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Three-dimensional electrical conductivity structure beneath Australia
from inversion of geomagnetic observatory data: evidence for lateral
variations in transition-zone temperature, water content and melt
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S U M M A R Y
In this paper, we report the 3-D electrical conductivity distribution beneath the Australian conti-
nent in the depth range 410–1600 km, which we have imaged by inverting C-response estimates
from a regional network of geomagnetic observatories. The inversion scheme is based on a
quasi-Newton optimization method while the forward algorithm relies on an integral-equation
approach. To properly account for the ocean effect in responses at coastal observatories we
included a high-resolution (1◦ × 1◦) fixed thin laterally varying surface conductance layer.
As starting model in the inversion we considered a laboratory-based 3-D conductivity model
of the region obtained from seismic surface wave data and thermodynamic modelling. This
model provides a good fit to observed C-response estimates supporting its choice as initial
model. The most striking feature of the obtained 3-D model is a high-conductivity anomaly in
the lower part of the mantle transition zone (MTZ; 520–660 km depth) beneath southeastern
Australia implying considerable lateral as radial heterogeneity in the conductivity structure.
The high-conductivity region appears to be 0.5–1 log units more conductive than previous
global and other regionalized 1-D models. Further analysis using laboratory-based conduc-
tivity models combined with thermochemical phase equilibrium computations shows that the
strong conductivity anomaly implies water contents of around 0.1 wt per cent in the upper
part and >0.4 wt per cent in the lower part of the MTZ. This implies a large MTZ water
reservoir that likely totals one to three times that which currently resides in the oceans. The
amount of water in the lower MTZ appears to exceed the experimentally determined water
storage capacity of the main lower MTZ mineral ringwoodite, which, as a result, undergoes
dehydration-induced partial melting. Including contributions to conductivity from a thin melt
layer (20 km thick) located in the mid-MTZ increases conductivity locally in the melt layer to
∼1 S m−1, that is, about 0.5 log units more conductive than the average surrounding mantle.
This provides an adequate explanation for the strong conductivity anomalies observed beneath
part of the continent and points to lateral variations in melt in the MTZ.

Key words: Numerical solutions; Inverse theory; Electrical properties; Geomagnetic induc-
tion; Composition of the mantle; Phase transitions.

1 I N T RO D U C T I O N

Geophysical studies, particularly those centred on seismology and
seismic tomography, have revealed a variety of heterogeneous man-
tle structures comprising length scales from small range (km sized)
to continental scale (e.g. Helffrich & Wood 2001; Kustowski et al.
2008) that bear evidence of the complex dynamics that have shaped
mantle structure. In spite of many advances (Rawlinson et al. 2010)
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and a consensus that the underlying processes responsible for the
observed velocity variations are related to thermochemical varia-
tions, seismology has yet to provide a clear picture of the origin of
these heterogeneities (e.g. Trampert & Van der Hilst 2005; Khan
et al. 2009).

In an attempt to overcome this we seek to investigate properties
that, in principle, are more sensitive to the main parameters of inter-
est, that is, composition and temperature, than is elasticity. Electrical
conductivity is one of the characteristic physical parameters of ma-
terials composing the Earth’s interior and depends strongly on the
number of free charge carriers and their mobility (e.g. Poirier 2000;
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Karato & Wang 2012) and is therefore sensitive to variations of
state variables such as temperature, chemical composition, oxygen
fugacity, water content and melt (e.g. Shankland et al. 1981; Roberts
& Tyburczy 1999; Park & Ducea 2003; Frost & McCammon 2008;
Yoshino 2010; Karato 2011; Khan & Shankland 2012, among oth-
ers). As a result, estimating mantle electrical conductivity structure
is a potentially strong tool for mapping mantle chemistry, mineral-
ogy and physical structure and presents a complementary method
to seismic studies that seek to elucidate the elastic properties of the
mantle.

On a global scale 3-D electromagnetic (EM) induction studies of
long-period geomagnetic data (Kelbert et al. 2009; Tarits & Mandea
2010; Semenov & Kuvshinov 2012), like their seismic counterparts,
reveal a substantial level of lateral heterogeneity in the mantle (depth
range 410–1600 km). Particularly, underneath Australia, regions of
enhanced conductivity (0.5–1 S m−1) are discernable in the man-
tle transition zone (MTZ). If real, these anomalous conductivity
regions (compared with ‘normal’ MTZ conductivities that lie in
the range 0.01–0.3 S m−1) imply substantial differences in mantle
thermochemistry (e.g. Verhoeven et al. 2009; Khan et al. 2011a)
volatile content such as water (e.g. Yoshino 2010; Karato 2011),
differing redox conditions (e.g. Dai et al. 2012) and/or presence of
melt (e.g. Toffelmier & Tyburczy 2007; Mookherjee et al. 2008;
Khan & Shankland 2012).

Given the relevance of these parameters in constraining such
critical processes as chemical differentiation and geodynamical evo-
lution, assessment of any such conductivity anomalies is highly
important. However, the limited resolution of current global 3-
D conductivity models precludes verification of structures on re-
gional or subregional scales. In this paper, we report the results of
a regional-scale 3-D EM inversion of geomagnetic data from Aus-
tralian observatories applying the method of Koyama et al. (2006)
in order to delineate more precisely the MTZ conductivity struc-
ture beneath the Australian continent. Previous Australian deep EM
studies were only aimed at sounding the upper mantle (e.g. Camp-
bell et al. 1998; Wang & Lilley 1999; Simpson 2001; Heinson &
White 2005; Ichiki et al. 2012, among others).

As with any non-linear inverse problem the choice of starting
model is very important. Here we take a novel approach by employ-
ing a 3-D conductivity model, which has been obtained from a com-
bination of a regional seismic tomography study of the Australian
continent (Khan et al. 2013) with thermodynamic computations of
mantle minerals, and laboratory-based conductivity measurements.
This initial conductivity model thus has the advantage of being
closely linked to seismic tomography, while at the same time being
grounded in experimental measurements, and, as will be shown in
the following, provides a good fit to observations.

Based on this smooth initial conductivity model we performed a
3-D EM inversion using the data from eight geomagnetic stations
distributed across the Australian continent. The inverted model re-
veals a relatively strong conductivity anomaly in the MTZ beneath
southeastern Australia that is 0.5–1 log unit more conductive than
the surrounding mantle. The observed conductivity variations indi-
cate considerable lateral and radial heterogeneity in mantle struc-
ture. To further ascertain the robustness of the obtained 3-D con-
ductivity model, extensive model studies are conducted and dis-
cussed. A final section provides detailed interpretation of the recov-
ered subcontinental Australian conductivity structure in the light
of recent experimental conductivity measurements and laboratory-
based conductivity profiles. The analysis performed in this section
strongly suggests that the MTZ conductivity anomaly beneath Aus-
tralia reflects lateral variations in temperature, water content and

Figure 1. Conductance map showing non-uniform thin surface layer em-
ployed in this study. Station names and locations are also indicated (for
details see Table 1).

melt. Details of forward and inverse methodologies are supplied in
the Appendices.

