In
this case a localized dilatation is present in the aorta. When it grows over a certain
limit the risk of rupture becomes high. With a surgical procedure vascular repair is
obtained by using prosthesis (grafts) or by inserting stents. Stents are also implanted
in veins in different circumstances. For example, they are used in the treatment of
chronic cerebrospinal venous insufficiency (CCSVI) (e.g. Zamboni et al. 2009), in
which occlusion of some veins (e.g. the jugular vein) can alter the normal blood flux
resulting in several pathological effects. In this case stents are used to hold the vein
open. Since the material used for making these repairs is very different from that
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of the hosting vessel, there is a potential difference in terms of Young’s moduli and
wall thickness. Associated with this, the repair can also have a diameter that can
be slightly different (higher or smaller) than that of the receiving vessel (e.g. Canić
et al. 2005). Such a mismatch between the mechanical prosthesis and the natural
vessel may cause disturbances that can have several physiological implications. For
example, aortic grafts may increase the arterial pulse wave velocity (Lantelme et al.
2009; Kadoglou et al. 2012) and pressure wave reflection can occur just upstream of
the implantation region (Charonko, Ragab & Vlachos 2009).

Mathematical analyses of the one-dimensional unsteady problem with variable
mechanical properties are also available in the literature. For example, numerical
investigations of the variation of the pulse wave velocity have been performed by
Vardoulis et al. (2011), alteration in the pressure pattern in the case of prosthesis
implantation in large arteries has been analysed by Sherwin et al. (2003), while the
possibility of stent migration at the anchoring sites, which can lead to the failure of
the repair, has been investigated by Canić et al. (2005). Recently, Toro & Siviglia
(2013) proposed a new mathematical approach to flow in collapsible tubes dealing
with discontinuous mechanical properties, and Müller, Parés & Toro (2013) provided a
numerical solution.

The structure of the paper is as follows. In § 2 we describe the one-dimensional
mathematical model, the closure relationships and the simplified equations under
steady conditions. In § 3 we present the results that analyse the effects of variations in
geometrical and mechanical properties on the flow in a collapsible tube, while in § 4
we discuss the implications of variations in mechanical properties for the occurrence of
critical conditions in arteries and veins. Conclusions are drawn in § 5.

2. Mathematical model and assumptions
2.1. One-dimensional governing equations

The basic equations for one-dimensional flow in collapsible tubes are obtained from
the balances of mass and momentum for the fluid phase. Assuming a constant density
ρ for the fluid and neglecting gravity, the governing equations read as

∂A

∂t
+ ∂Q

∂x
= 0, (2.1)

∂Q

∂t
+ ∂(uQ)

∂x
+ A

ρ

∂p

∂x
=−Ru, (2.2)

where A is the cross-sectional area of the tube, u is the averaged velocity of the fluid
and p its pressure, Q= uA is the flow rate, and R is the flow resistance per unit length
of the tube, assumed to be a known function of the unknowns.

Since only two partial differential equations, (2.1) and (2.2), are provided for three
unknowns (namely A, u and p), an additional relation is required to complete the
system. This is provided by the tube law, which relates the pressure p to the wall
displacement via the cross-sectional area A coupling the elastic properties of the vessel
to the fluid dynamics. The main purpose of law (2.3) is to capture the tube’s flexibility
at small negative pressures as collapse is initiated, whilst maintaining the properties of
a stiffening response for higher negative or positive pressures. In this work we assume
(Elad et al. 1987)

ψ(α,K)= p− pe = K(αβ1 − α−β2), (2.3)
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198 A. Siviglia and M. Toffolon

where the transmural pressure ψ is the difference between the internal pressure p and
the external pressure pe. Here K is a quantity that represents the elastic properties of
the material and the wall thickness, and is called the effective stiffness of the tube
(see Shapiro 1977), and α = A/A0 is the area ratio, where A0 represents the undistorted
cross-sectional area, at zero transmural pressure (ψ = 0), while the two exponents β1

and β2 are real numbers. We restrict our analysis to the range β1 > 0 and 0 < β2 6 2,
which are the usual ranges used for describing the behaviour of collapsible tubes and
in which system of equations (2.1) and (2.2) is hyperbolic (Toro & Siviglia 2013). If
α > 1 the transmural pressure is positive and the tube is inflated, while if α < 1 the
transmural pressure is negative and the tube is collapsed.

