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ABSTRACT

Within the context of constraining an expansion of the dark energy equation of state w(z), we
show that the eigendecomposition of Fisher matrices is sensitive to both the maximum order
of the expansion and the basis set choice. We investigate the Fisher matrix formalism in the
case that a particular function is expanded in some basis set. As an example we show results
for an all-sky weak lensing tomographic experiment. We show that the set of eigenfunctions
is not unique and that the best constrained functions are only reproduced accurately at very
higher order N 2 100, a top-hat basis set requires an even higher order. We show that the
common approach used for finding the marginalized eigenfunction errors is sensitive to the
choice of non-w(z) parameters and priors. The eigendecomposition of Fisher matrices is a
potentially useful tool that can be used to determine the predicted accuracy with which an
experiment could constrain w(z). It also allows for the reconstruction of the redshift sensitivity
of the experiment to changes in w(z). However, the technique is sensitive to both the order
and the basis set choice. Publicly available code is available as part of icosmo at http://www.
icosmo.org.
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Holz 2009; Zhan, Knox & Tyson 2009a; Zhan et al. 2009b), most
recently Albrecht et al. (2009) defined a new dark energy figure of
merit using a binned 36 parameter model.

1 INTRODUCTION
The Fisher matrix methodology (Fisher 1935; Jungman et al. 1996;

Tegmark, Taylor & Heavens 1997) is a statistical tool that has been
used with some success in predicting the ability of future experi-
ments to constrain particular parameters of interest. In cosmology,
Fisher matrices have gained some importance in predicting the po-
tential outcome of experiments, in particular dark energy surveys,
on which a large amount of resources may be spent. It is therefore
of paramount importance that the way in which Fisher matrices are
used should be understood and that any results that depend on this
methodology should be robust and reliable.

In this article, we will outline how the techniques of decomposing
a general matrix have a special interpretation when used within the
Fisher matrix framework. This will be done within the context of
attempting to predict constraints for an extended parameter set. We
will use the specific example of attempting to constrain dark energy
equation-of-state w(z) parameters (Hu 2002; Huterer & Starkman
2003; Crittenden & Pogosian 2005; Huterer & Cooray 2005; Knox,
Albrecht & Song 2005; Dick, Knox & Chu 2006; Ishak, Upadhye
& Spergel 2006; Simpson & Bridle 2006; Albrecht & Bernstein
2007; de Putter & Linder 2008; Sarkar et al. 2008; Tang, Abdalla &
Weller 2008; Cunha, Huterer & Frieman 2009; Joudaki, Cooray &

*E-mail: tdk@roe.ac.uk
tScottish Universities Physics Alliance.

We will show that the eigenfunctions obtained by diagonalizing a
Fisher matrix are dependent of the basis set used in the construction
of the Fisher matrix, and that the eigenfunctions only tend to be
in agreement in the limit of a very large order of expansion. We
will also show that the usual method of marginalizing over extra
parameters — constructing the Schur complement (Zhang 2005) of
the total Fisher matrix — is dependent on the choice of non-w(z)
parametrization and priors when also performing an eigendecom-
position.

In Section 2, we will introduce the methodology. In Section 3,
we will apply the approach to weak lensing tomographic survey
prediction. We present conclusions in Section 4.

2 METHODOLOGY

For a set of parameters 6, the Fisher matrix allows for the prediction
of parameter errors given a specific experimental design and method
for extracting parameters. In the case of Gaussian-distributed data
where we assume that the error on the signal is not a function of
parameter values o¢ # o¢(6), we can take the covariance of the
estimated values of the parameters:

cov(8;,0,;1=((0; — (6:)0; — (0,) = F; ", 6]
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where the Fisher matrix is defined by (Tegmark et al. 1997; Jungman
et al. 1996; Fisher 1935)

oS oS
Fy=Y oo 22|, 2
' ; {UC 06, 59./} @

where S is the signal. The predicted marginal errors on the param-
eters are given by A6; = /(F~1);;, this is the minimum marginal
error that one can expect for the method and experimental design
considered (due to the lower bound in the Cramer—Rao inequality).

If we extend the parameter set to ¢ = (@, ¥), then the Fisher
matrix is extended to include these extra parameters

F oy
o6 _
o (1017,

and the predicted marginal errors on the parameters A6, =

v/ (F *‘)?ﬁ-"j are increased due to degeneracies between the original
parameters and the new parameters.