2 DATA

The data with which we work are local C-responses, which are
determined from (e.g. Banks 1969)

C(ra, ω) = −a tan ϑ

2

Z (ra, ω)

H (ra, ω)
, (1)

where Z ≡ −Br and H ≡ −Bϑ , a is the Earth’s mean radius, ϑ is
geomagnetic colatitude, ω is angular frequency, and ra is geomag-
netic observatory position. The responses were estimated at eight
Australian geomagnetic observatories whose locations are shown
in Fig. 1. For station details we refer to Table 1. The C-response
estimates were obtained by Semenov & Kuvshinov (2012) who paid
special attention to data selection. They used very long time-series
(up to 51 yr; 1957–2007) of hourly means; these time-series were
then visually inspected and data containing gaps, spikes and/or in-
volving baseline jumps were excluded from the analysis. No attempt
has been made to edit the data in order to avoid any uncertainties
associated with the necessarily subjective editing schemes. A robust
section-averaging approach (cf. Kuvshinov & Olsen 2006) was used
to estimate C-responses, and jackknife estimator (cf. Efron 1982)
was invoked to obtain trustworthy estimates of experimental errors.
For further details of data analysis the reader is referred to Semenov
& Kuvshinov (2012). Left- and right-hand plots in Fig. 2 show real
and imaginary parts of the estimated (experimental) C-responses,
respectively.

3 F O RWA R D A N D I N V E R S E P RO B L E M S

3.1 Forward problem and model parametrization

The geographical extent of the area modelled lies between 5◦S and
55◦S in latitude and 90◦E and 180◦E in longitude, and covers the
depth range 410–1600 km. Regions outside of the investigated area
are fixed horizontally and vertically to a background 1-D model
(Fig. 3). This 1-D model is based on the initial model (described
later). The modelled area is chosen to be wider than the actual region
spanning the observatories (7.5–42.50◦S, 102.5–167.50◦E) in order
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Table 1. List of geomagnetic observatories in Australia. Latitude and Longitude indicate a position of
each geomagnetic observatory in geographical coordinates. Mag. lat. indicates a latitude in geomagnetic
coordinates. Obs. period is a period to acquire geomagnetic data. Period range specifies periods at which
C-responses were estimated.

Code Geomagnetic obs. Latitude Longitude Mag. lat. Obs. period (yr) Period range (d)

ASP Alice Springs 23.8◦S 133.9◦E −32.6◦ 1992–2007 4–100
CNB Canberra 35.3◦S 149.4◦E −42.5◦ 1979–2007 4–100
CTA Charters Towers 20.1◦S 146.3◦E −27.8◦ 1990–2007 4–70
GNA Gnangara 31.8◦S 115.9◦E −41.7◦ 1957 – 2007 4 – 60
KDU Kakadu 12.7◦S 132.5◦E −21.7◦ 1995 –2007 4–100
LRM Learmonth 22.2◦S 114.1◦E −32.1◦ 1990–2007 4–60
TOO Toolangi 37.5◦S 145.5◦E −45.1◦ 1957–1979 4–50
WAT Watheroo 30.3◦S 115.9◦E −40.2◦ 1957–1958 4–50

Figure 2. Plots of C-response data with error bars for the eight geomagnetic observatories used in this study. Real part and imaginary part of the C-responses
are shown on the left- and right-hand side, respectively.

Figure 3. 1-D ‘reference’ models used in this study. The ‘background’
1-D model is derived from averaging the initial 3-D conductivity model
(see Fig. 4), while ‘average’ is the 1-D conductivity model obtained from
averaging the recovered 3-D conductivity model (see Fig. 5). For details see
main text.

to assure that the synthetic data are not affected by the conductivity
structure of the surrounding (fixed) region. The horizontal cell sizes
during forward and inverse modelling are 1◦ × 1◦ and 5◦ × 5◦,
respectively. The truncation degree of the spherical harmonic ex-
pansion in our code (to calculate Green’s dyad) is 80 (see Appendix
A).

Lateral heterogeneities are assumed to be present in the depth
range 410–1600 km. Our decision not to search for conductivity
variations beyond this range is based on the fact that we interpret the

C-responses in the period range 4–100 d, which corresponds to EM-
field penetration depths ranging from about 500 to 1200 km. This
inference is based on the real part of the experimental responses in a
1-D environment being proxy for penetration depth (Weidelt 1972).
Given sensitivity of the data to conductivity variations outside of
this range, we enlarged the target depth range to 410–1600 km.
We performed trial inversions where we searched for conductivity
variations in the shallow upper mantle (depths <410 km). As ex-
pected no substantial differences were observed (not shown here for
brevity) in comparison to what was found for the expanded depth
range.

Vertically, we parametrized the 3-D conductivity distribution us-
ing five spherical inhomogeneous layers of 110, 140, 240, 300 and
400 km thickness, resulting in conductivity boundaries at depths
of 410, 520, 660, 900, 1200 and 1600 km, respectively. This divi-
sion coincides with major mantle mineral phase transitions and the
layering used by Kelbert et al. (2009) and Semenov & Kuvshinov
(2012). The layers were embedded into a background 1-D section
(see later).

Most of the observatories are located near the coast (see Fig. 1).
As shown by Kuvshinov (2008) and Semenov & Kuvshinov (2012),
for example, the C-responses at coastal observatories are strongly
affected by a large conductivity contrast between ocean and land.
To account for this effect the model includes a non-uniformly thin
surface layer with laterally varying conductance, which is fixed
throughout the inversion. The conductance of this layer, which is
mostly governed by bathymetry, is shown in Fig. 1.

The initial (starting) 3-D model used in the inversion (see
Fig. 4)—along with the background 1-D section—was constructed
from a regional seismic tomography study of the Australian con-
tinent. This differs from more conventional approaches employing
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Figure 4. Initial model based on inversion of seismic surface wave data (for
details see main text). The plots show variations in conductivity relative to
the 1-D background model shown in Fig. 3.

1-D models that provide an average fit to data (e.g. Utada et al.
2003; Shimizu et al. 2010a). Concerning our initial model Khan
et al. (2013) inverted surface wave phase velocities for the ther-
mochemical structure of the mantle beneath Australia using a ther-
modynamic method that provides the link between thermochemical
parameters and geophysical data. The thermodynamic procedure
yields the amounts, compositions and physical properties, including
elastic moduli, of the stable minerals in the model chemical sys-
tem. To convert stable mineralogy to electrical conductivity, mineral
modes are combined with laboratory electrical conductivity mea-
surements for the relevant minerals to estimate the bulk electrical
conductivity structure as described in detail in Khan & Shankland
(2012). The initial conductivity model thus created bears an imprint
of seismic tomography. Note that the recovered conductivity distri-

bution covers depths from the surface of the Earth to 2000 km. By
averaging the conductivity of this model horizontally at each depth
node we obtained a 1-D conductivity profile (σ 1D), which repre-
sents our background 1-D section. This 1-D section is depicted in
Fig. 3, whereas Fig. 4 shows relative variations in conductivity (in
per cent) of the initial 3-D conductivity model (σ init

3D ) in the depth
range 410–1600 km. Here the relative variation in conductivity δσ

is determined as

δσ (r, θ, φ) ≡ σ init
3D − σ1D

σ1D
× 100. (2)

Concerning the source configuration we approximate this to be in
the form of an external dipole field in the geomagnetic coordinate
system, which is a valid approximation in the considered period
range.

