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This is a report on a field experiment in an atmospheric surface layer at heights
between 0.8 and 10 m with the Taylor micro-scale Reynolds number in the range
Reλ = 1.6 − 6.6 × 103. Explicit information is obtained on the full set of velocity and
temperature derivatives both spatial and temporal, i.e. no use of Taylor hypothesis
is made. The report consists of three parts. Part 1 is devoted to the description
of facilities, methods and some general results. Certain results are similar to those
reported before and give us confidence in both old and new data, since this is the
first repetition of this kind of experiment at better data quality. Other results were
not obtained before, the typical example being the so-called tear-drop R −Q plot and
several others. Part 2 concerns accelerations and related matters. Part 3 is devoted to
issues concerning temperature, with the emphasis on joint statistics of temperature
and velocity derivatives. The results obtained in this work are similar to those obtained
in experiments in laboratory turbulent grid flow and in direct numerical simulations
of Navier–Stokes equations at much smaller Reynolds numbers Reλ ∼ 102, and this
similarity is not only qualitative, but to a large extent quantitative. This is true of such
basic processes as enstrophy and strain production, geometrical statistics, the role
of concentrated vorticity and strain, reduction of nonlinearity and non-local effects.
The present experiments went far beyond the previous ones in two main respects.
(i) All the data were obtained without invoking the Taylor hypothesis, and therefore
a variety of results on fluid particle accelerations became possible. (ii) Simultaneous
measurements of temperature and its gradients with the emphasis on joint statistics
of temperature and velocity derivatives. These are reported in Parts 2 and 3.

1. Introduction
The work reported in the present paper is based on two premises: (i) we need infor-

mation on velocity and temperature derivatives; and (ii) we need this and other infor-
mation at large Reynolds numbers.

Velocity derivatives, Aij = ∂ui/∂xj , are known to play a major role in the dynamics
of turbulence for a number of reasons. Their importance has become especially
clear since the papers by Taylor (1937, 1938) and Kolmogorov (1941a, b). Taylor
emphasized the role of vorticity, i.e. the antisymmetric part of the velocity gradient
tensor, Aij = ∂ui/∂xj , whereas Kolmogorov stressed the importance of dissipation, and
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58 G. Gulitski and others

thereby of strain, i.e. the symmetric part of the tensor Aij . Fluid particle acceleration
is another important kind of velocity derivatives (see Vedula & Yeung 1999; Tsinober,
Vedula & Yeung 2001; Vedula, Yeung & Fox 2001; Mordant et al. 2003, 2004a–c;
Crawford, Mordant & Bodenschatz 2005, and references therein).

Among the main difficulties in turbulence research in general, and applications
in particular, is that the high values of Reynolds numbers are inaccessible for the
foreseeable future either in the laboratory or via direct numerical simulations. On
the other hand, information on such turbulent flows is important both for basic
research and applications. This information includes all three components of turbulent
velocity fluctuations, ui , all nine components of the spatial velocity gradients tensor,
∂ui/∂xj , and its time derivatives, ∂ui/∂t , with synchronous data on fluctuations of
temperature, θ , its spatial gradient, ∂θ/∂xj , and temporal derivative, ∂θ/∂t , along
with the corresponding data on the mean flow. Having such information allows us
to address a number of important issues associated with vorticity and strain, vortex
stretching and enstrophy production, surrogates versus true quantities, geometrical
statistics, properties of fluid particle accelerations and random Taylor hypothesis,
and a number of key issues of the behaviour of passive scalars in large-Reynolds-
number turbulent flows, which up to recently were essentially inaccessible, such as
joint statistical properties of the field of velocity derivatives, i.e. rate of strain tensor,
sij , and vorticity, ωi , and the temperature gradient, ∂θ/∂xj .

The central goal of this work is to question how large the Reynolds numbers must be
in order to study the basic physics of turbulence. It appears that the high-Reynolds-
number results are qualitatively, if not quantitatively, the same as previous low-
Reynolds-number results, i.e. it is not always necessary to have high Reynolds numbers
in order to study the basic physics of turbulence. This means that the importance of
concepts such as inertial range were probably overstressed. Thus, it will not always be
necessary to push to higher Reynolds numbers for experiments and direct numerical
simulation (DNS). Our main technical aims were to improve various components of
the experimental facility. The most important of these is the possibility of employing
the multi-hot-wire technique without invoking the Taylor hypothesis, and thereby
accessing the fluid particle accelerations and a variety of its Eulerian components,
with simultaneous access to temperature and its derivatives. This makes it possibile
to obtain joint statistics of velocity and temperature gradients experimentally.

In order to achieve reasonably high Reynolds numbers and access velocity deriv-
atives, it is necessary to perform field experiments, as reported by Kholmyansky &
Tsinober (2000), Kholmyansky et al. (2000, 2001a, b) and Galanti et al. (2003). Though
most of these experiments were performed using the Taylor hypothesis, a successful
attempt was made to check the possibility of measuring all spatial derivatives without
invoking the Taylor hypothesis (Kholmyansky et al. 2001b). A similar experiment with
simultaneous measurements of temperature fluctuations and their spatial derivatives
was performed by Galanti et al. (2003). This opened the possibility of accessing the
corresponding temporal derivatives and consequently the fluid particle accelerations.

The field experiments mentioned above were performed on the ground of the Kfar
Glikson kibbutz, a few kilometres to the north-east of Pardes-Hanna, Israel. The
wind at this site, that was good with regard to wind velocity and topography, had a
large directional variability (see below), leading to reduced data quality. The bulk of
the results reported below were obtained at the Sils-Maria site in Switzerland which
had a more stable wind direction.

Our report is divided into three parts. Part 1 is devoted to the description of
facilities, methods and some general results of two kinds. The first kind are results
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3 mm 3

4 2
0

1

(d)

(a)

(b)

(c)

Figure 1. The multi-hot/cold-wire probe. (a) Assembled probe. (b) Micro-photograph of the
tip of the probe. (c) Tip of individual hot-wire array. (d) Schematic of the position of the
arrays 1–4 relative to the central array 0.

similar to those reported before (Kholmyansky & Tsinober 2000; Kholmyansky et al.
2000, 2001a, b; Galanti et al. 2003). They give us confidence in both experiments,
since it is the first repetition of this kind of experiment at better data quality. The
second kind are the results which were not obtained previously, the typical example
being the so-called tear-drop R − Q plot and several others.

Part 2 (Gulitski et al. 2007a) concerns accelerations and related matters. It includes
a variety of results on convective, local and other ‘components’ of fluid particle
accelerations, such as variances, correlations and geometrical statistics. Part 3 (Gulitski
et al. 2007b), is devoted to issues concerning temperature, with the emphasis on joint
statistics of temperature and velocity derivatives.

2. Experiments
The results described below are based on the data obtained in field experiments in

the atmospheric surface layer, and in laboratory experiments with a jet facility. The
measurement system used allows us to obtain all three components of the velocity
fluctuations vector, ui , all nine components of the spatial velocity gradient tensor,
∂ui/∂xj , and the temporal velocity derivatives, ∂ui/∂t , with synchronous data on
fluctuations of temperature, θ , its spatial gradient, ∂θ/∂xj , and temporal derivative,
∂θ/∂t , along with corresponding data on the mean flow.