For dark energy cosmology prediction, the parameter set is com-
monly divided into those that contain information on the dark energy
equation of state w(z) and those that do not. The usual approach
taken (Hu 2002; Huterer & Starkman 2003; Crittenden & Pogosian
2005; Huterer & Cooray 2005; Knox et al. 2005; Dick et al. 2006;
Ishak et al. 2006; Simpson & Bridle 2006; Albrecht & Bernstein
2007; de Putter & Linder 2008; Sarkar et al. 2008; Tang et al. 2008;
Albrecht et al. 2009; Cunha et al. 2009; Joudaki et al. 2009; Zhan
et al. 2009a,b) is to ‘bin’ w(z) in redshift and to assign an amplitude
to the value of w(z) in each bin. However, w(z) is not a directly
observable quantity but can only be inferred through other inte-
gral relations, most simply the comoving distance or the Hubble
parameter

c < 1
D(z) = A dz -
v {Qm(l + 23 + Quee?lo dz’“+w<z’)1/(1+z')} 2

C)

1
H() = Hy { Qu(1 420 4 Qe J§ 0401 5)

So any binned expansion of w(z) to include extra parameters can-
not be justified by arguing that the data themselves are binned in
redshift.

The choice of how to expand the function w(z) is thus a purely
theoretical one. In general, we will consider w(z) expanded in some
complete basis set

I+ w@ =Y ap), ©6)
i=1

where a, are the basis coefficients and ¢,, are the basis functions.
Since we do not know what dark energy equation state is apt for
the physical Universe, any chosen basis set is as valid as any other.
Binning is a special case where the basis functions are top-hat
functions in redshift

where Az is the bin width and H is the Heaviside (step) function.

Note that interpolations between delta function values at discrete
redshifts, linearly or with some spline function, are different basis
sets to binning. We clarify three broad meanings of binning that
occur in the literature.

Fisher matrix decomposition 2135

(i) Top-hat basis set: functions are not continuous, all derivatives
are ill defined.

(ii) Linear interpolation: functions are continuous, first deriva-
tives are discontinuous, second and higher order derivatives are ill
defined.

(iii) Spline (e.g. quadratic spline): functions are continuous, first
derivatives are continuous, second derivatives are discontinuous,
third derivatives and higher are ill defined.

Of these three basis functions, only top hat forms an orthogonal basis
set; though all form a complete basis set. We include interpolation
in Section 3 for completeness, and because it is commonly used in
the literature.

The most general condition that we could apply to the expected
w(z) is that it is continuous (features could be very sharp in redshift
but not physically discontinuous — the sound speed of dark energy is
generally expected to be <c).! We note that binning is not discrete
differentiable, since at the bin boundary the gradient is infinite.

We will now investigate how the Fisher matrix should be treated
when such an expanded basis set is used.

2.1 Basis set decomposition

The general framework with which we are now presented consists
of a Fisher matrix

F99 F0w(¢)
F= Fu@w  pu@ue) |’ ®)
where 0 are the cosmological parameters not associated with w(z).
w(¢) is the set of parameters that describes w(z) where we have

expanded w(z) using a general complete orthogonal basis set with
basis functions ¢. The sub-Fisher matrix for w(z) is calculated by

1 095 oS
w(P)w(d) _
F B Z o(x)? 0q; 671]-’ ©

x

where o(x) is the expected marginal error on the signal S and
th the coefficients of the expansion (equation 6)
A/ [Fr@w@]-! = Ag; [not marginalizing over non-w(z) param-
eters 0].

A basis set is orthogonal if it satisfies the orthogonality relation-
ship

/ Gn(2Pu ()M (2)dz = ¢, ., (10
R

over arange R, where M(z) is a weighting function, c,, are constants
and 8% is the Kronecker delta. The coefficients needed to construct
an arbitrary function f(z) using the basis set ¢ are given by

1
= / FOB M)z, (11)
Cp R

In general, we can construct the Fisher matrix (equation 8) using
an orthogonal basis set for w(z) [orthogonal with respect to a weight
function M(z)], but the submatrix F*@¥@® will not be diagonal
since w(z) can, at a minimum, only be observed through integral
relations.?

! There are some tachyonic dark energy models (e.g. Bagla, Jassal &
Padmanabhan 2003), but choosing a basis set based on these specific models
would be optimistic.

2 Most articles in the literature (e.g. Huterer & Starkman 2003; Crittenden &
Pogosian 2005; Albrecht et al. 2009) neglect the weight function. We note
that the top-hat basis set is peculiar, in that it is orthogonal with respect to
any weight function.
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A common approach is to look for the eigenfunctions of w(z).
The motivation for this is that the eigenfunctions are thought to form
an orthogonal basis set. These functions are found by rotating the
Fisher matrix such that it is diagonalized using the transformation

A? = QTFQ,
F = QA’Q", (12)

where Q is an orthogonal matrix, Q'Q=1.