3.2 Inverse problem formulation

We consider the regularized non-linear least-squares optimization
problem in which we minimize the following functional �(m):

�(m) = 1

N

N∑
i=1

∣∣∣∣∣ Di − Fi (m)

ei

∣∣∣∣∣
2

+ λ

∣∣∣W m
∣∣∣2

. (3)

Here m is a set of model parameters of dimension M that we invert
for (logarithm of conductivity within each cell), N is total number
of data points and Di and ei are experimental EM responses and
errors, respectively. Fi (m) is the synthetic EM response of model
m, which is numerically calculated by 3-D forward modelling. i is a
serial number of data parameters in the data set, which is related to
the type of the data (real part or imaginary part of the C-response),
frequency and position of geomagnetic observatory. Thus, the first
term on the right-hand side (RHS) of eq. (3) is the normalized
misfit. The second term is the regularization term, where λ and
W are regularization parameter and smoothing matrix, respectively.
The smoothing matrix W takes the form of the finite difference
approximation to the horizontal gradient operator. This means that
no vertical smoothing is applied. During inversion the regulariza-
tion parameter λ is chosen such that the normalized data misfit is
around 1.

To minimize the objective functional �(m) a gradient-based
(quasi-Newton) method is invoked (see Appendix B for details). For
efficient calculation of misfit function gradients the adjoint source
approach is employed (e.g. Pankratov & Kuvshinov 2010).

To calculate synthetic C-responses and the misfit function gradi-
ent (forward problem), we employ a numerical solution based on the
contracting integral-equation (CIE) approach (cf. Pankratov et al.
1995; Singer 1995). Note that there exist two independent global-
based CIE-based numerical solutions (introduced by Koyama 2001
and Kuvshinov et al. 2002), which allow us to compute EM fields
in fully 3-D conductivity models. These solutions differ in many
aspects; for example, they exploit different strategies for computing
the dyad Green’s functions. Unfortunately, in both aforementioned
analyses little attention was paid to the details of how Green’s ten-
sors (which are the cornerstone components of any integral-equation
solution) are derived and calculated. Only recently did Kuvshinov
& Semenov (2012) provide the necessary details for their solution.
In this paper we fill this gap (see Appendix A) for the CIE-based
solution of Koyama (2001). Note that this CIE solution has previ-
ously been used in a number of semi-global studies (Koyama et al.
2006; Utada et al. 2009; Shimizu et al. 2010b).
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4 3 - D I N V E R S I O N R E S U LT S

The final 3-D model of the mantle conductivity structure beneath
the Australian continent obtained from inversion of the C-responses
is shown in Fig. 5. Stations are unevenly distributed across the
continent and we expect this to have an effect on the structural
features that can be resolved. Experimental C-responses and the
responses based on the initial and final 3-D models are shown
in Fig. 6. Inspection of the response curves reveals a number of
interesting features:

(i) the overall C-response of the initial model is good, in particular
as concerns the imaginary part of the C-response, supporting the
choice of the initial model as starting model in the inversion;

Figure 5. Final 3-D model obtained from inversion of geomagnetic obser-
vatory data. The plots show variations in conductivity relative to the 1-D
background model shown in Fig. 3.

(ii) improvement in the real part of the C-response is achieved
for stations CNB, CTA, KDU and to some extent TOO, implying
that the most significant changes in conductivity are to be expected
underneath these stations relative to the initial model (see Section 5
for further discussion);

(iii) as a whole, the initial model appears to be too conductive
for KDU and CTA, and more resistive for CNB and TOO;

(iv) the contribution of the imaginary part of the C-response in
determining structural features is most probably minor.

These features are supported by the conductivity maps shown
in Fig. 5. The final model is clearly uniformly more resistive than
the initial model in the depth range 410–520 km. The most strik-
ing changes to conductivity structure are apparently in the depth
range 520–660 km, that is, in the lower part of MTZ, and, albeit to
a lesser extent, in the range 660–900 km depth. In the lower MTZ
we observe a strong conductivity anomaly in the southeastern part
of the Australian continent reaching conductivities of ∼1.1 S m−1,
which is fairly high relative to the conductivity in the surrounding
MTZ (0.3–0.6 S m−1). For comparison, in a study of conductivity
heterogeneities in the mantle based on a more localized approach,
conductivities beneath station ASP were found to bracket the range
0.1–0.3 S m−1 (Khan et al. 2011a) at 600 km depth. Moreover, con-
ductivities computed on the basis of laboratory data (to be discussed
in more detail in Section 5) assuming a ‘standard’ mantle adiabat
(e.g. Brown & Shankland 1981) and a uniform mantle composed of
‘dry’ pyrolite also lie in the range 0.1–0.3 S m−1.

In the depth range 660–900 km we also observe enhanced con-
ductivities in the southeastern part, as a continuation of the strong
feature in the layer immediately above, in addition to a slightly
stronger feature in the southwest. Conductivities reach values of
1.4–1.6 S m−1, which are only slightly higher than the background
average value at this depth of ∼1 S m−1. In the upper part of the
lower mantle, corresponding to the depth range 900–1200 km, con-
ductivities appear more uniform and anomalies are clearly no longer
present beneath 1200 km depth.

In summary, there appears to be considerable evidence for het-
erogeneities in conductivity in the depth range 520–900 km, par-
ticularly in the range encompassing the lower MTZ. Comparison
to the global seismic shear wave tomography models SAW642AN
(Panning & Romanowicz 2006) and S362ANI (Kustowski et al.
2008) shows that in the lower MTZ our maps generally contain
more structure than is present in either SAW642AN and S362ANI.
In the upper part of the lower mantle our maps, SAW642AN and
S362ANI are relatively smooth down to 1600 km depth, which de-
fines the extent to which we can presently sense. The absence of
strong heterogeneities at long wavelengths below 650 km is ob-
served in both S362ANI and SAW642AN as well as in most previous
shear wave tomography studies as a transition to spectrally whiter
low-amplitude mid-mantle isotropic velocity anomalies (Becker &
Boschi 2002). Interpretation of these anomalies from the point of
view of experimental conductivity measurements and laboratory-
based conductivity profiles are discussed further in Section 5.

Finally, the good agreement of the C-response functions of the ini-
tial model suggests a fairly high degree of correlation or semblance
between seismic velocity and electrical conductivity structure. This
contrasts with current observations where comparison of 3-D con-
ductivity anomalies (Kelbert et al. 2009; Kuvshinov & Semenov
2012) with 3-D shear wave velocity anomalies (e.g. in SAW642AN
and S362ANI) on a global scale shows little correlation. More
significantly, it reveals the strength of the thermodynamic-based
approach of Khan et al. (2013) in being able to simultaneously



3-D conductivity in mid-mantle of Australia 1335

Figure 6. Comparison of computed and observed C-responses at the eight Australian geomagnetic observatories employed here. Experimental data are shown
in black with error bars taken from Semenov & Kuvshinov (2012). Blue dotted curves and red solid curves show the synthetic data for the initial and final 3-D
models, respectively. Upper and lower curves in each figure denote real and imaginary part of the C-responses (km), respectively.

derive conductivity and shear wave velocity models from a com-
mon thermochemical model that fits a host of different data sets.