The tube law determines the wave speed c of small area perturbations, which in this
case is given by (Toro & Siviglia 2013)

c=
√

A

ρ

dψ
dA
=
√

K

ρ
(β1αβ1 + β2α−β2). (2.4)

Following Shapiro (1977), we introduce the speed index S = u/c, a dimensionless
controlling parameter that is the analogous to the Mach number for compressible flows
and the Froude number for open channel flows. By substituting (2.4) it follows that

S2 = ρu2

α
dψ
dα

= 1
χ α2(β1αβ1 + β2α−β2)

, (2.5)

where the dimensionless parameter

χ = K

ρu2
0

(2.6)

characterizes the flow at zero transmural pressure (u0 = Q/A0). It is worth noticing that
this parameter is the square of a particular speed index which is the ratio of the wave
speed

√
K/ρ and the velocity u0.

It will prove useful in the following sections to introduce a particular value of the
parameter χ ,

χce = 1
β1 + β2

, (2.7)

obtained from (2.5) for the occurrence of critical conditions (S = 1) in flows with
equilibrium cross-sectional area (A= A0, α = 1). In the range for β1 and β2 considered
in this paper, the value χce, as suggested by relation (2.5), discriminates flows having
critical conditions for a positive transmural pressure (α > 1, χ < χce) from those that
are critical for a negative transmural pressure (α < 1, χ > χce).

2.2. Steady problem
Let us consider a short segment of a collapsible tube under steady (∂/∂t ≡ 0)
conditions. Equations (2.1) and (2.2) can be simplified as follows:

dQ

dx
= 0, (2.8)

d(u2A)

dx
+ A

ρ

dp

dx
=−Ru. (2.9)
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Steady analysis of transcritical flows 199

AAsubAsup Acr

FIGURE 1. Plot of the total pressure as a function of the cross-sectional area for assigned Q,
K, pe and A0.

Equation (2.8) states that the flow rate remains constant along the tube, while (2.9)
reduces to

d
dx

(
u2

2
+ p

ρ

)
=−Ru

A
. (2.10)

If we also consider inviscid (R = 0) conditions, this equation states that the total
pressure (or stagnation pressure)

P = ρ Q2

2A2
+ ψ

(
A

A0
,K

)
+ pe (2.11)

remains constant along the tube. Since the variation of P is given by the integral of
the right-hand side of (2.10) along a tube segment, this assumption remains valid for a
short distance for viscous flows too.

Figure 1 shows the behaviour of the function P =P(A) for fixed values of Q, K,
pe and A0. For a given total pressure P >Pmin, two different values of cross-sectional
area are physically possible (see figure 1), namely Asub and Asup, which lie on the right
and left side of the critical value Acr, respectively. Thus, Acr is the value for which the
total pressure is minimum, and can be computed on imposing (dP/dA)|Q,K,A0 = 0.

3. Geometrical and mechanical tube variations
In this section we investigate the effects of a variation of the geometrical

characteristics (i.e. the cross-sectional area at equilibrium A0) and mechanical
properties of the tube wall (i.e. the stiffness parameter K) on the flow in a collapsible
tube. We identify with the subscript m (A0m, Km, Pm) the values of the parameters
in a modified region (see figure 2), whose length is assumed to be short enough to
neglect the effect of friction and to enforce that Pm =P across the discontinuity. We
also neglect the total pressure losses due to sudden enlargements; in any case, their
consideration does not qualitatively change the overall description of the process and
the conclusions drawn at the end of this paper.

Among all the possible variations, we are interested in those geometrical and
mechanical changes that can lead to transcritical flows. As an example we show how
a subcritical and a supercritical flow can approach critical conditions due to a sudden
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Q A, A0, K Am, A0m, Km

Modified
region

x

FIGURE 2. Sketch of the considered modified configuration.

restriction of the undistorted cross-sectional area A0. We solve (2.10), which governs
the steady-state problem, following the procedure described in the Appendix. We
consider two different situations: (i) a subcritical and (ii) a supercritical flow passing
through a stenosed collapsible tube (i.e. A0m/A0 < 1). The situation is illustrated in
figure 3, where for the sake of clarity a sinusoidal stenosis is used instead of the
abrupt variation sketched in figure 2. The figure shows the longitudinal variation of
the speed index S (figure 3e), the velocity u (figure 3f ), the cross-sectional area A
(figure 3c), the transmural pressure ψ (figure 3d), and the area ratio α (figure 3b)
as a function of the position ξ = x/D, with D the nominal tube diameter. The flow
is inviscid (µ = 0) and from left to right. It is seen that a subcritical flow, while
approaching the stenosis, decreases its cross-sectional area, becomes faster and thus
increases its speed index. In contrast, a supercritical flow increases its cross-sectional
area and becomes slower, with a decrease in the speed index. Hence, both subcritical
and supercritical flows move towards the critical condition in the stenosis, and could
possibly become transcritical and change its nature as the degree of the stenosis is
more severe.