By performing this transformation, the non-w(z) errors can also
be affected. There are three possibilities: either F is the full w
and non-w Fisher matrix in which case the non-w parameters are
clearly affected, or F is the w-only Fisher matrix, or F can be the
marginalized w-only Fisher matrix. We discuss these latter two
options in Section 2.3.

The new Fisher matrix A? is a diagonal matrix. The Q matrices
are called the eigenmatrices (or vectors), which are a special kind of
Jacobian matrix in which the original matrix is rotated such that it
is diagonalized (see Appendix A). In performing this operation, we
have constructed a new set of basis functions, e, that are linear com-
binations of the original basis set, ¢. w(z) can now be reconstructed
using two equivalent forms

N N
L+ w@) =Y ad,@) =Y be2), (13)
n=l1 n=l1

where N is the order of the sub-Fisher matrix F*@®*® _ we have
introduced this maximum order since Fisher matrices have, by defi-
nition, a finite order. The new functions, e, can be constructed using
the eigenmatrix

N
ei() = Qijo;(2), (14)
j=1
where (Appendix A)
_ %,
Qll - aai N (15)

The new Fisher matrix has diagonal elements that are related to the
errors on the new functions’ coefficients

1 0S aS 1
Al = — =5 . 16
Y Z O'(X)z abl abj Y (Ab,)2 ( )

X

In performing such a rotation, we have effectively created a new
basis set that is orthogonal with respect to a new weight function
(equation 10) that takes into account the covariance in the Fisher
matrix.

We note that an operation of the form F = Q A Q" (or the inverse
Q"FQ = A) leads to a unique Q if A and F are fixed. However,
in general, a further operator P can be applied to the new diagonal
matrix PA = P(QTFQ) to map a matrix F to any diagonal of the
same dimension, where P is also a diagonal. P acts like a ‘stretching’
(or compression), not a rotating, operator. P does not correspond to
a change in parameters but a change in the errors on an eigenbasis
parameter set. We do not consider this in the remainder of the
article.

We also note that, in general, there exist operators that can rotate
from a large matrix to a smaller one. For example, an n x n diagonal
matrix A2 can be mapped to a smaller m x m diagonal matrix
Al where m < n via the operator AjM! = Ay Al AT where
Ay is an n x m matrix. So if the size of the matrices is not specified,
then the operation F = A(QAQT)AT = RART (where R = AQ) can
map a matrix to a diagonal of smaller dimension. This is equivalent

to mapping the basis set expansion from a particular order to one
of a smaller maximum order. Note that this is, in general, a one-
way operation since information is lost in the minimization. In the
remainder of this article, we will only consider mapping between
matrices of the same dimension.

2.2 The non-uniqueness of the eigenfunctions

It is often assumed that an eigenfunction decomposition yields a set
of functions that are unique (if they are not degenerate; Huterer &
Starkman 2003; Crittenden & Pogosian 2005; Albrecht et al. 2009).
This statement comes from the matrix theory; the diagonalization
of a particular matrix can only be done one way. However, this
does not mean that the eigenfunctions of w(z) from a finite Fisher
matrix are unique, since we can start with different basis sets and
this choice is arbitrary. This breakdown is due to the finite number
of coefficients — so it is really a convergence statement.

The general minimum assumption case we are dealing with is one
in which we consider two Fisher matrices calculated by expanding
w(z) in two different basis sets ¢ and /.

We can only transform one Fisher matrix F¢ — F¥ to another
by changing the basis sets if all the basis set ¢ functions 1 — N
can be described using only the functions 1 — N from the set ¥/,
and vice versa. For example, to rotate from basis ¢ to ¥, then

N
Vi)=Y Jydi(x) Y 1<i<N (17

j=1

needs to be true. However, for any conceivable complete basis set
for finite N this sum will always have some residual. This residual
R;(x) can be quantified by

N
Vi) =Y Jij;(x) + Ri(x),
j=1
= T
R = > L_fﬁ / Y (N (3 OMP () | 0 ). (18
R

n=N+1

The notation we use throughout is that Q are explicitly eigen-
matrices, J are explicitly general Jacobian transformations, R are
residuals and F are Fisher matrices. Note however that an eigen-
matrix Q is a special kind of Jacobian J where the result of the
transformation is a diagonal.

In Appendix B, we show that if the residual is non-zero then the
eigenvalues are not equal.

If the residual between any two basis sets is small, in the limit
of large N, then the eigenfunctions will agree to some accuracy,
and one would expect the best constrained eigenfunctions from any
basis set to converge. However, for a finite N, the eigenfunctions
will only all agree if the N th basis function in one set can be
reproduced using only the functions 1 — N in other basis set.