To establish an estimate of the horizontal and vertical resolution
of the model parameters we employ checkerboard tests. We use a
2-D non-uniform land/ocean surface conductance shell as topmost
layer followed by five layers (either laterally homogeneous or in-
homogeneous) at depths between 410 and 1600 km, embedded in

a 1-D background section. Depth ranges of these five layers are as
indicated previously. Five data sets are prepared. The first data set
is for the 3-D model with a laterally inhomogeneous conductivity
distribution located in the depth range 410–520 km, while the other
layers are laterally homogeneous (fixed to 1-D background sec-
tion). The conductivity structure within the inhomogeneous layer
has a checkerboard pattern as shown in Fig. 7. The second data set
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Figure 7. Resolution matrix depicting horizontal and vertical resolution of model parameters. Plot in upper left-hand corner shows true checkerboard pattern.
With perfectly resolving data the ‘matrix’ should be in diagonal form with the true checkerboard pattern along the diagonal. For these tests no errors were
added to the synthetic data or any smoothness constraints applied. See main text for details.

is for the 3-D model where the target layer containing the inhomo-
geneities is located in the depth range of 520–660 km, while the
other layers are laterally homogeneous as before. By successively
moving the target layer deeper the remaining data sets are con-
structed. Note that by data we consider C-responses at the observed
observatory locations in the period range of 4–100 d. Based upon
these five data sets resolution studies are performed. The results are
shown in Fig. 7. The n-th column (from left to right) corresponds
to a 3-D inversion of the n-th data set, with the implicit assumption
that all five layers are inhomogeneous, that is, we are attempting
to locate the conductivity structure in all of the layers and not only
in the ‘target’ layer. Note that with perfectly resolving data the
‘matrix’ of maps in Fig. 7 should be in diagonal form with the
true checkerboard pattern along the diagonal. For these tests no
errors were added to the synthetic data nor were any smoothness
constraints applied. Fig. 7 demonstrates that the recovered pattern

appears reasonably well resolved in the depth range 520–1600 km,
although the anomaly appears to ‘leak’ into neighbouring layers.
These resolution studies imply that with current data we are able to
image the conductivity distribution reasonably in the depth range
of 520–1600 km.

We also performed an additional series of tests, that is, inversions,
with the purpose of establishing the robustness of our obtained
results, in particular the strong MTZ conductivity anomaly observed
beneath the southeastern part of the continent. We considered the
effects of differing (1) parametrization of the inverse problem, (2)
discretization of the forward problem, (3) amount of data both with
respect to period and number of observatories and (4) level of
regularization. Remarkably enough most of the results (not shown
here for brevity) support the presence of a region with elevated
conductivity in the lower MTZ and upper part of the lower mantle
beneath southeastern Australia.



3-D conductivity in mid-mantle of Australia 1337

5 I N T E R P R E TAT I O N O F
C O N D U C T I V I T Y A N O M A L I E S A N D
I M P L I C AT I O N S F O R
T R A N S I T I O N - Z O N E T H E R M A L
S T RU C T U R E , WAT E R C O N T E N T A N D
M E LT I N G

5.1 Preliminaries

In this section, we attempt to draw inferences about the underlying
processes that produce the mantle conductivity anomalies found
here. For this purpose we rely on experimental measurements of
mantle mineral conductivities and combine these with mantle min-
eral phase equilibrium computations at the pressure–temperature
conditions of interest to obtain what we shall term laboratory-based
conductivity profiles. To compute phase equilibria we employ the
Gibbs free-energy minimization method of Connolly (2005), which
predicts, for a given pressure, temperature and composition (we
employ the CMFASNa model system comprising the oxides of ele-
ments CaO-MgO-FeO-Al2O3-SiO2-Na2O), stable mineralogy (min-
eral modes) and physical properties (e.g. P-, S-wave speed, and
density). We specifically investigate the variation of the constructed
laboratory-based conductivity profiles with temperature, major el-
ement composition and water content and in this manner determine
the controlling factors needed for such profiles to fit the inverted
conductivity models. The approach is described in detail in, for ex-
ample, Khan et al. (2006) and, more recently, in Khan & Shankland
(2012). For brevity this section only summarizes the method; for
details we refer the reader to the earlier studies.

To facilitate comparison with other models we have extracted
1-D conductivity profiles from our final conductivity model along
a specific latitude (27.5◦ S) and longitude (107.5–152.5◦ E in 5◦

steps). These 1-D profiles are shown in Fig. 8 and are compared
to a series of geophysically derived global 1-D models that in-
clude the global models of Kuvshinov & Olsen (2006), Velimsky
(2010), the subcontinental European model of Olsen (1999) and
the laboratory-based models of Xu et al. (2000) and Khan et al.
(2006). Relative to the presently inverted profiles, the geophysically
derived 1-D models are typically too conductive in the upper and
too resistive in the lower part of the MTZ, thereby emphasizing
the anomalous nature of this part of the mantle beneath Australia.
Moreover, purely geophysically derived models are characterized
by a continuous conductivity increase across the MTZ, whereas the
profiles obtained here, like previous laboratory-based models, im-
plicitly incorporate discontinuities across major phase transitions
(the ‘410-km’, ‘520-km’ and ‘660-km’ seismic discontinuities).
These phase transitions correspond to locations where the transfor-
mations olivine→wadsleyite (410), wadsleyite→ringwoodite (520)
and ringwoodite→ferriperoclase+perovskite (660) occur, respec-
tively.

The most striking feature of the model presented here is the high-
conductivity anomaly in the lower part of the MTZ (520–660 km
depth) beneath southeastern Australia. The high-conductivity
region is 0.5–1 log unit more conductive than the other models
shown in Fig. 8 and clearly points to strong compositional (major
elements, water content) and/or thermal anomalies. Water likely
plays a prominent role because transition-zone (TZ) minerals wads-
leyite and ringwoodite can support high water contents (e.g. Smyth
1987; Inoue et al. 1995; Chen et al. 2002) and electrical conduc-
tivity is known to be highly sensitive to presence of water (e.g.
Karato 1990). Recent experiments on wadsleyite and ringwoodite

Figure 8. Summary of radial and 1-D global and regional conductivity
profiles. Thin grey lines depict radial conductivity profiles (‘observed’ pro-
files) extracted from the inverted model (Fig. 5) beneath 10 equally spaced
grid points along a specific latitude (27.5◦ S). For comparison, a series of
laboratory-based conductivity models are also shown: Xu et al. (2000, blue)
and Khan et al. (2006, black), in addition to the purely geophysically de-
rived models of Olsen (1999, red), Kuvshinov & Olsen (2006, magenta)
and Velimsky (2010, orange). Note that the model by Khan et al. (2006) is
the mean profile, and uncertainties (not shown) are typically of the order of
±0.5 S m−1. η = 1 S m−1.

have confirmed the sensitivity of electrical conductivity to water
content, although discrepant measurements have resulted in a con-
troversy that is yet to be resolved (see e.g. summaries by Karato
2011; Yoshino & Katsura 2012, 2013).