It is the aim of this paper to understand when a mechanical variation of the vessel
properties is able to induce critical flow conditions. We are interested in deriving the
marginal curves for the transcritical flow, namely the condition that causes a critical
flow in the modified region, i.e. Sm = 1 and Am = Acr. In this respect, our approach
is similar to the one proposed by Marchi (1968) for the analysis of cross-section
narrowing in rivers. In the next two sections we consider the transcritical conditions
for a simplified and the complete version of the tube law.

3.1. Simplified tube law
A simplified version of the tube law is obtained by imposing β2 = 0 in the relation
(2.3). This is normally used in a physiological context to describe flows in arteries (e.g.
Canić 2002; Sherwin et al. 2003; Alastruey et al. 2007; Liang et al. 2009). The use of
such a simplified law allows us to derive an expression for the critical area in closed
form, which reads

Acr =
(
ρQ2Aβ1

0

Kβ1

)1/(2+β1)

= A0

(χβ1)
1/(2+β1)

. (3.1)

Definition (3.1) is obtained by imposing S = 1 in (2.5), so Acr discriminates subcritical
flows (S < 1) from supercritical flows (S > 1). Two different values of cross-sectional
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(c)
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FIGURE 3. (Colour online) Steady profiles for an inviscid flow (R = 0) through a stenosis
in a collapsible tube (β1 = 1/2, β2 = 0; χce = 2) as a function of the dimensionless distance
ξ = x/D (D being the tube diameter): reference area ratio A0m/A0 (a), cross-sectional area A
(c), speed index S (e), area ratio α (b). Transmural pressure ψ (d), flow velocity u (f ). The
subcritical case (S = 0.52, blue line; ψ = 11.9 mmHg as downstream boundary condition)
is compared with the supercritical case (S = 1.64, black thicker line; ψ = −9 mmHg
as upstream boundary condition) for two different stenoses characterized by a sinusoidal
variation (maximum restriction: A0m/A0 = 0.9, solid line; A0m/A0 = 0.8, dashed line). Critical
values of the variables are drawn with thin red lines. Other data: density ρ = 1050 kg m−3,
discharge Q = 500 ml s−1, tube radius R0 = 1 cm, stiffness K = 6000 Pa, resulting in a value
of the parameter χ = 2.26.

area are mathematically possible for a given value of total pressure P > Pmin (see
figure 1): one subcritical (A> Acr) and one supercritical (A< Acr).

Using the definitions of the speed index and the area ratio α, the total pressure
(2.11) can be expressed as

P = Kαβ1

(
β1

2
S2 + 1

)
+ pe − K. (3.2)
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202 A. Siviglia and M. Toffolon

Then, considering inviscid flow, assuming constant pe, imposing P =Pm and the
critical conditions in the modified region m, i.e. Pm =P(S= 1;A= Acr), we obtain

Kαβ1

(
β1

2
S2 + 1

)
− K = Kmα

β1
m

(
β1

2
+ 1
)
− Km, (3.3)

where αm = Acr/A0m and S2 = (χ β1α
2+β1

)−1
from (2.5). Equation (3.3) can be

manipulated to obtain the following relationships, expressed in terms of S and α,
respectively:(

β1S2

2
+ 1
)

S−2β1/(2+β1)

=
(

1− Km

K

)
(β1χ)

β1/(2+β1) +
(
β1

2
+ 1
)(

A0m

A0

)−2β1/(2+β1)
(

Km

K

)2/(2+β1)

, (3.4)(
1

2χα2+β1
+ 1
)
αβ1

=
(

1− Km

K

)
+
(
β1

2
+ 1
)(

A0m

A0

)−2β1/(2+β1)
(

Km

K

)2/(2+β1)

(β1χ)
−β1/(2+β1).(3.5)

These relationships are equivalent and can be used to determine the marginal
transcritical conditions provided that the geometrical and mechanical characteristics
of the tube (A0, A0m, K, Km, β1) are known.

3.1.1. Geometrical variations (A0m 6= A0, Km = K)
In this section we consider the case of geometrical variations only (i.e. Km/K = 1),

so that the first term on the right-hand side of (3.4) vanishes. Thus the dependence on
χ disappears and only one curve is detectable in the plane (S–A0m/A0) (see figure 4a).
On the other hand, (3.5) provides different marginal curves in the plane (α–A0m/A0)
for different values of χ (figure 4b).

If the reference area of the tube widens in the modified region (A0m/A0 > 1), (3.4)
does not have solutions for any value of S, implying that no transition can occur. For
a stenosis (A0m/A0 < 1), instead, (3.4) has two solutions for the speed index S: the two
roots are the speed index limits SI

L < 1 and SII
L > 1 (see figure 4a). An undisturbed

subcritical flow remains subcritical when it passes through the modified region if
S < SI

L (see example in figure 3), and analogously an undisturbed supercritical flow
remains supercritical if S> SII

L (see example in figure 3). The region in between, below
the marginal curve, represents the transcritical flow area: here, the flow changes its
nature, passing from subcritical to supercritical through the critical conditions. The
asymmetric shape of the transcritical curve also suggests that supercritical flows are
more likely to achieve critical conditions than subcritical flows. In general, the stronger
the cross-section narrowing (smaller A0m/A0), the wider the range of S for which a
transcritical flow may occur.