The most essential components of the experimental system are a multi-hot/cold-wire
probe, a 20-channel hot-wire anemometer, a 5-channel cold-wire thermometer, a data
acquisition and processing system and an automatic three-dimensional calibration
unit with corresponding calibration procedure, including software.

2.1. Probe

The basic element of our multi-wire probe (figure 1) is an array. It consists of four
hot-wires, forming a pyramid. Each wire is welded to a pair of prongs, providing
support and electrical connection for the hot wires (figure 1c). The typical length of
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a wire is 0.6 mm, its diameter is 2.5 µm. The diameter of a typical array is a little less
than 1 mm, and the separation between the arrays is 1.2 mm. Each wire is connected
to a separate channel of a hot-wire anemometer. Five parallel arrays, combined in a
cross-like configuration (figure 1d), form a probe.

Each array of the calibrated probe gives three components of the velocity vector,
that can be related to a certain point in the tip of the array. The distance between
the arrays is small (overall size of the tip of the probe is about 3 mm, i.e. less then
five Kolmogorov scales under the flow conditions described in Kholmyansky et al.
(2001a, b). In the reported measurements the Kolmogorov length was in the range
0.35−0.76 mm, see table 1. Hence the tip of the probe was from 3.9 to 8.6 Kolmogorov
lengths.) Therefore the differences between the values of the velocity components
from properly chosen arrays can be used to estimate lateral and vertical space
derivatives. The space derivatives in the longitudinal direction can be obtained from
time differences, using the Taylor hypothesis.

Such a probe was successfully implemented in laboratory and field experiments
(Tsinober et al. 1992, 1997; Kholmyansky & Tsinober 2000; Kholmyansky et al.
2001a, b). Though the probe, which consists of 20 hot wires in five four-wire arrays,
seems to be ‘crowded’ with many wires and prongs, it does not cause more serious flow
disturbances than the usual hot-wire probes (see, e.g. Tsinober et al. 1992). Indeed, it
is essentially empty: the volume of solid material in the proximity of the probe tip is
only about 1 % of the volume of the tip. This is achieved mainly by using thin prongs
with tips of about 0.025 mm thickness (figure 1).

Several essentially new developments and significant improvements were introduced
in the probe as compared to the previous experiments (Kholmyansky & Tsinober
2000; Busen et al. 2001; Kholmyansky et al. 2001a, b). The first one is a probe allo-
wing to estimate the spatial derivative in the streamwise direction independently
of the time derivative, i.e. without invoking the Taylor hypothesis (Kholmyansky
et al. 2001b; Galanti et al. 2003). This is achieved by designing a five-array probe
with the central array shifted forward in the streamwise direction by approximately
1 mm. Such a probe allows us to estimate all three velocity components at two
streamwise positions simultaneously: one at the tip of the shifted array, and the
other in the plane of the four other arrays via interpolation of the four values
obtained from these four arrays. A probe of this type was used in a field experiment
(Kholmyansky et al. 2001b; Galanti et al. 2003) where spatial derivatives, based on
the Taylor hypothesis, were compared with those measured directly. Moreover, it
became possible to obtain estimates of the full (Lagrangian) acceleration and its
(Eulerian) ‘components’, al = ∂u/∂t and ac = (u · ∇)u.

A further important step was the attachment to the probe of cold wires for
temperature measurements. Each array was completed with a separate cold wire thus
forming a 25-wire probe. In addition to three velocity components, nine components
of the spatial velocity gradient tensor and three components of temporal velocity
derivatives, the new probe can also measure temperature, three components of
temperature gradient and a temporal derivative of temperature (all without invoking
the Taylor hypothesis).

At this first stage the cold wires were of the same diameter as the hot wires, namely
2.5 µm, therefore the frequency bandwidth of the temperature measurements was less
than that for the velocities: while the channels of the anemometer had a flat frequency
response in the band of about 4 kHz, for the thermometers such a band lasted only
unfil about 300 Hz. We plan to manufacture probes with thinner wires for further
experiments.
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Figure 2. The calibration unit. (a) Schematic. (b) Interior (container removed).

Incorporation of cold wires into a probe required special efforts to minimize the
effects of their heating by the hot wires. Though the cold wires are very close to
the hot wires of the corresponding array (about 0.2 mm ahead from its tip), no
direct heating of the cold wires was observed, even at very low flow velocities. But
the prongs, supporting the cold wires, were heated and transferred this heat to the
wires through thermal conduction. This problem was solved by shaping the cold-wire
prongs so that they were far enough from the hot-wires with their prongs in the
vicinity of the tip of the probe (figure 1a, b).

The described solution did not prevent the heating of the cold-wire prongs, it only
drastically decreased the heat transfer from the prongs to the cold wires. But the
varying heating and cooling (by the flow) of the prongs resulted in variations of their
temperature and therefore resistance. The resistance of the prongs was measured by
the thermometer together with that of the cold wires. If not constant, it caused errors
in the temperature data.

In order to reduce such errors to a tolerable value we replaced the tungsten prongs
by manganin: the temperature coefficient of the electrical resistance of manganin is
400 times smaller than that of tungsten. The hot-wire prongs in the new probes were
also made of manganin. Such probes were used in the reported experiments. An
additional advantage was the improvement of their life span.

2.2. Calibration

The calibration of the multi-wire probe consists of two main steps:
(i) obtaining calibration data, using the calibration unit, data acquisition equipment

and software (field calibration);
(ii) processing the calibration data to calculate calibration coefficients.
Calibration coefficients are used to transform the voltages recorded in the measu-

rement runs into physical values, in our case components of the velocity vector.
The function of the calibration unit (figure 2) is to place the probe in a flow with

velocity of known and variable value at various angles with respect to two orthogonal
axes. Resistances of hot wires are low, therefore small changes of contact resistance in
connectors may affect the calibration characteristics and produce errors in measured
velocity values. Such errors are especially dangerous because these velocity values,
taken at close points within a probe, are used to calculate velocity differences and
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space derivatives, and even small errors in measured velocities may result in high errors
of the differences. To avoid errors of this kind, the calibration must be performed
with the probe connected to its cable in its working position.

Figure 2(a) shows the flow in our calibration unit. The flow is produced by suction,
therefore we avoid its heating by pumping. The calibration flow is a jet formed by
a nozzle. When suction is on, the atmospheric air enters the container through a
filter, covering openings in its sidewall. From there, the air enters the jet unit which
consists of a contractor, a honeycomb and a nozzle. The flow passing through these
elements forms a jet with uniform velocity profile around its axis and a low level of
fluctuations. The outlet of the nozzle, where the tip of the probe is located, opens to
a suction chamber.

In order to allow three-dimensional calibration, the jet unit can be rotated around
two orthogonal axes: it is mounted on a high-precision gimbals mechanism. The
rotation of the gimbals is performed by two similar units, each including a motor,
a gear assembly and a synchronous resolver that serves for the measurement of the
angle of rotation.