Data from both groups were considered separately by Khan &
Shankland (2012) to infer mantle water content from a quantitative
analysis of EM sounding data. Here, we continue with the data com-
piled in Khan & Shankland (2012) but limit ourselves for reasons
of brevity and ease of use to the measurements by Yoshino, Katsura
and coworkers (hereinafter referred to as YK) for the hydrous min-
erals olivine, orthopyroxene, wadsleyite and ringwoodite. Relative
to Khan & Shankland (2012) we have updated and expanded the
conductivity database to include recent measurements. The con-
ductivity data are summarized in Fig. 9 and are taken from Yoshino
et al. (2009) and Yoshino et al. (2012b) for olivine (ol), from Zhang
et al. (2012) for orthopyroxene (opx), from Xu & Shankland (1999)
for clinopyroxene (cpx), from Yoshino et al. (2008b) for garnet
(gt), from Yoshino & Katsura (2012) for wadsleyite (wads), from
Yoshino et al. (2008a), Yoshino & Katsura (2009) and Yoshino et al.
(2012b) for ringwoodite (ring), from Katsura et al. (2007) for aki-
motoite (aki), from Xu et al. (2000) for ferropericlase (fp) and from
Xu et al. (1998) for perovskite (pv).
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Figure 9. Summary of electrical conductivities measured in the laboratory as a function of inverse temperature for major upper-mantle, transition-zone and
lower-mantle minerals. Phases are ol (olivine), opx (orthopyroxene), cpx (clinopyroxene), C2/c (high-pressure Mg-rich Cpx), gt (garnet), wads (wadsleyite),
ring (ringwoodite), aki (akimotoite), ca-pv (calcium perovskite), fp (ferropericlase), pv (perovskite) and CF (calcium ferrite). Plot A depicts upper-mantle
single mineral conductivities. For phases ol and opx, conductivity also varies with H2O and Fe content (XFe, ol only). Lines labelled (a), (b) and (c) correspond
to 0.001, 0.005 and 0.01 wt per cent H2O, respectively, with Xol

Fe fixed to 0.1. Plot B shows conductivity variations for transition-zone minerals gt, wads and
ring. For wads and ring, conductivity also varies with H2O (Cw) and Fe content (XFe, ring only). Plot C shows conductivities of lower mantle minerals pv
and fp. Stability field of each mineral is computed based on the assumption of a fixed pyrolitic bulk composition and a standard mantle adiabat as depicted in
Fig. 10 below. See main text for further discussion. η = 1 S m−1.

5.2 Conductivity data and laboratory-based conductivity
profiles

In order to make quantitative inferences of the observed MTZ
conductivity anomalies we construct laboratory-based conductivity
profiles by combining laboratory data with a self-consistently com-
puted mineralogical model of the Earth’s mantle using Gibbs free
energy minimization (Connolly 2005). For purposes of illustration,
we assume a chemically homogeneous and adiabatic mantle using
the geotherm of Brown & Shankland (1981). Resulting phase equi-
libria (equilibrium mineralogy) computed on this basis are shown in
Fig. 10. Bulk electrical conductivity as a function of pressure, water
and Fe content for this particular mineral assemblage is obtained
by combining the mineral phase proportions with the laboratory-
measured mineral conductivities (Fig. 9) at the appropriate physical
conditions (temperature and pressure) and composition of interest.
Computing bulk rock electrical conductivity from single mineral
conductivities is done by averaging the contribution from individ-
ual minerals, for which purpose we employ effective medium theory
(Landauer 1952; Berryman 1995) to produce a self-consistent solu-
tion. This and other averaging schemes for constructing bulk rock
conductivity are discussed further in Khan & Shankland (2012) and
Xu et al. (2000).

Factors that potentially contribute, but that we neglect here, in-
clude oxygen fugacity (fO2 ), defect chemistry (e.g. Al), grain bound-
ary transport, effects of pressure and minor mineral phases as their
contributions are expected to be relatively unimportant (e.g. Karato
2011; Dai et al. 2012; Khan & Shankland 2012). Effects of wa-
ter on mineral phase equilibria are also disregarded here. Although

there is evidence from theory (e.g. Wood 1995) and experiment
(e.g. Chen et al. 2002; Smyth & Frost 2002; Litasov et al. 2006)
that water is likely to stabilize wadsleyite over olivine, scarcity of
relevant thermodynamic data prevents us from including this effect.
However, given that the water-induced conductivity change across
the olivine→wadsleyite transition is relatively small (cf. Fig. 10),
this issue is of minor importance. Finally, no exhaustive attempt
was made to consider other conductivity compilations (e.g. Vacher
& Verhoeven 2007; Pommier & Trong 2010; Jones et al. 2012).

The laboratory-based conductivity profiles shown in Fig. 10 con-
tain discontinuities in conductivity at the location of major miner-
alogical phase transitions where (1) olivine transforms to wadsleyite
(∼14 GPa), (2) wadsleyite transforms to ringwoodite (∼21 GPa)
and (3) ringwoodite transforms to ferriperoclase and perovskite
(∼23.5 GPa). As expected, magnitudes of the various transitions
are observed to depend strongly on water and Fe content.

5.3 Inverse analysis

To treat the problem somewhat more quantitatively than is possible
by simple comparison of the ‘observed’ 1-D profiles shown in Fig. 8
with various laboratory-based profiles computed for different water
contents, geotherms and mantle compositions, we consider inter-
pretation of the observed profiles as an inverse problem, that is, we
invert the ‘observed’ 1-D profiles (Fig. 8) for mantle temperature,
water content and major element composition using the thermody-
namic approach described earlier. From this quantitative approach
we gain a more comprehensive understanding of the effects and
trade-offs of the various parameters.
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Figure 10. Modal mineralogy and associated laboratory-based bulk electrical conductivity profiles as a function of pressure for various water (A) and Fe
contents (B). Phase proportions and bulk conductivity profiles are computed on the basis of a homogeneous adiabatic pyrolitic mantle. Lines labelled (a), (b)
and (c) in plot A depict bulk conductivity profiles for water contents (Cw) of 0.001/0.005/0.01 wt per cent (ol, opx) and 0.01/0.05/0.1 wt per cent (wad, ring),
respectively, with Fe content (XFe) fixed to 0.1. Lines labelled (d), (e) and (f) in plot B show bulk conductivity profiles for XFe = 0.15, 0.2 and 0.25, respectively.

For these profiles we fixed Col/opx
w = 0.005 and Cwad/ring

w = 0.05. Fe-dependent conductivity has only been measured for minerals ol and ring. See main text for
further discussion. η = 1 S m−1.