Considering the solution of (3.5) in the plane (α–A0m/A0), we obtain different
transcritical curves for different values of χ (see figure 4b). Also in this case, for
given values of the ratio A0m/A0 and χ we have that two limit values for the area
ratio exist, namely αI

L and αII
L , corresponding to SI

L < 1 and SII
L > 1, respectively:

if αII
L < α < αI

L the incoming flow passes through critical conditions. However, as
suggested by relation (3.1), the transcritical region shifts from lower values of α for
large χ to higher values of α for small χ , being centred on α = 1 for χ = χce = β−1

1 .
This observation suggests that transcritical flows occur more easily for values
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FIGURE 4. (Colour online) Geometrical variations: transcritical curves in the plane (S-
A0m/A0) (a) and (α–A0m/A0) (b) for different values of χ , in the case of simplified tube
law (β1 = 1/2, β2 = 0, χce = 2) and constant mechanical properties (Km/K = 1).

of χ ∼ χce, since in this range the transmural pressure ψ(α) is not required to be
too large (as it would be for α� 1) or too small (α� 1).

In order to improve the description of the phenomenon, in figure 5 we explicitly
show the flow pattern occurring during the transition through critical conditions
because of a restriction. For this sake, we solve the governing equation (2.10) as
described in the Appendix, also taking into account the friction term for a more
complete analysis. In this example, which refers to the same flow data as the
subcritical case in figure 3, the stenosis A0m/A0 = 0.5 produces a transition and divides
the domain into two regions. Upstream the flow is subcritical, while downstream it
becomes supercritical until, eventually, the downstream boundary condition causes a
further transition to a subcritical flow through an elastic jump. This latter passage
is visible (at ξ = 15.9) only when viscous dissipation is accounted for, while when
R = 0 (and A0 and K are also constant) the cross-sectional area profiles are straight
lines like the ones depicted in figure 3. We note that the undisturbed subcritical
flow is characterized by a speed index S = 0.52, which lies in the transcritical
region delimited in figure 4. Moreover, the two limit values SI

L = 0.30 and SII
L = 2.27

correctly identify the flow conditions just upstream and downstream of the transition,
respectively.

3.1.2. Variations in mechanical properties (A0m = A0 and Km 6= K)
Unlike the previous case, when Km 6= K the dependence on χ does not vanish in

(3.4). Therefore, marginal curves are plotted in figure 6 for different values of χ
both in the (S–Km/K) plane (figure 6a,c) and in the (α–Km/K) plane (figure 6b,d).
Moreover, since the behaviour changes for χ ≷ χce, we separate the two cases in
figure 6(a,b) and figure 6(c,d). As in the previous case, two limit values for S and α
can be identified for a given stiffness ratio Km/K, and the flow is transcritical if the
unmodified conditions lie within the region delimited by the marginal curves.
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FIGURE 5. (Colour online) Steady profiles with transcritical conditions through a stenosis
(A0m/A0 = 0.5) for an inviscid (R = 0, black dashed line) and a viscous (R > 0, µ =
4.0 × 10−3 Pa s, blue solid line) flow. The reference undisturbed flow is subcritical (S = 0.52)
with ψ = 11.9 mmHg (A = 503 mm2) as downstream boundary condition. The panels and
other data are as in figure 3.

As is implied by the discussion of the definition (2.5), the transcritical conditions
occur for α > 1 (positive transmural pressure) when χ < χce, and vice versa (see
figure 6b,d). Interestingly, χ ≷ χce also distinguishes two contrasting cases for the
onset of transcritical flows: when χ < χce only an increase in the stiffness in the
modified region (Km/K > 1) is able to produce critical conditions, while the marginal
curves are in the region of lower stiffness (Km/K < 1) for χ > χce. Finally, the
transcritical region is restricted to a single point (α = 1, S = 1, Km/K = 1) for χ = χce,
i.e. the flow is critical in the modified region only if the approaching flow is already
critical at the equilibrium area A0.