Fig. 1 shows the residuals (equation 18) between a variety of basis
sets as a function of order [in equation (18) we replaced co with 107
for which we find numerical convergence of the results in this figure
since 50 < 107]. This plot shows that in order to have a residual of
<0.01 when reconstructing Legendre polynomials with Chebyshev,
the order of the Chebyshev needs to be at least as high as the order
of the basis function that is being reconstructed. However, in the
opposite case the low-order Chebyshev polynomials are difficult
to reproduce with Legendre, and the Chebyshev polynomials are
difficult to reproduce with the top-hat basis set (binning). In fact,
Cheyshev functions are more difficult to reproduce (especially at

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 398, 2134-2142
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Figure 1. An example of the residual that can occur when reconstructing a given basis sets functions with another basis set. On the y-axis is the order of
the basis function to be reconstructed, on the x-axis is the maximum order of the series that is attempting to reconstruct the functions. The grey-scale shows
the maximum residual (black low residual, white large residual), each function is investigated over the range x € [—1, 1]. The left-hand plot shows the order
of Chebyshev polynomials needed to reconstruct Legendre polynomials. The middle plot shows the order of Legendre polynomials needed to reconstruct
Chebyshev polynomials (the inverse operation to the left-hand plot). The right-hand plot shows the order of the top-hat basis set needed to reconstruct Chebyshev
polynomials. The red (grey vertical) lines are at N = 36 (Albrecht et al. 2009) to guide the reader.

low order) because they are bounded in the y direction as well as
the x direction.

If one chooses a maximum order of N = 36 (Albrecht et al. 2009),
for example, then there would be >0.01 residual in reconstructing
Chebyshev, Legendre and top-hat basis sets from each other. As a
result, the reconstructed eigenfunctions would not agree. We will
investigate this further in Section 3.

To summarize this section.

(i) The eigenfunctions created using two different basis sets and a
finite order will only agree if the residual between the reconstruction
of the basis functions is zero.

(ii) For a finite order, there will always exist some eigenfunctions
from a given basis set that cannot be reproduced using another. So
for finite order, the set of eigenfunctions is non-unique.

(iii) For alarge finite order, we expect the best constrained eigen-
functions to tend to agreement, and for this agreement to improve
as the order is increased.’

2.3 Marginalization

Another difficulty in constructing robust eigenfunctions is deciding
what to do with the non-w(z) parameters. A common approach
is to marginalize over these other parameters and then perform
the eigenfunction decomposition. This in effect mixes all of these
parameters with the equation-of-state expansion.

Referring to equation (8), if we want to know the errors on
expanded w(z) parameters, then we can marginalize over the other
parameters 6 by constructing the Schur complement (Zhang 2005)
of the F*@¥@) submatrix

FREOW@ _ pu@u) _ pu@( pod)=t pou) (19)
e new Fisher matrix will then give errors on the w(z
Th Fisher matrix F1x*"*® will then g th
parameters already marginalized over the extra parameters.
We can now diagonalize F15"""? like

diag[ F]wsw)w(w] — (Qmixed)T pu(@)w(@) gmixed

_ (Qmixed)TFaw(d))(FGﬂ)—l Fw(¢)ﬂ Qmixed
— Amixed’ (20)

3 The full proof of this involves Weyl’s matrix inequality and is beyond the
scope of this article. We demonstrate convergence in Section 3.

where A™*! is a diagonal matrix and Q™** is the eigenmatrix of

the Schur complement. Note that it is the sum of the terms on the
right-hand side that forms a diagonal not necessarily the individual
terms themselves.

Alternatively, we can diagonalize F*®*(® without marginalizing
so that (Q")T Fr@w@ v — A¥ where A" is diagonal. In this case,
we can construct the new full Fisher matrix in equation (3) for which
the F*@¥@ component is now diagonal

. F(w (Qw)T F0w(¢)
Fw(¢)9 Qw (Qw)T FW(¢)W(¢) Qw

The cross terms need to be modified so that the correlations between
0 and w(¢) are correct. We can now write the new marginalized
errors on the new diagonalized w(¢) vectors like equation (19) so
that

w(p)w(p) __ wn\T pw(d)w(p) Hw
Fas = (Q")F 0 22)

—(Q")T FOw@) (F0)~1 Fu@r gu.

Note that the (Q*)T F*@»? effectively acts like rotation on (F%%)~!
and that since the w(¢) are independent parameters to the 6, there is
no reason to generally expect that the second term is diagonal — why
should (Q”)T F*@* be the eigenmatrix of (F®)~! when the 6 are
independent of the w(¢)? Hence, the Fy”™? = diag[ F1n?")
in general and the full eigenfunctions are not equal to the w (¢)
eigenfunctions Q™ £ Q¥ comparing equations (20) and (22).

If equation (20) is used to create eigenfunctions, then the re-
constructed functions will contain the eigenfunctions of the w(z)
parameters mixed with the eigenfunctions from the non-w(z) pa-
rameters.