For this purpose we employ a Markov chain Monte Carlo
(McMC) method (e.g. Mosegaard & Tarantola 1995) to sample
the model parameter space, that is, produce a set of samples of the
various parameters involved (mantle water content, geotherm and
composition) that constitute the solution to the inverse problem. All
samples from the model space fit data within uncertainties. In the
present context data are in the form of an average ‘observed’ 1-D
conductivity profile that we attempt to fit to within an uncertainty
of 25 per cent in order that the whole range of 1-D conductivity
profiles shown in Fig. 8 is encompassed.

The various parameters are varied within certain (prior) ranges:
water content in olivine, orthopyroxene, wadsleyite and ringwoodite
varies log-uniformly in the ranges log10(Col

w/C0
w) ∈ [−5; −1],

log10(Copx
w /C0

w) ∈ [−5; −1], log10(Cwad
w /C0

w) ∈ [−5; −0.3] and
log10(Cring

w /C0
w) ∈ [−5; −0.3], respectively, where Cw is water con-

tent in wt per cent and C0
w is reference water content (1 wt per cent).

Prior constraints on mantle geotherm derive from petrological ex-
periments on mineral phase transitions in the system (Mg,Fe)2SiO4.
Ito & Takahashi (1989) found that the olivine→wadsleyite (‘410-
km’) and ringwoodite→ferriperoclase+perovskite (‘660-km’) re-
actions occurred at temperatures of 1750 ± 100 K and 1900
± 150 K, respectively, in line with the results of Katsura et al.
(2010) who derived temperatures of 1830 ± 50 K and 1990
± 50 K, respectively, for the same reactions. In line with this,
lower and upper bounds apply at depths where the transformations
olivine→wadsleyite (1470–1640 ◦C) and ringwoodite→fp+pv
(1650–1800 ◦C) occur. No further bounds apply to the geotherm,
except for that of a non-decreasing temperature profile with depth.
Major element composition is varied within the range of model

estimates of the primitive upper-mantle composition compiled by
Lyubetskaya & Korenaga (2007).

Mantle water content has to be seen in relation to water storage
capacities of mantle minerals. Water storage capacity is the max-
imum amount of water that a mineral or rock at a given pressure
and temperature is able to retain without producing a hydrous fluid
(water- or silicate-rich). The importance of storage capacity arises
because different minerals have different storage capacities, which
in turn limits potential reservoirs. For wadsleyite, for example, an
upper bound of ∼3 wt per cent has been measured (e.g. Inoue et al.
1995; Kohlstedt et al. 1996; Bolfan-Casanova et al. 2000; Chen
et al. 2002). This maximum estimate for wadsleyite, however, is too
high given that Demouchy et al. (2005) and, more recently, Litasov
et al. (2011) showed that water solubility of wadsleyite decreases
with increasing temperature providing an additional upper limit
on the amount of water that can be stored in the transition zone.
Litasov et al. (2011) found that wadsleyite at conditions relevant
to the transition-zone (13–20 GPa and 1500–1600 ◦C) contains in
the range 0.37–0.55 wt per cent H2O. Combined with the recently
determined partition coefficient of Inoue et al. (2010) water stor-
age capacities around 0.15–0.3 wt per cent for ringwoodite can be
inferred. For present purposes we employ a storage capacity value
of 0.4 wt per cent H2O for TZ minerals. At locations where this
value is exceeded hydrous melting ensues (e.g. Kohlstedt et al.
1996). As a result we reparametrized our model with a melt layer
appearing in the depth range 550–570 km (depth of transforma-
tion of wadsleyite→ringwoodite) if Cring

w > 0.4 wt per cent. Given
that we cannot model melt composition, we followed our previ-
ous approach (Khan & Shankland 2012) and parametrized melt
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Figure 11. Sampled geotherms (A), laboratory-based conductivity profiles (B), and water content in transition-zone minerals wadsleyite (C) and ringwoodite
(D) obtained by inversion of ‘observed’ profiles shown in Fig. 8. Solid vertical bars indicate experimentally determined temperatures for the major mineral
phase reactions at 410 and 660 km depth [black bars—Ito & Takahashi (1989); red bars—Katsura et al. (2010). See main text for details.

conductivity according to σmelt = σm + σ ′ · α, where σ m is ‘cur-
rent’ mantle conductivity, σ ′ is a constant conductivity value (5
S m−1) based on available melt conductivity measurements (e.g.
Pommier et al. 2010) and α is a random number in the interval 0–1.

By varying the parameters within these ranges the prior is up-
dated by considering data and physical theory to the posterior via
Bayes theorem (e.g. Mosegaard & Tarantola 1995). The posterior
so obtained constitutes the result to the inverse problem and in the
following we show samples from this posterior distribution. For
further details on solving the inverse problem in the current setting
the reader is referred to Khan & Shankland (2012).

5.4 Results

Sampled conductivity profiles, mantle geotherms and MTZ water
content are shown in Fig. 11. Observed conductivity profiles ap-
pear to be explainable with mantle geotherms that concur with the
adiabatic mantle temperatures of Katsura et al. (2010) at the ‘410-
km’ and ‘660-km’ discontinuities. Water content is seen to differ
between major MTZ minerals. For wadsleyite we find that Cwads

w

ranges from ∼0.05 wt per cent to 0.15 wt per cent, while for ring-
woodite C ring

w lies in the range 0.4–0.5 wt per cent. Comparison of
inverted and observed conductivity profiles provides an explanation
for these ranges. Cwads

w remains well below upper MTZ storage ca-
pacity in order that laboratory-based conductivities do not exceed
the observed profiles; addition of more water would tend to increase
conductivities beyond that of the observations, whereas C ring

w < 0.05
has the opposite effect of decreasing conductivities too much. In the
lower part of the TZ storage capacity (0.4 wt per cent) is clearly ex-
ceeded, which results from the inability of hydrous ringwoodite
alone to explain the strong conductivity anomalies. Larger values
of C ring

w are required that result in dehydration melting and conduc-
tivities around 1 S m−1 in this part of the mantle. For comparison,

conductivities of various hydrous basaltic and silicate melts are in
the range 0.5–2 S m−1 at pressures and temperatures of 2 GPa and
1673 K (e.g. Pommier et al. 2010).

Overall, our inverted MTZ water content is similar to infer-
ences made by Karato (2011) and Yoshino & Katsura (2013). How-
ever, considering the simplicity of the constructed laboratory-based
model and the purely qualitative model comparison made by both
Karato (2011) and Yoshino & Katsura (2013), their inferred mantle
water content is likely less robust. Prior compositional ranges are
relatively small in line with mantle sample-based (Lyubetskaya &
Korenaga 2007) estimates and compositional variations will not be
discussed further here.

At this stage we neglect the dynamical fate of this melt given
its unknown composition, although it might be surmised that, if
less dense than surrounding mantle, it could possibly rise through
the MTZ and pond on top of the 410-km seismic discontinuity for
which geophysical evidence is accumulating (e.g. Song & Helm-
berger 2004; Toffelmier & Tyburczy 2007; Tauzin et al. 2010; Khan
& Shankland 2012). A possibility for maintaining the hydrous na-
ture of the MTZ relative to upper and lower mantle is through the
production of melts at the bottom of the upper-mantle concomi-
tantly with water exsolution beneath 660 km as envisaged in the
water filter hypothesis (Bercovici & Karato 2003).