3.1.3. Variations in geometrical and mechanical properties (A0m 6= A0 and Km 6= K)
This is the general case in which variations of both the equilibrium area A0 and the

stiffness parameter K are considered. In figure 7(a,b) we plot the transcritical curves in
the (S–Km/K) plane and in the (α–Km/K) plane for different values of the parameter
χ and for a fixed ratio A0m/A0 = 0.75. This means that we are considering the case in
which the stiffness parameter changes and the cross-sectional area at the equilibrium
is reduced in the modified region. In this case the differences from the case of pure
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FIGURE 6. (Colour online) Mechanical variations: transcritical conditions of the ratio Km/K
as a function of the speed index S (a,c) and of the area ratio α (b,d), for different values of χ .
Results are obtained for the simplified tube law (β1 = 1/2, β2 = 0, χce = 2) and constant area
(A0m/A0 = 1).

mechanical variations is that when Km/K < 1 transcritical flows can occur even when
χ < χce and the transmural pressure is positive, i.e. α > 1 (e.g. the curve for χ = 1 in
figure 7). Conversely, when Km/K > 1 transcritical flows can occur even when χ > χce

and the transmural pressure is slightly positive, i.e. α > 1 (e.g. the curve for χ = 65 in
figure 7).

If we consider an increase in cross-sectional area at the equilibrium, i.e. A0m/A0 > 1,
the transcritical curves move in the opposite direction, and critical conditions are more
difficult to obtain. In general it is seen that for a given value of the stiffness parameter
ratio Km/K, a reduction of A0m makes the occurrence of transcritical flows easier
(either subcritical or supercritical), while an enlargement, say an increase in A0m, has
the opposite effect.

3.2. Complete tube law

The complete tube law is obtained when β1 > 0 and β2 < 2. This relationship is used
in a physiological context for describing the tube law for lungs (e.g. Elad et al. 1987)
and veins (e.g. Brook, Falle & Pedley 1999; Müller & Toro 2013). In this case the
critical condition in the modified region αm = Acr/A0m is obtained by imposing that
Sm = 1 in the definition (2.5) where χ = χm, which gives

α2
m

(
β1α

β1
m + β2α

−β2
m

)= [χ Km

K

(
A0m

A0

)2
]−1

, (3.6)
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FIGURE 7. (Colour online) Geometrical and mechanical variations: transcritical curves
(S–Km/K) (a) and (α–Km/K) (b) for different values of χ when A0m/A0 = 0.75. Results
are obtained for the simplified tube law (β1 = 1/2, β2 = 0, χce = 2).

which does not admit algebraic solutions in closed form. Therefore, the strategy to
determine the transcritical conditions is different from the case in § 3.1. We rewrite
the total pressure P from (2.11) as a function of α. Then, we express Pm by
subtracting the relationship dP/dα = 0, which holds for critical conditions, in the
modified region. Imposing P =Pm finally yields the dimensionless relationship

P

K
= 1

2χα2
+ αβ1 − α−β2 = Km

K

[(
β1

2
+ 1
)
αβ1

m +
(
β2

2
− 1
)
α−β2

m

]
, (3.7)

where the first expression refers to the undisturbed conditions and the second one
to the modified region. The transcritical curves can be obtained by means of the
following procedure. First, (3.6) is numerically solved for the assigned value of χ and
of the geometrical and mechanical changes. Then, the critical area ratio αm is used in
(3.7) to obtain the two corresponding values of α. Finally, the limit values of the speed
index are calculated going back to (2.5).

In this case, geometrical variations (A0m/A0 6= 1) without mechanical changes
(Km/K = 1) do not determine a unique curve in the (S–A0m/A0) plane (figure 8),
as was the case for the simplified tube law (figure 4). However, similarly to that case,
the transcritical region becomes narrower in the (α–A0m/A0) plane for large values of
χ > χce, and shifts toward smaller values of α (negative transmural pressure). The
shape of the curve is different, however, and a wider transcritical range of α remains
for small values of Km/K with respect to the simplified tube law case.

An analogous correspondence is visible for the case of mechanical variations only
(Km/K 6= 1, A0m/A0 = 1, see figure 9). In a similar way to the simplified tube law,
there is a critical value χce = (β1 + β2)

−1 for the existence of marginal curves for
more/less rigid modified regions (Km/K ≷ 1). For an increase in stiffness (Km/K > 1)
and χ < χce, the transcritical curves are characterized by positive transmural pressures
(α > 1) (see figure 9b); for the opposite case (Km/K < 1, χ > χce) transition can occur
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FIGURE 8. (Colour online) Geometrical variations for the complete tube law (β1 = 20,
β2 = 3/2, χce = 0.0465): transcritical conditions A0m/A0 as a function of speed index S (a,c)
and area ratio α (b,d) for different values of χ (see legend) and for Km/K = 1.

only for negative values of the transmural pressure (α < 1). It is worth noting that
for very high values of χ (e.g. for very slow flows) the transcritical values of the
area ratio α become lower and tend to prevent the occurrence of such a phenomenon,
meaning that collapsible tubes are more likely to show transition at the maximum flow
conditions than at rest.