Our concern is that if the eigenfunctions are mixed, then any state-
ments on the redshift sensitivity to w(z) are dependant on the non-
w(z) parametrization and the true w(z)-only sensitivity is masked.
For example, if flatness was assumed, if a spectral index is included
or its running, or if massive neutrinos were included (to name a few
cases), then conclusions made using the mixed eigenfunctions will
be different.

What we propose as an alternative is to find the w(z)-only eigen-
functions — which are robust to the non-w(z) parametrization —
and to include the marginalization in a consistent way to find the
marginalized errors on the w(z)-only eigenfunctions.

ey

(1) Find the eigenfunctions of w(¢) by diagonalizing F%4.
(i1) Calculate the new full matrix like equation (21).

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 398, 2134-2142
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(iii) Find the marginal errors on the w(¢) eigenfunctions by
marginalizing over the other parameters like equation (22).

We note that using this approach the errors on the eigenfunction
coefficients will be correlated after marginalizing over the non-w(z)
parameters. But that these marginalized eigenfunction errors will
be robust to the non-w(z) choices made.

2.4 Priors

One can add a prior before the eigendecomposition or afterwards.
Depending on the nature of the prior, this can affect the eigen-
functions themselves. Adding a general non-diagonal prior before
diagonalization will act to modify the eigenfunctions in a similar
way as described in Section 2.3.

If we add a diagonal prior P (no correlation between the prior
errors) before diagonalization, then in general this will affect the
eigenfunctions since if QFQT = Ap, then QFQT + PQQT #
diagonal. There is a special case of adding a unity matrix as the
prior, in this case the eigenfunctions are unaffected since QFQ" +
Q/Q" = QFQT + I = Ag + I, and adding the prior before or after
the diagonalization has the same effect.

Throughout the remainder of this article, we will not add any
priors to any parameters. In Albrecht et al. 2009, they suggest
adding a prior of unity to all w(z) binned parameters. We note
that this does not have an effect on the eigenfunctions and in the
case of survey optimization and comparison adds a common floor
to all the scenarios and does not affect the relative merit of any
survey/method.

3 APPLICATION

We will now investigate the effect of choosing different basis sets
for the expansion of w(z). We will use the example of weak lens-
ing tomography (described in Amara & Refregier 2007) where a
photometric survey is split into redshift bins, and the auto- and
cross-correlation power spectra of the shear fields are used to in-
fer cosmological parameter likelihoods. We will present predictions
for an Euclid/DUNE-like survey (Refregier et al. 2006) — a 20 000
deg? photometric survey in five bands with a number density of
35 galaxies per arcmin’ and a median redshift of 7 = 1, we use
10 tomographic bins in the range 0 < z < 5.0. We have extended
the publicly available 1cosmo (Refregier et al. 2008; Kitching et al.
2009) package to include basis set expansion of w(z), these addi-
tions will be available in version 1.2 (http://icosmo.pbworks.com).

We will investigate six different basis sets summarized in Table 1.
We expand these basis sets to a maximum order such that

Order

L+ w@) =) anpy(2). (23)
N=1

where the fiducial cosmology is A cold dark matter, i.e. the fiducial
values are ay = 0 for all basis sets. In performing such a calculation,
the fiducial w(z) function must be the one that all the basis sets can
reproduce.

3.1 Parameter errors

Fig. 2 shows the expected w(z) conditional errors on the origi-
nal basis function coefficients and on the eigenfunctions. It can be
seen that by rotating into an eigenbasis set the distribution of er-
rors is skewed to produce more well-defined functions as well as

P

1072} Fixed Errors 3 Fixed Errors ]

S 10°F 1

1072} Marginalised Errors| Marginalised Errors]

0 20 40 60 80 0 20 40 60 80 100

N N
Figure 2. The lines show the predicted fixed errors on the basis set co-
efficients for the original basis set ¢y and for the rotated, eigenfunctions,
Ay for a maximum order of 100. We have ordered the errors in the in-
creasing order of magnitude for clarity, so that the N th function in the top
panel does not correspond to the N th basis function, but is the N th best
constrained. The top two panels show the error for w(z) not marginalized
over any other cosmological parameters. The bottom two panels show the
errors including marginalization over the other non-w(z) parameters using
the method outlined in Section 2.3 (equation 22). The key to the line styles
is given in Table 1 — here we show the Fourier, Chebyshev and top-hat basis
sets.

more poorly constrained functions in comparison to the non-rotated
set.