An alternative explanation for the large conductivity anomalies
might be found in recent work on carbonatite melts. Based on the
initial suggestion by Gaillard et al. (2008) and expanded work by
Yoshino et al. (2012a), small amounts of carbonatite melts (∼0.1
vol per cent) are found to increase conductivity significantly beyond
that possible with hydrous olivine. This, it has been argued, could
account for some regional asthenospheric conductivity anomalies
that hydrous olivine alone is incapable of explaining. As discussed
in more detail by, for example, Litasov (2011) melting in CO2-
containing systems can also result in the presence of carbonate
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melts in the MTZ. In turn, such highly conductive melts could
provide an explanation for the strong conductivity anomalies that
we observe here in the mid-TZ. We leave it for future studies to
consider this in more detail.

An inherent problem with the analysis of conductivity data as
a means of constraining mantle water content is the trade-off that
is likely to occur between the various parameters sought. To test
the robustness of the results obtained here we performed several
additional inversions where we successively fixed one set of param-
eters and inverted for the remainder. For example, we considered
a completely dry mantle, that is, we fixed Cw = 0 wt per cent for
all minerals, and found that data could no longer be adequately fit.
This result strongly supports arguments here and elsewhere for the
presence of water in the MTZ. We also considered the case where
no mid-TZ melting occured, which resulted in profiles lacking the
strong conductivity anomaly of the ‘observed’ profiles. Generally,
these miscellaneous inversions showed that considering extraneous
information, where available, to independently constrain Cw and
geotherm is preferable in order that trade-offs are reduced.

In summary, the inversions conducted here imply that MTZ min-
erals require presence of water for the observed conductivity anoma-
lies to be adequately fit. Thus, the observed heterogeneities in the
MTZ (Fig. 5) appear to be due to concomitant lateral variations
in water content, thermal structure and most probably melt. The
variations across the MTZ appear to span the range from (1) rela-
tively water-poor to somewhat water-enriched minerals, (2) thermal
anomalies that vary laterally by 150 ◦C but remain within adiabatic
limits and (3) areas with and without melt. Comparison of ‘ob-
served’ and inverted 1-D profiles showed that the conductivity in
the mid-TZ based on hydrous wadsleyite and ringwoodite (includ-
ing variations in Fe content) only is insufficient to explain the most
conductive anomalies. This supports the case for dehydration melt-
ing in the MTZ and implies lateral variations in melt content that,
if interconnected, very likely contribute a significant proportion to
the observed conductivity (e.g. Shankland & Waff 1977; Roberts
& Tyburczy 1999; Park & Ducea 2003; Pommier et al. 2010). We
leave it for a future study to consider this in more detail. Other
sources such as compositional variations in the MTZ can also be
important. Although much diminished relative to those in the upper-
mantle compositional variations in the MTZ are expected based on
evidence provided by seismic tomography studies (e.g. Khan et al.
2013).

6 C O N C LU S I O N

In this study we have inverted geomagnetic observatory data
in the form of C-responses from eight observatories distributed
across the Australian continent for the 3-D mantle conductivity
structure. The C-response data were investigated in the period range
4–100 d, which corresponds to sensitivity in the depth range 410–
1600 km. The inverted model revealed the presence of a strong
conductivity anomaly in the depth range 520–900 km, most notably
in the lower part of the MTZ (520–670 km depth) beneath the south-
eastern part of the continent. The imaged conductivity distributions
clearly show considerable lateral as radial variations, which become
less pronounced at mid-mantle depths.

Checkerboard tests were performed to test vertical and horizontal
resolution and data sensitivity. These tests showed that data could
resolve structural features in the depth range ∼500–1600 km, with
highest resolution occurring in the layers corresponding to the lower
part of the MTZ and uppermost lower mantle. Additional tests were
undertaken to establish the robustness of the inverted model. These

tests generally confirmed the features of the inverted model, in
particular the conductivity anomaly in the lower part of the MTZ
underneath southeastern Australia.

In a subsequent analysis we investigated the recovered conduc-
tivity distributions for implications of thermochemical structure,
transition-zone water content and possible distribution of melt us-
ing experimental conductivity measurements and laboratory-based
conductivity profiles. This analysis strongly suggested that the dis-
tinct transition-zone conductivity anomaly not only reflects large
lateral variations in temperature and water content, but likely also
in the amount of melt. Slab stagnation underneath Australia could
possibly lead to locally enhanced regions of accumulated water that
might exceed the water storage capacity of the major transition-zone
minerals and thereby induce partial melting. Concerning the total
potential reservoir of water in the transition-zone our results when
extrapolated globally imply an equivalent of one to three times that
of the current oceans.

Future studies using improved and complementary EM sounding
data in addition to novel experimental measurements of the con-
ductivity of hydrous lower-mantle minerals will have to investigate
the findings presented here further. The lower-mantle water content
is believed to be low on account of the low solubility of water in
lower-mantle minerals magnesium silicate perovskite and ferroper-
iclase (e.g. Bolfan-Casanova et al. 2006), and appears not to exceed
0.2 wt per cent, although this value remains debated. Moreover, the
effect of water on the conductivity of perovskite and ferropericlase
remains to be measured. The use of short-period EM sounding data
related to Sq variations holds the potential of providing significant
improvement particularly as concerns upper-mantle conductivity
structure, which is not sensed by the C-responses investigated here
(e.g. Koch & Kuvshinov 2013). Also, to improve lateral resolution
the application of these techniques to relatively dense geomagnetic
station arrays such as the Australia-wide Array of Geomagnetic sta-
tions (AWAGS; Chamalaun & Barton 1993) will prove important
(Koch & Kuvshinov 2013).
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A P P E N D I X A : D E R I VAT I O N O F G R E E N ’ s T E N S O R F O R 1 - D E L E C T R I C A L
C O N D U C T I V I T Y S T RU C T U R E

Maxwell’s equations in a 1-D layered Earth in the frequency domain on the spherical coordinates can be expressed as follows:

∇ × H(r) = σ (r )E(r) + j (r), (A1)

∇ × E(r) = −iωμ0 H(r), (A2)

where E(r), H(r) and j (r) are electric field, magnetic field and electric current density of the source at the position r , respectively. σ (r) is
the electrical conductivity, which is supposed to depend on only radial position r. μ0 is the magnetic permeability of free space, a constant
value. Displacement currents are ignored and dependency for time t is supposed to be exp (iωt), where ω is angular frequency.

The aim in this section is to derive the expression of Green’s tensors G E (r, r ′) and G H (r, r ′), which makes relationship between the
given electric current density at a position r ′, j (r ′) and the electric and magnetic fields at a position r , E(r) and H(r), respectively, as the
following:

E(r) =
∫
V

dr ′G E (r, r ′) j (r ′), (A3)

H(r) =
∫
V

dr ′G H (r, r ′) j (r ′), (A4)

where V is a volume occupied by current j . G E (r, r ′) and G H (r, r ′) also depend on the electrical conductivity structure σ (r) and an angular
frequency ω.