The value of the velocity magnitude in the jet is obtained by measuring
pressure difference at two cross-sections of the nozzle using an electronic differential
manometer. The velocity can be calculated using Venturi’s formula.

The field calibration is controlled by a computer program. Usually it is per-
formed at 49 angular positions within a spatial angle of up to 35◦. At each
position, the calibration data are taken at ten velocities within a specified range.
Therefore the calibration data contain 490 samples. The duration of such a calibration
is about 10 min. The sample consists of the values of velocity magnitude, two angles,
twenty readings of the hot-wire channels and five readings of the thermometer
channels.

The field calibration also includes a simple step of determining the sensitivity of
the thermometer channels: a preset jump in the bridge resistance is activated, and the
thermometer outputs are recorded before the jump and after it. Thus, we obtain the
gain of the channels. Knowing the resistance of the cold wires at certain temperature
and the temperature coefficient of the electrical resistance of their material (tungsten),
we can calculate the sensitivity.

Simultaneous temperature data, recorded during the calibration and the measu-
rement run, make it possible to implement a correction of hot-wire data distorted
by temperature variations. The output of the hot-wire channel depends on the
temperature of the flow, and this dependence is approximated well by a linear function.
Though the flow temperature fluctuations are small relative to the temperature of the
hot wires (which is of the order of 200 ◦C), even small errors in the velocity values,
correlated with temperature, can distort the joint velocity–temperature statistics.
Therefore the correction is important.

We measure the coefficient in the linear function mentioned above (separately for
each hot-wire channel). A small heating element is installed in the jet unit of the
calibration device. At the final stage of the field calibration, the heating element
is activated several times for a short period of time, thus producing a series of
heat pulses. The outputs of the hot- and cold-wire channels are recorded during
each pulse. The coefficients in question can be found from linear regression of each
hot-wire channel on the corresponding cold-wire one.

The processing of the calibration data to calculate calibration coefficients
is performed by least-squares approximation of the calibration data by multi-
dimensional polynomials of the Chebyshev type.
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The space derivatives in the lateral and vertical direction were calculated using the
differences of the velocity values from the corresponding pair of arrays (excluding the
central one), divided by their separation. The longitudinal derivatives were calculated
using the time differences (Taylor hypothesis) and also using true space differences,
as described above.

2.2.1. Jet facility

The calibration unit, in addition to its direct function, is used as a main part of a
jet facility. This facility is built for performing laboratory experiments in turbulent jet
flow, including those in a slightly heated jet. The measurements started recently and
we have only some preliminary results that will be reported in Part 3.

2.3. Performance and other tests of the system

One of the difficulties in using multi-hot-wire systems is the complexity of estimation
of errors, mostly coming from the calibration process when full three-dimensional
calibration is employed. These errors should be distinguished from the instrumental
noise, which in our case was relatively small as compared to the calibration errors.
The complexity of such estimation comes not only from the nonlinear nature of the
hot-wire anemometer, but also and mainly from the existence of singularities in the
function, approximating the calibration data. Though this is known in the literature
dedicated to multi-wire calibration, it was not analysed mathematically in a rigorous
manner. B. Youssin (unpublished work) made a rigorous mathematical analysis of
an idealized probe (geometrical identity of the wires, King law). The main point is
that since the individual wires sense mostly the velocity, normal to them, the relations
between the anemometer outputs and velocity components are not invertible when
the angle, γ , between the instantaneous velocity vector and the probe axis exceeds
some value around 35◦. It was found that there was a strong dependence of the
calibration errors on this angle and fast growth of the errors when the velocity vector
approaches the singular points, located somewhere outside the cone with half-width
of 35◦. This was one of the reasons for using the Sils-Maria site where the range of
γ was much smaller.

The complexity, mentioned above, led us to follow the approach described in
§ 2 of Tsinober et al. (1992), where a series of checks was undertaken in order
to evaluate the performance of the system with some emphasis on the multi-hot-
wire probe performance. These and extra checks were made in our later works
(Kholmyansky & Tsinober 2000; Kholmyansky et al. 2000, 2001a, b; Galanti et al.
2003, 2004). As well as the checks made in Tsinober et al. (1992) and in later papers,
we have made a number of additional ones. We will mention the main former checks
briefly, and the additional checks in more detail below.

(a) Check of the raw data. For each of the twenty hot-wire signals (and five
cold-wire ones) histograms were plotted. Each point located outside the main bell
of the histogram was inspected. In many cases such points were sharp jumps out of
a smooth curve of the signal. The jumps could be caused by a particle or a water
drop hitting the wire and were corrected by interpolation. A similar check was then
performed for the differences between the sequential points that permitted further
elimination of artificial jumps in the signal.

(b) Check of the velocity data. Each velocity component from each array was
similarly inspected for jumps (caused by the same reasons, but not detected by the
check of the raw data) and corrected by interpolation when necessary. Then for
each array, angles, γ , between the instantaneous velocity vector and the axis of the
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(a) (b)

Figure 3. Two ‘in one point’ probes. (a) A four-wire and a single-wire probe; (b) two
four-wire probes.

probe were calculated. Sometimes run segments were detected where the values of γ

exceeded the calibration range (±35◦) and therefore came close to the singular points.
Such segments were excluded from further processing.

(c) Criteria for the run evaluation. Several criteria were applied to evaluate the
quality of each run.

(i) Approximation errors. The program, calculating the calibration coefficients,
calculates and prints the value of χ2, characterizing the quality of the approxima-
tion. We use the estimate of the error as (χ2/N)1/2, where N is the number of calib-
ration points. Though this estimate is rough and relates to the whole run, we know
that when its values reach tens of cm s−1, further processing is not worth while.
(ii) The scatter of the mean and the root mean square (RMS) values of the
velocity components from various arrays.
(iii) The ratio of the variances of the velocity derivatives, ∂uj/∂xk , to that of
∂u1/∂x1 in comparison with the values for isotropy. Though one cannot claim
perfect isotropy (even local) and should not rely on it, still very high deviations
point to poor data rather than to anisotropy.
(iv) An important check is the one based on the continuity equation. Namely,
for A= ∂u1/∂x1 and B = −∂u2/∂x2 − ∂u3/∂x3 the correlation coefficient between
A and B is a sensitive indicator of the quality of the data. Theoretically it should
be 1, but in the best measurements known it does not exceed 0.6–0.7. Much lower
values point to a problematic run. In the present experiments, this correlation
coefficient was typically better.

(d) Data selection. Even when all the above-mentioned checks show a reasonable
quality of run, some quantities, most sensitive to the calibration errors, show good
results only after the selection of samples corresponding to a relative divergence of
less than 0.1. The example is the tear-drop plot shown in figure 11.