It can be seen from the left-hand panels of Fig. 2 that the best con-
strained eigenfunctions have a similar error (the variance between
the lines is small) but for the poorest constrained functions the vari-
ance between the basis sets is larger. This is because the most well-
constrained eigenfunctions are similar for each basis set whereas
the poorest constrained have very different functional forms. As
shown in Section 2.2, the set of eigenfunctions is not unique.

We also show the errors marginalized over the non-w(z) parame-
ters. For the eigenvalue case, this is done using equation (22) where
the eigenfunctions are the w(z)-only eigenfunctions. In all cases,
the best constrained eigenfunctions are those that are also the most
degenerate with the other cosmological parameters, and marginal-
izing over these can increase the error on the eigenfunctions by an
order of magnitude.

Figure 3. The five largest eigenvalues as a function of the maximum order
of expansion. Each line represents a different basis set, the key to the line
styles is given in Table 1.

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 398, 2134-2142
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Table 1. A summary of the basis sets investigated. The sets are complete over a range R
and orthogonal with respect to the weight function M (z). Top hat is equivalent to binning.
Interpolation means a linear interpolation between delta functions, where m = % and
¢ =y — mx for the nearest two delta functions x; < x < x, to x.* interpolation is not
an orthogonal basis set, we include it here since this is a commonly adopted expansion.

Basis Functions Range R Weight M(x)  Plot key
Fourier cos (nx) and sin (nx) [— 7,7 1 _
Chebyshev T ,(x) = cos[n a cos (x)] [—1,1] (1- xz)’% ,,,,,
Legendre Py(x) = 5= (2= 1" [- L1
Laguerre L,(x)= % %(e"‘x”) [0, 0] et _._._
Top hat Hx -5 - HE+ 4 [—o0,00] 1 o
Interpolation mx + ¢ [—o0, o] 1 _

Marginalised Marginalised

Ax
—-
o
™
-

0 20 40 60 80 0 20 40 60 80 100
Max Order Max Order

Figure 4. The eigenvalues as a function of the maximum order in the
basis set expansion. The key to the different basis sets lines is given in
Table 1. The upper panels show the eigenvalues for the second and fourth
best constrained eigenfunctions and not marginalizing over the non-w(z)
parameters. The lower panels show the eigenvalues for the second and fourth
best constrained eigenfunctions marginalizing over the non-w(z) parameters
using the method outlined in Section 2.3 (equation 22).

Fig. 3 shows how the largest five eigenvalues change as a function
of the maximum order in the expansion. It can be seen that a stable
regime is found in which the values do not change substantially as
the order is increased. We expand this in Fig. 4 where we show how
the eigenvalues for the second and fourth eigenfunctions change as
a function of maximum order. The Fourier and Chebyshev values
agree at higher order, the other basis sets — particularly interpolations
and top hat — are very slow to converge. Even for a maximum order
of N = 100, there remains a large variance between the basis
sets and that this variance increases as the eigenvalues decrease.
The eigenvalues are related to the eigenfunction errors by o =
1/+/x, we show these errors in Fig. 2. The best constrained N =
0 eigenfunction has a similar error (for top hat, Chebyshev and
Fourier basis sets), but by N > 2 the errors can vary by a factor of
210.

There is a large range of eigenvalues between the basis sets, the
most notable outliers being the top-hat and interpolation basis sets.
This is related to the fact that the residual, even at a maximum order
of 100, between the reconstructed eigenfunctions and the true eigen-
functions is significant. We investigate this further in Section 3.2.
When we marginalize over the non-w(z) parameters, the variance
between the basis sets remains but each basis set’s errors are af-
fected in different ways since the basis functions are degenerate
with the non-w(z) parameters to different degrees.

We have performed a numerical test that checks that the eigen-
decomposition of the Fisher matrix is working correctly. First, we
find the eigenfunctions by diagonalizing the w(z) sub-Fisher ma-
trix. We then use the eigenfunctions as a new basis set. We create a
new Fisher matrix which takes derivatives with respect to the coef-
ficients of the new (eigenbasis set). This new Fisher matrix should
be diagonal and should have diagonal elements that are equal to the
original Fisher matrices’ eigenvalues. We find that the code used in
this article successfully passes this numerical check. The code used
is available as part of 1cosmo v1.2 and later.

3.2 Eigenfunctions

The eigenfunctions are reconstructed from the eigenmatrix Q using
equation (14). Fig. 5 shows the second and fourth best constrained
eigenfunctions for different maximum orders in the expansion for
each basis set. In the absence of any way to reconstruct the ‘true’
eigenmatrix, we also show the mean eigenfunction averaged over
basis sets for each order — in the limit of a high order, we expect the
eigenfunctions to converge.

It can be seen that at order = 40, for example, there is still a
significant variation between basis sets. The variance between basis
sets decreases as the maximum order is increased, but for the N =
4 function the top-hat basis set varies significantly from the mean.
We show the difference between each basis set eigenfunction and
the mean in Fig. 6.