In order to illustrate how a change in the mechanical properties can produce
transcritical conditions, in figure 10 we analyse the steady profiles in a collapsible
tube (β1 = 20, β2 = 3/2) with a variation in the stiffness coefficient Km. The
solution has been obtained following the procedure described in the Appendix. The
undisturbed flow, corresponding to an inviscid subcritical flow with along-stream
uniform stiffness K, is characterized by a speed index S = 0.8, and a value of the
parameter χ = 0.015 < χce. According to figure 9, the latter condition suggests that
a transition can occur only for Km > K. Results are represented in analogy with the
panels in figures 3 and 5, the only difference being that now the mechanical properties
change from K to Km in the modified region (instead of the reference area A0), as
shown in figure 9(a). Two different configurations are analysed: the first in which
the ratio Km/K = 6 is modified for a four-diameter length in the middle of the tube,
and the second in which the same condition holds but for a ratio Km/K = 7. It
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FIGURE 9. (Colour online) Mechanical variations for the complete tube law (β1 = 20,
β2 = 3/2, χce = 0.0465): transcritical conditions Km/K as a function of speed index S (a,c)
and area ratio α (b,d) for different values of χ (see legend) and for A0m/A0 = 1.

is important to note that the transcritical region in figure 9 is closed, and in this
analysis we consider the upper branch of the marginal curves, with a critical value of
Km/K = 6.3 for the assigned value of the speed index. In particular, we expect to avoid
transcritical flow for the largest increase in stiffness. This apparently counter-intuitive
result is confirmed by the behaviour of the steady profiles in figure 10: for Km/K = 7
(dashed lines) the flow remains subcritical even if it reduces its cross-sectional area
in the modified region, while for Km/K = 6 (solid lines) the flow passes through
critical conditions and becomes supercritical. The speed index goes up to 1.36, but
the increase in velocity is relatively low because of the limited decrease of the cross-
sectional area. A qualitatively different picture, with strong increase in velocity and
decrease in area, would be noted in the lower branch of the marginal curve of the
transcritical region for the same speed index but lower values of Km/K.

4. Implications of variation in mechanical properties for arteries and veins
We can now discuss the relevance of the occurrence of transcritical flows to

mechanical property variations in arteries and veins when a compliance mismatch
exists. This case has a broad medical relevance since the presence of flow limitations
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FIGURE 10. (Colour online) Steady profiles for an inviscid flow in a collapsible tube (R = 0,
β1 = 20, β2 = 3/2, χce = 0.0465) with uniform reference area (A0m/A0 = 1) but discontinuous
mechanical properties: no transition through critical condition occurs for Km/K = 7 (dashed
black line, k2 in the legend), while it does occur for the lower variation Km/K = 6 (solid
blue line, k1 in the legend). The reference undisturbed flow is subcritical (S = 0.8) with
ψ = 4.17 × 10−3 mmHg (A = 13.4 mm2) as downstream boundary condition. The panels are
as in figure 3, with the exception of (a), where the ratio Km/K is shown. Other data: density
ρ = 1050 kg m−3, discharge Q = 1.257 ml s−1, tube radius R0 = 0.2 cm (A0 = 12.57 mm2),
stiffness K = 0.1575 Pa, resulting in a value of the parameter χ = 0.015.

and elastic jumps can have adverse physiological effects. It occurs when prosthesis
(grafts or stents) are surgically implanted for endovascular repairs. Another important
medical aspect, which is not investigated here, is that transition through critical
conditions could occur in large blood vessels because of an atherosclerotic plaque,
which produces a stenosis. This has been investigated by Ku et al. (1990), who
proposed a one-dimensional steady analysis, while the corresponding unsteady analysis
is given in Downing & Ku (1997).

4.1. Arteries
Let us consider as an example the following four arteries: the ascending, thoracic
and abdominal aorta and the iliac artery. The data concerning the geometrical and
mechanical properties of these vessels, collected from the literature, are given in
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Artery E (kPa) h0 (cm) R0 (cm) K (Pa) Qmax (ml s−1) χ (−)

Ascending aorta 400 0.163 1.45 59 954 470 112
Thoracic aorta 400 0.12 1.0 64 000 303 65
Abdominal aorta 400 0.108 0.87 66 206 123 235
Iliac artery 400 0.076 0.52 78 948 38 370

TABLE 1. Mechanical and geometrical properties of different arteries: the Young’s modulus
of the vessel tissue E, the wall thickness h0, and the radius of the vessel when the
transmural pressure is set to zero R0 have been extracted from Avolio (1980), while the
maximum flow rate during the cardiac cycle Qmax has been collected from Reymond et al.
(2009). K is the stiffness parameter evaluated using relation (4.1).

table 1. The tube law used for describing the behaviour of arteries is described by
relation (2.3), where the exponents are fixed to β1 = 1/2 and β2 = 0, while K has
been evaluated using the following classical formula derived by considering static
equilibrium of the vessel wall and small vessel deformations (e.g. Sherwin et al. 2003;
Formaggia, Quarteroni & Veneziani 2009):

K =
√
π

(1− ν2)

Eh0√
A0
, (4.1)

where ν is the Poisson’s ratio set equal to 0.5. This simplified tube law correctly
describes wave propagation patterns in arterial networks of arteries, as has been
extensively confirmed by the existing literature (Avolio 1980; Liang et al. 2009;
Alastruey et al. 2011). The parameter χ has been evaluated using relation (2.6),
where u0 = Qmax/A0 and the blood density ρ has been set to 1050 kg m−3.