(e) A special check was made with ‘two probes in one point’ initiated in Tsinober
et al. (1992). The check consisted of comparing a four-wire array with a single wire (put
in ‘one point’ as shown in figure 3a, and described in more detail in Tsinober et al.
1992). The main result is that the correlation coefficient between the streamwise veloci-
ty fluctuations measured by the two is very close to 0.99. This result is important not
only as evidence of performance of the four-wire array, but also of the calibration
procedure.
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Figure 4. Joint PDFs of streamwise (a) and transverse (b) components from two ‘in one
point’ four-wire probes. (a) Correlation coefficient = 0.983; (b) 0.957.

A more elaborate and new check was made with two four-wire arrays again put
in ‘one point’ as shown in figure 3b (Tsimanis 2005). The correlation coefficient
in this check was over 0.98 for the streamwise velocity fluctuations and 0.96 for
the transverse velocity fluctuations measured by the two probes. We show also two
examples of the corresponding joint probability density functions (PDFs) (figure 4).
Both measurements were made using the probe with the scale at the tip about 1.5
mm (in our field experiment each array was less than 0.9 mm at the tip) in the region
of the largest mean velocity gradient in our jet facility mentioned above.

(f) We had the opportunity to make an overall check, giving an indication of
the performance of our system. In the course of an experiment, performed in the
low-noise wind tunnel in the Aeronautics Department, Imperial College, London, we
found that the RMS values of the velocity components from each of five four-wire
arrays did not exceed 0.12 %. This is only slightly higher than the known a priori
level of turbulence in the wind tunnel, estimated as 0.1 %.

2.4. Equipment

The general layout of the experimental equipment is shown in figure 5(a), and a
photograph of the instrument rack in figure 5(b).

2.4.1. Anemometer channels

The hot-wire anemometer channel is a standard device. We used a new 20-channel
constant-temperature anemometer (2 in figure 5b), specially designed and manufa-
ctured for us. Its main feature is a symmetric bridge. In most cases, three arms of
the bridge are located in the anemometer itself, and the appropriate hot wire of the
probe is connected to the bridge by a cable. The cable introduces asymmetry (mainly
inductive) into the bridge that is proportional to the length of the cable. In order to
prevent the excitation of oscillations in the circuit, it is necessary to limit the length
of the cable. In the field experiment, we have to work with relatively long cables, and
the circuit stability was reached by individual fitting of compensating impedances in
each channel.

In the new device only two arms of the bridge are internal. The other two (a
hot-wire of the probe and a constant resistor) are located outside, close to each other.
They are connected to the rest of the bridge symmetrically, by a shielded twisted-pair
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Figure 5. The experimental equipment layout. (a) Chart of signal connections. (b) Instrument
rack: 1, thermometer amplifier; 2, anemometer channels; 3, signal limiter; 4, low-pass filters
and ‘sample and hold’; 5, power supply blocks.

cable. The new anemometer worked with 20 m cable without compensating circuitry
and showed good performance.

2.4.2. Five-channel thermometer

The thermometer was also specially designed and manufactured for our experi-
ments. It consists of two blocks: the bridge and preamplifier block (Thermometer in
figure 5a) is located not far from the probe, and the thermometer amplifier (figure 5a
and 1 in figure 5b) is in the field laboratory.

2.4.3. Data acquisition

In the course of a measurement run or field calibration, all relevant signals
are recorded onto a PC hard disk. The main component of our data acquisition
system is an input–output PC card (PCI-MIO-16E-1 from National InstrumentsTM),
supplemented with an SCXI chassis and modules (4 in figure 5b). We use low-
pass filters and ‘sample and hold’ modules. The filters (with cutoff frequency set at
4 kHz) are used as an anti-aliasing device. The ‘sample and hold’ modules provide
for simultaneous sampling of all the channels, an important feature in multi-channel
systems. The signal limiter (3 in figure 5b) is an auxiliary device preventing saturation
of all the channels of the data acquisition system in the case when one or more signals
are far out-of-scale (this can happen, for instance, if some wires are broken.) Any
signal within the scale passes this device unaffected. Any out-of-scale signal, entering
the device, exits with the value of the corresponding scale limit.
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(a) (b) (c)

Figure 6. The experimental sites. (a) Kfar Glikson, Israel, measurement position. (b) Kfar
Glikson, calibration position. (c) Sils-Maria, Switzerland.

2.5. Sites

The choice of sites was a complicated problem. The site must be reasonably flat and
homogeneous, at least in the direction of the dominating winds. Naturally, it must
satisfy certain logistic requirements.

Most of our preparatory work and first experiments were performed at the
measurement station that we erected in a field at the Kfar Glikson kibbutz, few
kilometres to the north-east of Pardes-Hanna, Israel (figure 6a, b). The site is rather
flat in the west-south-west direction, about 10 km from the sea shore, and the winds
from there are suitable for the experiments.

The site is equipped with a specially designed mast. It is of a balanced boom crane
configuration. The main boom of the mast can be rotated on the bearings around a
horizontal axis, positioned 2 m above the ground. The mast has a low vibration level
and permits convenient mounting of the probe and the calibration unit. The probe is
fixed on top of the mast. In order to perform a measurement run, we lift the mast
with the probe, exposed to the wind (see figure 6a). To calibrate, we lower the mast,
attach the calibration unit to its boom so that the tip of the probe is at the centre of
the nozzle outlet, and then lift the mast with the calibration unit (see figure 6b).

In August–September 2004, we performed a field experiment at another site, located
in Switzerland, on the outskirts of the village of Sils-Maria, about 1800 m above sea
level. The site is a rather flat valley of more than 1 km width, surrounded by two
parallel mountain ridges. It is famous for the so-called Maloja wind (a regular
strong orographic wind, blowing along the valley from the village of Maloja towards
Sils-Maria).

A preliminary experiment at this site was carried out in August 2003 to obtain
rough estimates of the characteristics of the Maloja wind, mainly the stability of its
direction in the mean and the range of the direction fluctuations. Here we provide a
short account, more details are given in Report (2003). The measuring instrument was
a three-component sonic anemometer that gave short (5 min) records of wind velocity
components as well as the temperature of the air. All the values were produced with
a space averaging over the base of the instrument (about 10 cm) at a sampling rate
of 100 Hz. The records were made at several heights above the ground ranging from
0.85 to 3.6 m.
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Figure 7. (a) Time series of the total angle between the velocity vector, u, and the axis
x1-direction and (b) the corresponding relative frequencies plot. —, Sils-Maria data 25 August
2003; −·−, Kfar Glikson data.

The preliminary experiment confirmed the expectation that the Sils-Maria site was
a good location for the micro-turbulent measurements. As an example we show
(figure 7) the comparison of the total angle between the velocity vector, u, and the
axis x1-direction for the data from Kfar Glikson and Sils-Maria. The behaviour of
this angle is of the utmost importance: the precision of the velocity values obtained
with the help of the calibration data, as described above, is higher when this angle
is small. The precision is poor if the total angle is higher than the calibration range
of 35◦. The Sils-Maria data are strongly concentrated within a small angle and, in
practice, do not reach the dangerously high values. The Kfar Glikson data, on the
contrary, cover a wide band of angles, and there is a probability of exceeding the
value of 35◦.