In Fig. 7, we show the variance between the functions for a given
basis set and order and the mean eigenfunctions for N = 100. In
general, as the order increases the variance between the basis sets
decreases. For some basis sets, such as Chebyshev, Laguerre and
Legendre polynomials, there is already convergence even at a low
order of ~40. At very low order N < 10, the eigenfunctions are
very noisy. Other basis sets, such as Fourier and interpolation, reach
convergence at a high order ~100. The Fourier basis set is noisy
since high-order functions can introduce highly oscillatory modes
into the eigenfunctions, this can also be seen in the N = 60 panel in
Fig. 5. The top-hat basis set requires an even higher order. * We note
that there would be even better agreement between the non-top-hat
basis sets and the mean if we excluded the top-hat basis set from
this analysis.

4 We have not extended this calculation to even higher order, since numerical
effects involved in inverting (nearly singular) matrices of very high order
start to become important; we choose a safe maximum order of 100 for this
exercise.
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N=2 Order=10

N=2 Order=30

N=2 Order=60

N=4 Order=30

1(z)

Figure 5. The second and fourth best constrained eigenfunctions for the weak lensing tomographic survey considered. We show how the functions change as
the maximum order in the expansion is varied. The thin lines are for each individual basis set — the key is given in Table 1. The thick black solid line shows the

mean function over all basis sets at each order.

N=2 Order=10

N=2 Order=30

N=2 Order=60 I N=2 Order=100

N=4 Order=10 N=4 Order=30

Figure 6. The difference between the eigenfunctions for each basis set and the mean eigenfunction (over all basis sets) for each order. We show this residual
for the second and fourth best constrained eigenfunctions for the weak lensing tomographic survey considered. Each panel matches to the corresponding panel

in Fig. 5, and the key is given in Table 1.

4 CONCLUSION

We have found that there is some ambiguity in the use of eigende-
composition in the literature to date and have aimed to clarify this
situation. By investigating an arbitrary basis set expansion of w(z),
we have found that the technique of finding the eigenfunctions of
w(z) from the Fisher matrix is sensitive to the basis set choice and
the order of the truncated expansion.

We used the example of a weak lensing tomographic survey to
demonstrate how the eigenfunction decomposition is sensitive to
these choices. We find that for an Euclid/DUNE-like survey the
best constrained eigenfunctions could be determined to an accuracy
of <1 per cent using lensing alone (no priors).

de Putter & Linder (2008) also presented a critique of the eigende-
composition approach which sheds further doubt on the technique’s
validity, especially at low truncated order. They note that whilst the
noise term on an eigenfunction can be predicted, it is in fact the
signal-to-noise ratio that will be important for future surveys. We
note then that a low-order expansion in a particular basis set is not
robust and also has uncertain relevance in gauging the predicted
performance of a future survey.

Because of these ambiguities in the reconstruction of w(z), we
recommend a move towards using physically motivated functional
forms based on models. Physical parameters can be constrained

and models compared using evidence calculations (e.g. Heavens,
Kitching & Verde 2007; Trotta 2007 for a link with Fisher matrices).
We summarize our conclusions here.

(1) The parametrization of w(z) is an arbitrary basis set choice,
and since we do not know the nature of dark energy in general any
choice is valid.

(i) When using orthogonal basis sets, it is important to self-
consistently include the weight function.

(iii) When one refers to ‘binning’, one is actually referring to
a top-hat basis set. Interpolation is also valid but should not be
confused with binning.

(iv) The set of eigenfunctions for a finite truncated basis set is
not unique. There will always exist some eigenfunctions that are
not common to all (truncated) eigenfunction sets.

(v) When different basis sets are truncated to high order, the best
constrained eigenfunctions will tend to agreement.

(vi) When marginalizing over extra cosmological parameters, we
show that finding the eigenfunctions of the full Fisher matrix leads
to mixed non-w(z) and w(z) eigenfunctions that are dependent on
the non-w(z) parametrization. We propose an alternative in which
the marginalization affects the w(z) eigenvalues only, but not the
functions themselves, by finding the eigenfunctions of the w(z)
submatrix.
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Figure 7. The variance between the eigenfunctions, reconstructed using
a maximum order in the basis set expansion, and the mean eigenfunction
using an order of 100. The key to the different basis sets lines is given in
Table 1. The upper panel shows the variance for the second best constrained
eigenfunctions, and the lower panel show the variance for the fourth best
constrained eigenfunction.

(vii) To find agreement between the top ~4 eigenfunctions, an
order of at least 100 is required, for some basis set choices this is
higher.