It is seen that, for the arteries taken into consideration, the parameter χ ranges
between 65 and 370. These can be considered the minimum values that can occur
since the flow rate can vanish during the cardiac cycle and χ goes to infinity. It is
also worth remarking that, despite the fact that systematic experiments with the aim of
estimating χ are not yet available, and that the χ data contained in table 1 have been
obtained using what is currently available in the literature, the order of magnitude of
the minimum value of this parameter is reliable, i.e. O(101–102).

Since the parameter χ typical of arteries (see table 1) is greater than χce = 2,
transition through critical conditions can occur only if Km/K < 1 (i.e. a reduction
in the vessel’s stiffness: see figure 6c,d). The maximum values of the speed index
typical of arteries ranges between 0.2 and 0.25 (Caro et al. 2012), which implies
that transition through the critical conditions can occur provided that Km/K . 0.4
(see figure 6c) and α < 1 (see figure 6d). From this second condition it follows that
critical conditions occur if the transmural pressure is negative, which, for arteries, is a
condition that physiologically does not apply. Moreover, the limiting condition α < 1
continues to hold even when the cross-sectional area of the implanted graft/stent
reduces the lumen by 25 % (see figure 7) or it is increased. We can conclude
that, in arteries, variations of mechanical properties seem highly unlikely to induce
transcritical conditions, i.e. they are not able to change the subcritical status of the
incoming flow.
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Vein E (kPa) h0/R0 K (Pa) u (cm s−1) χ (−) Source

Saphenous vein 27 0.029 0.069 7 0.013 (We, Ab)
Jugular vein 100 0.035 0.47 30 0.019 (At, St)
Vena cava 260 0.05 3.61 15 0.152 (Ni)

TABLE 2. Mechanical and geometrical properties of different veins: u is a fluid velocity
measured inside the vessel, K is the stiffness parameter evaluated using relation (4.2). The
acronyms refer to the publication from which specific data were extracted: We, Wesly
et al. (1975); Ab, Abraham et al. (1994); At, Attinger (1969); St, Stoquart-ElSankari et al.
(2009); Ni, Nippa, Alexander & Folse (1971).

4.2. Veins
In order to analyse the possible occurrence of transcritical flows in veins we consider
the following three blood vessels: the saphenous vein, the jugular vein and the vena
cava. Geometrical and mechanical properties of such vessels are given in table 2.

Some experimental studies have demonstrated that the structural performance of
veins is similar to that of a thin-walled elastic tube (Drzawiecki et al. 1997; Bassez,
Flaud & Chauveau 2001). Then, the relationship that locally correlates between the
transmural pressure and the vein’s cross-sectional area can be reasonably described
by the complete tube law (2.3), where the exponent β2 is set to 3/2 (Shapiro
1977; Brook et al. 1999), which well describes the collapse of the thin wall, and
the exponent β1 is chosen equal to 20, so that for values of α < 0 the tube
law behaves like ψ = −Kα−3/2 (Flaherty, Keller & Rubinow 1972). The stiffness
parameter, corresponding to the bending stiffness of a thin walled tube (Brook et al.
1999; Müller & Toro 2013) is assumed to be equal to

K = E

12(1− ν2)

(
h0

R0

)3

. (4.2)

The parameter χ has been evaluated using relation (2.6), where u0 has been
approximated using available measures of the flow velocity u (see table 2), and ρ

is the same as for arteries. In this case the order of magnitude of the parameter χ is
O(10−1–10−2) and the same conclusions drawn for arteries, concerning the reliability
of these data, can be applied here as well.