The main experiment at the Sils-Maria site was performed in a configuration similar
to that of the Kfar Glikson experiments. For the first time the full probe, with the
central array shifted forward and containing also cold wires, was used in the field. It
was not reasonable to bring our mast there or to build a similar one. Instead a lifting
machine was used (figure 6c). The cradle of the lifting machine was removed, and a
special interface was designed and manufactured, permitting us to fix the probe and
the calibration unit to the lifting machine in the same way as they were fixed to the
mast.

2.6. Profile measurements

Besides the equipment for microscale turbulent measurements, described above, we
used at the Sils-Maria site an independent system for measurement of vertical profiles
of wind velocity and temperature in a range of heights from 0.5 to 11.5 m. There
were six fixed stations in this range. A single set of measuring instruments was used:
a sensitive cup anemometer and a resistance thermometer with suction and radiation
protection. This set was mounted on a carriage, rolling up and down along a special
mast, erected at the distance of about 30 m from the lifting machine. A controller
(specially designed for the system) moved the carriage up the mast. At each station the
movement stopped, and after a pause (to let the readings reach the steady state) the
values were measured and saved to a data logger. From the top station the carriage
returned to the lowest one, and the cycle repeated.
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Height U1 u′
1 u′

2 u′
3 λ η × 103 ruw C Reλ×10−3

m m s−1 m s−1 m s−1 m s−1 m m

0.8 5.6 1.25 0.93 0.59 0.025 0.35 −0.34 0.56 1.6
1.2 5.6 1.05 0.89 0.54 0.032 0.43 −0.29 0.51 1.8
2.0 6.7 1.23 0.84 0.53 0.057 0.46 −0.34 0.59 3.7
3.0 6.8 1.12 0.84 0.62 0.059 0.53 −0.32 0.55 3.4
4.5 7.5 1.22 1.18 0.63 0.090 0.60 −0.35 0.64 5.8
7.0 7.5 1.04 1.04 0.62 0.096 0.63 −0.39 0.51 5.3

10.0 8.0 1.06 0.90 0.61 0.119 0.76 −0.36 0.59 6.6

Table 1. Basic information on the experimental runs. The notation is as follows: x1, horizontal
streamwise; x2, horizontal spanwise; and x3, vertical coordinates; ui , corresponding components
of velocity fluctuations; u′

i , their rms values; λ= u′
1/rms(∂u1/∂x1), Taylor microscale;

ruw = 〈u1u3〉/σu1
σu3

, correlation coefficient between the streamwise and vertical components
of velocity fluctuations; C, Kolmogorov constant from the power spectrum of u1 in the
inertial range: E

u1

1 (k) =C〈ε〉2/3k−5/3, where ε – is a dissipation rate.

The profiles obtained show the background conditions of the runs, they are also
used for estimates of mean vorticity and strain (see § 3.1).

3. Some general results
Though the emphasis of the present project (described in Parts 2 and 3) was on

accelerations and temperature, we present a number of results, similar to those
published previously (Kholmyansky & Tsinober 2000; Kholmyansky et al. 2000,
2001a, b; Galanti et al. 2003, 2004), with the focus on the quantities associated with
velocity derivatives. The main aim is to demonstrate similarities and differences along
with important additional information. The basic data on representative runs for
several heights are presented in tables 1 and 2. The thermal stability at the site, when
our measurements were performed, is discussed in Part 3 § 4.1. It can be described as
slight instability.

The skewness of the derivatives ∂u2/∂x2 and ∂u3/∂x3 does not differ more than
twice from that of ∂u1/∂x1. Still, this difference is rather high, probably because
of the known difficulties in obtaining odd moments (see the scatter of the data in
figure 8 from Sreenivasan & Antonia 1997) and the additional difficulty in obtaining
transverse velocity derivatives. Also, noteworthy is the agreement of these values and
those of the flatness with the values known from literature (e.g. see the review by
Sreenivasan & Antonia (1997) and figure 8). Slight deviation of some of our points
for the flatness from the bulk of the data can probably be explained by a certain
under-resolution of the velocity derivatives.

3.1. RDT-terms

As mentioned, our main interest was in the field of derivatives of velocity fluctuations,
∂ui/∂xj . However, in order to limit ourselves to the study of this field only, it
was necessary to estimate the influence of the processes, associated with the mean
flow gradient, dU1/dx3, on production of ∂ui/∂xj , i.e. production of enstrophy, ω2,
and magnitude of strain, s2. Well-known order-of-magnitude estimates (Tennekes &
Lumley 1972) show that at high Reynolds numbers, production of enstrophy, 〈ω2〉/2,
is mainly associated with the term 〈ωiωksik〉, i.e. with the self-amplification of the
field of vorticity/strain fluctuations. According to these estimates, the contributions to
the enstrophy production, associated with the mean velocity gradient, 〈ukωi〉∂Ωi/∂xk ,
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Skewness Height (m)
∂u1

∂x1

∂u2

∂x2

∂u3

∂x3

∂ui

∂xk

, i �= k
〈ωiωksik〉

〈ω2〉〈s2〉1/2
− 〈sij sjkski〉

〈s2〉3/2

Measured 0.8 −0.46 −0.35 −0.29 0.01–0.14 0.16 0.23
Estimated 0.52 0.45
Measured 1.2 −0.64 −0.38 −0.22 0.03–0.15 0.19 0.26
Estimated 0.69 0.63
Measured 2.0 −0.54 −0.34 −0.36 −0.12–0.20 0.18 0.27
Estimated 0.61 0.57
Measured 3.0 −0.64 −0.43 −0.55 −0.11–0.08 0.20 0.29
Estimated 0.44 0.45
Measured 4.5 −0.51 −0.45 −0.25 −0.18–0.09 0.20 0.28
Estimated 0.67 0.64
Measured 7.0 −0.56 −0.42 −0.54 −0.02–0.25 0.20 0.36
Estimated 0.38 0.40
Measured 10.0 −0.68 −0.35 −0.44 −0.21−0.22 0.21 0.43
Estimated 0.39 0.44

Flatness
∂ui

∂xk

15

7

〈s4〉
〈s2〉2

9

5

〈ω4〉
〈ω2〉2

〈ω2s2〉
〈ω2〉〈s2〉 3

〈(ωksik)
2〉

〈ω2〉〈s2〉

Measured 0.8 5.0–13 10.5 11.2 3.2 2.0
1.2 5.5–24 21 16 6.0 5.1
2.0 5.6–12 19 56 9.8 5.7
3.0 8.6–15 11 19 4.3 2.3
4.5 8.0–65 20 19 6.1 3.8
7.0 7.3–18 16 21 5.8 2.8

10.0 14.5–33 18 26 6.9 3.3
Gaussian 3 3 3 1 1

Table 2. Skewness and flatness (kurtosis) values of velocity derivatives. The row marked ‘Es-

timated’ in the table for skewness contains values of 〈ωiωksik〉/〈ω2〉〈s2〉1/2
and 〈sij sjkski〉/〈s2〉3/2,

that were obtained assuming the isotropic relations 〈ωiωksik〉 = −17.5〈(∂u1/∂x1)
3〉 and

〈sij sjkski〉 = (105/8)〈(∂u1/∂x1)
3〉.