The convergence of the eigenfunctions depends on the original
choice of basis sets — some converge more quickly than others.
We find that Chebyshev, Legendre and Laguerre polynomials reach
convergence more quickly than interpolation, top-hat or Fourier
basis sets.

Even with an order of 100, the residuals between the recon-
structed eigenfunctions cause the associated errors to vary by as
much as a factor of 1-10 for the best ~4 constrained functions.

We note that the dark energy figure of merit suggested by Albrecht
et al. (2009) uses a top-hat basis set with 36 parameters.

We recommend that if an eigenfunction Fisher matrix analysis is
needed, then a robust procedure should be followed with respect to
marginalization such that results are not affected by non-dark energy
assumptions and priors and that a very high order of expansion is
needed. The convergence can be tested by investigating a variety of
basis sets — using only a single basis set is insufficient.

The code used in the article will form part of the icosmo
open source package and will be available in version 1.2 at
http://www.icosmo.org.
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APPENDIX A: EQUIVALENCE OF
EIGENMATRICES AND JACOBIAN MATRICES

In this Appendix, we will show that the eigenmatrix is equal to a
Jacobian matrix. The eigenvalue decomposition of a matrix can be
written like

QAQT =F. (AD

The Jacobian transform of a Fisher matrix maps from one param-
eter set a; to another b;

JAJT=F, (A2)

where the matrix J in this case maps from the set b to a. Where A
and F are defined as

= ; [UC 0q; 0a; ]
3 o 2000 0 A5
Al} - Z |:CTC ab[ abj :|7

X

and the signal is parametrized in as
Cl¢:x) = aii(x)

Crix) =Y bii(x) (A4)
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in F and A, respectively. The elements of the Jacobian are
0b;

J,'j = da. .

(A5)

When transforming from one basis set to another, we can write
the following:

1
*/ J()@n(x)M (x)dx
Cn JR

a, =
1
= ?/ [Z bml/fm(X):| ¢, (X)M(x)dx, (A6)
" R m
so that the Jacobian can be written as
da, 1 [ )
3, = g' . Y ()@ (x) Mg (x)dx, (A7)

where the weight M and constant ¢ are for the ¢ basis set.

If we assume that i are eigenfunctions of the ¢, then they can
be reconstructed using linear combinations of the original basis
functions

Vi)=Y Qi (x). (A83)
J

Since the decomposition of a matrix F to a diagonal matrix A
in equations (A1) and (A2) is unique, it can easily be seen that the
eigenmatrix is in fact a Jacobian. This can be shown in the following
way. The Jacobian is written like

da, 1

abm CZ’

We construct new basis sets as linear combinations of the old so
that

Vi () () M (x)dx. (A9)
R

SZ - / Qe ()b (X) My (), (A10)
m Cn JR
this leads to
da, 1 "
T = 0 [ ooy
= éka‘skncf
Ton = O, (A11)

APPENDIX B: NON-UNIQUENESS
OF THE EIGENVALUES

Here, we will show that if the residual between the reconstruction of
a basis set using another is non-zero, then the eigenvalues obtained

from each set via an eigenvalue decomposition of the Fisher matrices
are not equal.
The rotation matrix from basis ¢ to ¥ can be written as

1
Jij=— dx‘//i(x)¢j(X)M¢(X)~ BD
¢ Jr

‘We now assume that the new basis functions can be written as the
sum of some linear combination of the old basis functions plus some
residual (equation 18)

1
Jij = 3 / dx [J3e(x) 4+ Ri(x)] ¢;(x)M?(x), (B2)
R

where the rotation matrix J* rotates the old Fisher matrix to the
new Fisher matrix assuming no residual. This can now be written
like

A
Jij = J5 + T

1 p (B3)
Ty = — | dxRi(x)p;(x)M?(x).

c? Jr

In the following, we will use subscripts for the basis for clarity.
We now rotate from ¢ to ¥, then diagonalize the Fisher matrix of
Y to get Ay, this can be written as

— -1

Jony Uy +Tou) " Fop (Jgy + Toy) Jyn, = Ay (B4)

We can also diagonalize F 4, directly to get Ay

Jons Foodon, = N (BS)
If we assume that Ay, = A4 = A, then comparing equations (B4)

and (B5) the following must be true:
A
(Joy + Tou) Jyn = Joa B6)
Jqf‘waA + TyyJyn = Jgn,

since we have assumed A, = A, the first pair of rotation matrices
commutes that (however in general this is not true) J gy J ya = J g,
and we have

Jon + Toy Jyn = Joa (B7)

which leads to

Tyydyn =0 (B8)
T¢w = 0

Soif Ay = Ay, then T 4 = 0. By deduction we can then assert that
if Tyg #0, then Ay # A, and the eigenvalues are not unique.
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