As emerges from table 2, the parameter χ for veins can be higher or smaller
than χce = 0.05, which means that transcritical flows can occur for values Km/K ≶ 1
(see figure 9), i.e. both stiffer and softer endovascular repairs can potentially induce
transition. If we consider veins for which χ ' 0.15, transition can occur if the
incoming flow is subcritical and α is slightly smaller than one (moderate negative
transmural pressure). If we consider veins characterized by values of χ which are one
order of magnitude smaller, e.g. χ ' 0.015, from figure 9(c,d) we can gather that
transition can occur when the speed index is higher than ∼0.4 and α is slightly higher
than one (small but positive transmural pressure). Since the transmural pressure in
veins is smaller than that in arteries and can achieve moderately negative values, and
the speed index can be higher than those for arteries, we can conclude that in veins
is likely that abrupt variations of the stiffness parameter K may induce transitions
through critical conditions. Finally, it is worth mentioning that the same conclusion
can be drawn if smaller (i.e. β1 = 10) or higher (i.e. β1 = 30) values for the coefficient
β1 are considered.
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5. Conclusions
We have performed a steady and inviscid analysis and found transcritical curves that

describe the conditions under which the incoming flow inside a collapsible tube may
pass through the critical state due to an abrupt change of the mechanical properties
of the wall vessel. Such marginal curves are parametric and are a function of the
dimensionless number χ = K/(ρu2

0). We investigated two different cases. In the first
case we assumed a simplified tube law (i.e. β2 = 0), and in the second we considered
a complete tube law (i.e. β1 > 0 and 0 < β2 6 2). For both cases we described the
full range of conditions for which transition can occur. In particular we identified the
values of the speed indexes, one supercritical and one subcritical, which are the limits
of the transcritical region, and the associated values of the area ratio α, which are
related to the values of the transmural pressure.

Moreover, we analysed the situation of medical interest in which prostheses are
implanted in arteries and veins in order to repair vessel diseases. We found that in
arteries, the presence of a mismatch in the Young’s modulus is highly unlikely to
produce transition through critical conditions, while, on the other hand, the transition
is likely to occur in veins. Of course, since physiological blood flow in arteries
and veins is actually unsteady, three-dimensional and viscous, further refinements are
required for a detailed analysis in real medical cases. Finally, we believe that this
analysis can represent a preliminary tool for the identification of possible risks related
to interventions that modify the geometrical or mechanical properties of biological
collapsible tubes.

Appendix
In this appendix we describe how to obtain numerically steady-state profiles of flows

in collapsible tubes.
Equation (2.9) with (2.8) can be manipulated so as to obtain the following

expression for the area variation:

dA

dx
=

A

ρ

dpe

dx
− dψ

dα
1
ρ

(
A

A0

)2 dA0

dx
+ Aψ

Kρ

dK

dx
+ Ru

dψ
dα

A

ρA0
(S2 − 1)

. (A 1)

Following the classical Poiseuille solution for laminar flows, we estimate

R= 8πµ/ρ, (A 2)

where µ is the fluid viscosity, assumed to be equal to 4.0 × 10−3 Pa s for the
simulations in this paper.

This equation governs the steady-state behaviour of a flow inside a collapsible tube
and describes the behaviour of A as function of the spatial variations of the stiffness
parameter K, the cross-sectional area at equilibrium A0 and the external pressure pe.
Steady solutions can be obtained solving (A 1) directly using any solver for ordinary
differential equations. One of the major problems of this method of solution is related
to the fact that a singularity appears for S= 1 in (A 1).

In this work we implement a slightly different technique which overcomes the
problem mentioned above. Specifically, we take advantage of what is usually done for
the solution of open channel flows in river hydraulics. We impose the condition that
the total pressure (2.11) obeys the following relationship between two sections (up
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indicating upstream, down downstream) of a distance of length 1x:

Pdown =Pup − ρ
∫
1x

Ru

A
dx. (A 3)

This implies that in the inviscid case P does not vary. Thus, we start from the
upstream boundary condition (expressed in terms of area or, equivalently, transmural
pressure), and we proceed downstream looking only for the supercritical values Asup.
If the solution in the downstream cross-sectional area does not exist, we impose
the critical value Acr. Similarly, we determine the subcritical profile Asub starting
from the downstream boundary condition (imposed as A or ψ in this case as well)
and proceeding upstream. Having simultaneously determined two profiles (super- and
subcritical), we need to choose the correct values of the area in each cross-section.
The physically admissible solution is the profile that is consistent with the requirement
(A 3) along the profile, suggesting that a smooth transition can occur only through
the critical conditions where the two profiles have the same (minimum) value of P .
On the other hand, the abrupt transition across an elastic jump is solved selecting the
profile characterized by the highest momentum flux, i.e. the maximum value between
M (Asub) and M (Asup) where

M (A)= ρQ2

A
+ A(pe + ψ)−

∫ A

A0

ψ dA

= ρQ2

A
+ Ape + KA

[
β1

1+ β1

(
αβ1 − 1

)+ β2

1− β2

(
α−β2 − 1

)]
. (A 4)

It is worth mentioning that the minimum value of M , obtained by imposing that
(dM /dA)|Q,K,A0 = 0, is found for A= Acr. Then both functions P(A) and M (A) have
the same minimum value.
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