101(a) (b)
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Figure 8. (a) Skewness and (b) flatness of the velocity derivatives. The plots are from the
review by Sreenivasan & Antonia (1997) with our results added. 1, Van Atta & Antonia (1980);
2, Antonia & Chambers (1980); 3–5, Sreenivasan & Antonia (1997): 3, plane jet, 4, wake,
5, atmospheric boundary layer; 6, Kerr (1985); 7, Gibson, Stegen & Williams (1970); 8,
Jimenes et al. (1993); 9, Kholmyansky et al. (2001a); 10, present work.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

74
95

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
9:

26
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112007007495
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Derivatives in high-Reynolds-number turbulent flows. Part 1 71

Height (m) 0.8 1.2 2.0 3.0 4.5 7.0 10.0
Max ratio 0.003 0.003 0.001 0.002 0.0003 0.0003 0.0002

Table 3. Maximum absolute values of the ratio of the terms, associated with the mean flow
gradient, to the main production terms, 〈ωiωksik〉 and −〈sij sjkski〉.
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Figure 9. (a) Normalized power spectra of the three velocity components at various heights.
The spectra of u2 are shifted by –2 and of u3 by –4. (b) Example of compensated power
spectrum (component u1, height 1.2 m.)

〈ωiωk〉Sik , Ωk〈ωisik〉, i.e. owing to the presence of mean vorticity, Ωi , and strain, Sij ,
are small compared to 〈ωiωksik〉. Similar estimates remain valid for the production of
the total mean squared strain, 〈s2〉/2 ≡ 〈sij sij 〉/2. Namely, its production is mainly due
to the term −〈sij sjkski〉, whereas the contributions to the strain production, associated
with the mean velocity gradient, −〈uksij 〉∂Sij /∂xk and 〈sij sik〉Skj , are small compared
to −〈sij sjkski〉. Our present experiments (see also Kholmyansky et al. 2001a) showed
that this is really the case (see table 3).

It is noteworthy that such ‘smallness’ of these RDT-like terms is observed in a
turbulent channel flow at a rather moderate Reynolds number too (Sandham &
Tsinober 2000). Another related result is the smallness of terms, associated with
forcing, in the equations for vorticity and strain (Galanti & Tsinober 2000).

3.2. Velocity

A broad −5/3 range was observed for the power spectra of the three velocity
components (figure 9a) at all heights with about four decades of magnitude at the
lower height of 0.8 m and about six decades at the largest height of 10 m for the
component u1. Similar observations were made for the temperature fluctuations. At
the low end of the wave-number scale, with the decrease of the height, the spectra of
u2 deviate faster from the −5/3 law than those of u1. The spectra of u3 deviate even
faster.

The compensated spectra do not look ‘nice’ (figure 9b), so the inertial range is
considerably shorter. Similar behaviour is observed when looking at the r-dependence
of structure functions (with the exception of Kolmogorov’s −4/5 law, Kolmogorov
(1941b), for the third-order velocity structure function and the −4/3 Yaglom’s law
for the corresponding mixed velocity–temperature structure function, Yaglom 1949).
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Figure 10. (a) PDFs of ωiωj sij , −(4/3)sij sjkski and their surrogate, −17.5(∂u1/∂x1)
3 and

(b) joint PDF of ωiωj sij and −(4/3)sij sjkski . (b) Correlation coefficient = 0.265. Density shows
log (number) of points.

All this seems to be related to a much broader issue concerning the very existence of
scaling in turbulent flows.

3.3. Velocity derivatives

As mentioned, one of the main objectives of our present work is the field of velocity
derivatives. In the following, we show a number of key properties studied previously
in our field experiments and some new ones. Some basic results are shown in table 2.

3.3.1. Enstrophy and strain production

Production of enstrophy, ω2, and strain, s2, are among the basic processes in
turbulent flows. The PDFs of production of enstrophy, ωiωj sij , and strain,
−(4/3)sij sjkski , as well as one of their surrogates, −17.5(∂u1/∂x1)

3, are shown in
figure 10(a). Their positively skewed nature is seen quite clearly. The coefficients are
chosen equal to those appearing in the relations for homogeneous (−4/3) and isotropic
(−17.5) flow. As observed previously, the PDF of the surrogate −17.5(∂u1/∂x1)

3 is
considerably different. This is true also of other surrogates, such as the most popular
dissipation surrogate 15(∂u1/∂x1)

2.
Though the univariate PDFs of ωiωj sij and −(4/3)sij sjkski look similar, the point-

wise relation between ωiωj sij and −(4/3)sij sjkski is strongly non-local owing to the
non-local relation between vorticity and strain. Consequently, locally they are very
different as can be seen from their joint PDF (figure 10b): they are only weakly
correlated and there are many points with small ωiωj sij and large −(4/3)sij sjkski

and vice versa. The correlation coefficient between ωiωj sij and −(4/3)sij sjkski is of
the order of 0.25. Their rates, i.e. ωiωj sij /ω

2 and −(4/3)sij sjkski/s
2, are correlated

even less.
Among the qualitative universal features of most (at least) turbulent flows there is

a so-called ‘tear-drop’ feature observed in the invariant map of the second invariant,
Q =(ω2 − 2siksik)/4, versus the third invariant, R = −(sikskmsmi + (3/4)ωiωksik)/3, of
the velocity gradient tensor, ∂ui/∂xk . This feature was observed in all our runs. Two
examples are shown in figure 11.

An important point is that figure 11(a) was plotted for the subset of points (about
6% of the whole set), selected by the criterion of relative velocity divergence smaller
than 0.1, as done in another context by Lüthi, Tsinober & Kinzelbach (2005). The
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Figure 11. Joint PDF of the second invariant, Q = (ω2 − 2siksik)/4, and the third invariant,
R = −(sikskmsmi + (3/4)ωiωksik)/3, of the velocity gradient tensor. (a) Selected data and
(b) full data set. (a) Correlation coefficient −0.429; (b) −0.274.

ωiωksik ωiωksik/ω
2 −sij sjkski −sij sjkski/s

2

ω2 0.36 0.13 0.14 0.10
s2 0.30 0.23 0.38 0.28

Table 4. An example of correlation coefficients between production terms versus enstrophy
and strain, height 3 m.

R − Q plot belongs to the kind of statistical properties which are strongly sensitive
to errors. For the whole set of data (see figure 11b), this plot resembles the one for a
Gaussian velocity field, which is symmetric with respect to the vertical axis (Chertkov,
Pumir & Shraiman 1999). The left ‘horn’ in this plot is more pronounced because
of the larger level of noise. Statistics of all the quantities reported in the paper are
not sensitive to the above selection procedure, with the exception of the R − Q plot.
We do not have a definite explanation of this behaviour, neither have we found (so
far) other quantities with such sensitivity. One of the possibilities is that quantities
which are flux-like (i.e. they are of the form div{. . .} as R and Q are) exhibit such a
property. This is a matter for further study which is now under way.

Another kind of relation of interest is the one between the quantities responsible
for enstrophy and strain production and enstrophy and strain themselves. The
corresponding correlation coefficients are shown in table 4.

The main feature is that strain production and its rate are much less correlated with
enstrophy than with strain, whereas enstrophy production is equally correlated with
both, but its rate is more correlated with strain. Recall that the particular interest in
the strain production is because dissipation is directly related to strain rather than
enstrophy. It was, therefore, stressed (Tsinober 1998a, b, 2001; Tsinober, Ortenberg &
Shtilman 1999 and references therein) that the cascade, whatever this means, is
associated with strain production rather than with vortex stretching and enstrophy
production. Moreover, enstrophy production (and vortex stretching) opposes the
production of strain/dissipation. This is closely related to the issue of reduction of
nonlinearity, which is our next concern.
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Figure 12. Conditional averages of (a) W 2/ω2 and (b) (Υ ω)2 on �, ω2; �, s2.

3.3.2. Reduction of nonlinearity

Reduction of nonlinearity is understood here as in Tsinober (1998a, b, 2001) and
Tsinober et al. (1999); that is, all the physically meaningful nonlinearities appear
to be much smaller in the regions with concentrated vorticity (large enstrophy)
than in the regions dominated by strain. This is true of such quantities as ωiωj sij ,
ωiωj sij /ω

2, sij sjkski , sij sjkski/s
2, W 2, (Wi ≡ ωjsij ), W 2/ω2, sij sjksimsjm, sij sjksimsjm/s2

and (Υ ω)2 ≡ W 2/ω2 − {ωiωj sij /(ω
2)}2. All these quantities and others appear in the

equations for vorticity, ωi , enstrophy, ω2, total strain, s2 = sij sij , and higher-order
quantities (e.g. Appendix 3 in Tsinober 2001). The quantity (Υ ω)2 is a measure of the
inviscid rate of change of direction of the vorticity vector. The vector Υ ω

i =(1/ω)ωksik−
(ωi/ω

3)ωjωksjk appears in the equation for the unit vector of vorticity, ω̃i = ωi/ω, i.e.
it is responsible for tilting of vorticity. We show two examples in figure 12, clearly
demonstrating the phenomenon of reduction of nonlinearity in the above sense.

Reduction of nonlinearity in the sense discussed above is seen even better looking
at conditional means of separate eigen-contributions. Two examples, ωiωksik/ω

2, and
W 2/ω2 are shown in figure 13.

3.3.3. Geometrical statistics

The issues described above are closely related to what is called geometrical statistics,
which exhibits important aspects of dynamics and structure of turbulent flows. This
includes important geometrical relations (such as alignments mentioned below) of
dynamical significance owing to the essentially three-dimensional nature of turbulent
flows.

The first example is the most dynamically important alignment between vorticity,
ω, and the vortex stretching vector, W , Wi = ωjsij , since the cosine of the angle
between the two is the normalized enstrophy production, ωiωj sij /(ωW ). The PDF of
the cosine of this angle, cos(ω, W ), is positively skewed in full accordance with the
predominance of the vortex stretching over vortex compressing (see figure 14a). This
asymmetry is preserved at a very low level of enstrophy and total strain, which is a
clear indication that there are no regions in the turbulent flow exhibiting Gaussian
behaviour and/or which are ‘structureless’.

The asymmetry in the PDF of cos(ω, W ) is stronger in the regions dominated
by strain, s2 ≡ sij sij , than in the regions with large enstrophy, ω2. This difference is
smaller than in the DNS of Navier–Stokes equations at Reλ ∼ 80 (Tsinober et al.
1997, 1999; Tsinober 1998a). The most probable reason is that in the field experiment
the velocity derivatives are somewhat under-resolved, especially in the regions with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

74
95

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
9:

26
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112007007495
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Derivatives in high-Reynolds-number turbulent flows. Part 1 75

8

6

4

2

0 5 10 0

1

2

3

5 10 0
–6

–4

–2

0

5 10

α = 1 α = 2 α = 3

4

2

0 5 10 0

0.5

1.0

1.5

5 10 0

1

3

2

4

5 10

(a)

(b)

Λ
α
 c

os
2 (ω

, λ
α
)/
�
ω

iω
js

ij
/ω

2 �
|c

on
d

Λ
2 α
 c

os
2 (ω

, λ
α
)/
�

W
2 /ω

2 �
|c

on
d

ω2/�ω2�, s2/�s2� ω2/�ω2�, s2/�s2� ω2/�ω2�, s2/�s2�

Figure 13. Conditional averages of eigen-contributions to (a) ωiωksik/ω
2 and (b) W 2/ω2.

�, conditional on ω; +, on s.

1.4
(a) (b)

1.2

1.0

0.8

0.6

0.4

0.2

1.2

1.0

0.8

0.6

0.4

0.2

R
el

at
iv

e 
fr

eq
ue

nc
y

–1.0 –0.5 0 0.5 1.0
cos(ω, W)

–1.0 –0.5 0 0.5 1.0
cos(ω, λk)

k = 1

k = 2

k = 3

All

ω2 > 2.5�ω2�

(ω2 < 0.5�ω2�), (s2 < 0.5�s2�)

s2 > 2.5�s2�

Gaussian

Figure 14. (a) PDF of the cosine between the vorticity vector, ω, and the vortex stretching
vector, W and (b) between ω and the eigenvectors, λk , of the rate of strain tensor.

large enstrophy and/or strain, so the errors are likely to contribute to the ‘blur’ of
the orientations. The stronger asymmetry in the PDF of cos(ω, W ) in the regions,
dominated by strain, than in the regions with large enstrophy corresponds to the
above-mentioned reduction of nonlinearity in the regions with large enstrophy as
compared to the regions dominated by strain.

Now let us consider the vorticity vector, ω, in the frame of the eigenvectors, λk ,
of the rate of strain tensor, sij , with the corresponding eigenvalues, Λk , ordered as
Λ1 >Λ2 >Λ3. Figure 14(b) shows the PDFs of cos(ω, λk). They exhibit the same
behaviour as in the flows at moderate Reynolds numbers Reλ ∼ 102. The distributions
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the cosine between the vector Υ ω and the eigenvectors, λk , of the rate of strain tensor.

are clearly symmetric, and there is strong preferential alignment between ω and λ2,
the eigenvector corresponding to the intermediate eigenvalue, Λ2.

The enstrophy production can be expressed in the eigenframe as

ωiωksik = ω2Λ1 cos2(ω, λ1) + ω2Λ2 cos2(ω, λ2) + ω2Λ3 cos2(ω, λ3).

An important aspect is that the asymmetry of cos(ω, W ) and the corresponding
process of predominant production of enstrophy is associated with two qualitatively
different regions of turbulent flow. The first one is where vorticity is aligned with λ1,
the eigenvector corresponding to the largest eigenvalue, Λ1, of sij . The second region
is where vorticity tends to be aligned with λ2. We emphasize that the contribution to
the enstrophy production and other nonlinearities from the first region is about three
times larger than that from the second region, in spite of the general tendency for
alignment between vorticity and λ2 (see figure 14b). We point to at least two reasons
for this. First, the second eigenvalue, Λ2, though positively skewed, takes both positive
and negative values (figure 15a), whereas Λ1 assumes only positive values. Secondly,
the magnitude of Λ1 is much larger than that of Λ2 (see table 5).

As mentioned, another aspect of geometrical statistics concerns the change of
direction of vorticity, which is naturally characterized by the rate of change of the
unit vector along the vorticity, ω̂ = ω/ω. There are two contributions to this rate: the
inviscid and the viscous. The latter is inaccessible in our experiments. The former is
equal to the vector Υ ω

i =(1/ω)ωksik − (ωi/ω
3)ωjωksjk . The alignments, i.e. the PDFs of

cos(Υ ω, λk) of this vector with the eigenframe of the rate of strain tensor are shown
in figure 15(b).

3.4. Non-locality

Our concern here is with the aspects which can be defined as direct coupling of large
and small scales (Praskovsky et al. 1993; Kholmyansky & Tsinober 2000).

In figure 16, we show some results similar to those obtained by Praskovsky et al.
(1993) (figure16a) in parallel with those conditioned on the magnitude of the vector
of velocity fluctuations, u, where u2 = u2

1 + u2
2 + u2

3. A similar behaviour is observed
for conditional statistics of 〈δun

i 〉 for all i = 1, 2, 3 and n= 2, 3, 4.
Two aspects deserve a special comment. First, there is a clear tendency of increase

of the conditional averages of the structure functions with the energy of fluctuations,
as is seen from figure 16(b). Secondly, such a tendency, indicative of direct coupling,
is observed also for the smallest distance ∼ η, which was used for estimates of the
derivatives in the streamwise direction. This result is reliable owing to the absence
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Value at the height (m) α 0.8 1.2 2.0 3.0 4.5 7.0 10.0

1 1.44 1.60 1.36 1.31 1.53 1.04 1.37〈
ω2Λα cos2 (ω, λα)

〉
2 0.44 0.62 0.67 0.46 0.46 0.58 0.49
3 −0.87 −1.22 −1.03 −0.77 −0.99 −0.62 −0.85
1 0.53 0.33 0.29 0.52 0.46 0.49 0.49〈

ω2Λ2
α cos2 (ω, λα)

〉
2 0.09 0.05 0.15 0.14 0.13 0.16 0.15
3 0.38 0.63 0.56 0.34 0.41 0.35 0.36
1 1.77 1.56 1.63 1.91 2.08 1.55 2.19〈

Λα cos2 (ω, λα)
〉

2 0.47 0.50 0.52 0.45 0.47 0.54 0.47
3 −1.24 −1.07 −1.15 −1.36 −1.55 −1.09 −1.66
1 0.51 0.50 0.50 0.51 0.49 0.50 0.49〈

Λ2
α cos2 (ω, λα)

〉
2 0.08 0.09 0.10 0.10 0.10 0.11 0.10
3 0.41 0.41 0.41 0.40 0.41 0.40 0.41
1 0.53 0.52 0.51 0.49 0.47 0.51 0.47

〈Λα〉/〈s2〉1/2 2 0.09 0.10 0.09 0.07 0.06 0.09 0.06
3 −0.62 −0.61 −0.60 −0.56 −0.53 −0.60 −0.53
1 0.40 0.39 0.40 0.40 0.41 0.40 0.41〈

Λ2
α

〉
/〈s2〉 2 0.04 0.04 0.04 0.05 0.05 0.04 0.06

3 0.56 0.57 0.56 0.55 0.55 0.56 0.55
1 0.48 0.53 0.54 0.52 0.76 0.46 0.60〈

Λ3
α

〉
/〈s2〉3/2 2 0.01 0.02 0.02 0.02 0.01 0.02 0.02

3 −0.73 −0.82 −0.83 −0.86 −1.19 −0.80 −1.04

Table 5. Contribution of terms, associated with the eigenvalues, Λα , of sij , to the

mean enstrophy generation, 〈ωiωj sij 〉 = 〈ω2Λi cos2(ω, λi)〉, and vortex stretching, 〈W 2〉 =

〈ω2Λ2
i cos2(ω, λi)〉, at various heights from the field experiment. There is no summation

over the number of the eigenvector, α. The last three triads of rows show the means, the
mean squares and the mean cubes of the eigenvalues of the rate of strain tensor, Λα;
s2 = sij sij = Λ2

1 + Λ2
2 + Λ2

3; sij sjkski = Λ3
1 + Λ3

2 + Λ3
3.

of problems in estimating the derivatives in the streamwise direction (contrary to the
other two directions).

In figure 17, we show also similar conditional statistics for the enstrophy, ω2, and
the total strain, sij sij . The result is similar to that shown in figure 16 for the smallest
distance ∼η and to that of Kholmyansky & Tsinober (2000).

4. Concluding remarks
The results obtained in this work are in full conformity with those obtained

in a similar field experiment. Being the first repetition of an experiment of this
kind (in which explicit information is obtained on the field of velocity derivatives)
it gives us confidence in both experiments. The results reported here confirm the
main conclusions made before. Namely, these results are similar to those obtained in
experiments in laboratory turbulent grid flow and in DNS of Navier–Stokes equations
in a cubic domain with periodic boundary conditions, both at Reλ ∼ 102. An important
aspect is that this similarity is not only qualitative, but, to a large extent, quantitative.
The main difference between the two is in the ‘length’ of the inertial range. This means
that the basic physics of turbulent flow at high Reynolds number Reλ ∼ 104, at least
qualitatively, is the same as at moderate Reynolds numbers, Reλ ∼ 102. This is true
of such basic processes as enstrophy and strain production, geometrical statistics, the
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Figure 16. Conditional averages of velocity increments, 〈δun
i 〉 = 〈(ui(x + r) − ui(x))n〉,

(a) conditioned on the fluctuation of u1 and (b) on the magnitude of the vector of velocity
fluctuations, u.

role of concentrated vorticity and strain, reduction of nonlinearity and some non-local
effects.

The next point is that the present experiments went far beyond the previous ones
in two main respects. The first one is that all the data were obtained without invoking
the Taylor hypothesis and therefore a variety of results on fluid particle accelerations
became possible. The second is simultaneous measurements of temperature and its
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Figure 17. Conditional averages of enstrophy, ω2, and total strain, sij sij , on magnitude of
velocity fluctuations vector, u. The fit is in the spirit of the Kolmogorov refined similarity
hypothesis, though it is a fit in the first place. This fit cannot be expected to be universal
quantitatively and should at least have different coefficients a and b for flows with different
large-scale properties in the spirit of the Landau remark. a = 0.746; b = 0.154.

gradients with the emphasis on joint statistics of temperature and velocity derivatives.
Both are reported in Parts 2 and 3.
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