Hereafter the source term is supposed to be δ(r − r0) instead of j (r) in eq. (A1). δ(r − r0) is one of δ(r − r0)r̂ , δ(r − r0)θ̂ or δ(r − r0)ϕ̂,
where δ(r) is the Dirac’s delta function, and r̂ , θ̂ and ϕ̂ are unit vectors in radial, colatitudinal and logitudinal directions, respectively. It is
supposed that r0 
= 0, that is, the source is not located at the centre of the sphere. For example, in the case that j (r) = δ(r − r0)r̂ , from eqs
(A3) and (A4),

E(r) =
∫
V

dr ′G E (r, r ′)δ(r ′ − r0)r̂ ′ = G E (r, r0)r̂0, (A5)

H(r) =
∫
V

dr ′G H (r, r ′)δ(r ′ − r0)r̂ ′ = G H (r, r0)r̂0. (A6)

In a similar manner one can write the fields for the sources with other directions,

(
E(r)

H(r)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
G E (r, r0)

G H (r, r0)

)
r̂0 for j (r) = δ(r − r0)r̂,

(
G E (r, r0)

G H (r, r0)

)
θ̂0 for j (r) = δ(r − r0)θ̂ ,

(
G E (r, r0)

G H (r, r0)

)
ϕ̂0 for j (r) = δ(r − r0)ϕ̂.

(A7)

This means that to derive Green’s tensors G E (r, r0) and G H (r, r0) is equivalent to derive E(r) and H(r) due to the source δ(r − r0).
Since H(r) is divergence free, the toroidal–poloidal decomposition can be invoked for H(r) (Backus 1986)

H(r) = ∇ × (∇ × �H (r)) + ∇ × �H (r), (A8)
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where vectors �H , and �H have only components in radial direction

�H (r) ≡ �H (r)r r̂,

�H (r) ≡ �H (r)r r̂, (A9)

with �H (r) and �H (r) to be scalar functions of r .
From eq. (A1) with the source δ(r − r0) instead of j (r) we have

E(r) = 1

σ (r )
∇ × H(r) − δ(r − r0)

σ (r )

= 1

σ (r )

{∇ × (∇ × (∇ × (�H (r)r r̂))) + ∇ × (∇ × (�H (r)r r̂))
} − δ(r − r0)

σ (r )
. (A10)

Hereafter we derive the expressions of �H (r) and �H (r) instead of E(r) and H(r) themselves or G E (r, r0) and G H (r, r0).
The following formula can be derived (Backus 1986):

∇ × (∇ × (�H (r)r r̂)) = (−��H (r))r r̂ + ∇ ∂(r�H (r))

∂r
. (A11)

Substituting the latter equation into eq. (A10) we obtain

E(r) = 1

σ (r )

{∇ × ((−��H (r))r r̂) + ∇ × (∇ × (�H (r)r r̂))
} − δ(r − r0)

σ (r )
. (A12)

Substituting eqs (A8) and (A12) into eq. (A2) we have

∇ ×
{

1

σ (r )
∇ × ((−��H (r))r r̂)

}
+ ∇ ×

{
1

σ (r )
∇ × (∇ × (�H (r)r r̂))

}

= ∇ × {∇ × (−iωμ0�H (r)r r̂)} + ∇ × (−iωμ0�H (r)r r̂) + ∇ ×
(

δ(r − r0)

σ (r )

)
. (A13)

Considering the first term of the left-hand side (LHS) of eq. (A13) we write

∇ ×
{

1

σ (r )
∇ × ((−��H (r))r r̂)

}
= ∇ ×

{
∇ ×

(−��H (r)

σ (r )
r r̂

)}
− ∇ ×

{(
∇ 1

σ (r )

)
× ((−��H (r))r r̂)

}
. (A14)

A vector ∇ 1

σ (r )
has only a radial component and so the last term of the RHS in eq. (A14) vanishes. Thus we have

∇ ×
{

1

σ (r )
∇ × ((−��H (r))r r̂)

}
= ∇ ×

{
∇ ×

(−��H (r)

σ (r )
r r̂

)}
. (A15)

Considering the second term of LHS of eq. (A13) and using the formula (A11) we write

∇ ×
{

1

σ (r )
∇ × (∇ × (�H (r)r r̂))

}
= ∇ ×

{
1

σ (r )
(−��H (r))r r̂

}
+ ∇ ×

{
1

σ (r )
∇

(
∂r�H (r)

∂r

)}
. (A16)

The last term of eq. (A16) is rewritten as

∇ ×
{

1

σ (r )
∇

(
∂r�H (r)

∂r

)}
= ∇ ×

{
∇

(
1

σ (r )

∂r�H (r)

∂r

)}
− ∇ ×

{(
∇ 1

σ (r )

) (
∂r�H (r)

∂r

)}

= −∇ ×
{(

∇ 1

σ (r )

) (
∂r�H (r)

∂r

)}

= −∇ ×
{(

∂

∂r

1

σ (r )

) (
∂r�H (r)

∂r

)
r̂

}
. (A17)

Substituting the latter result into eq. (A16) we obtain

∇ ×
{

1

σ (r )
∇ × (∇ × (�H (r)r r̂))

}
= ∇ ×

[{−��H (r)

σ (r )
− 1

r

(
∂

∂r

1

σ (r )

) (
∂r�H (r)

∂r

)}
r r̂

]
. (A18)

Substituting eqs (A15) and (A18) into eq. (A13) we have

∇ ×
{
∇ ×

(−��H (r)

σ (r )
r r̂

)}
+ ∇ ×

[{−��H (r)

σ (r )
− 1

r

(
∂

∂r

1

σ (r )

)(
∂r�H (r)

∂r

)}
r r̂

]

= ∇ × [∇ × {
(−iωμ0�H (r)) r r̂

}] + ∇ × {
(−iωμ0�H (r)) r r̂

} + ∇ ×
(

δ(r − r0)

σ (r )

)
. (A19)
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According to Helmholtz theorem, arbitrary vector can be expressed as superposition of three vectors such as a vector with only radial
component, a horizontal (divergence-free) vector and a horizontal (curl-free) vector (Backus 1986)

δ(r − r0)

σ (r )
≡ P(r)r r̂ + ∇× {

T (r)r r̂
} + ∇φ(r), (A20)

where P(r), T (r) and φ(r) are scalar functions of r , which should be determined. Derivation of P(r) and T (r) is discussed later.
Substituting eq. (A20) into eq. (A19) we have

∇ ×
[
∇ ×

{(��H (r)

σ (r )
− iωμ0�H (r) + T (r)

)
r r̂

}]

= −∇ ×
{(��H (r)

σ (r )
+ 1

r

(
∂

∂r

1

σ (r )

)(
∂r�H (r)

∂r

)
− iωμ0�H (r) + P(r)

)
r r̂

}
. (A21)

A LHS and RHS of this equation are poloidal and toroidal vectors, respectively. As a poloidal vector is orthogonal with a toroidal vector
(Backus 1986), this equation must be vanished. Thus it is sufficient to look for �H (r) and �H (r) to satisfy two following equations:

��H (r)

σ (r )
− iωμ0�H (r) = −T (r), (A22)

��H (r)

σ (r )
+ 1

r

(
∂

∂r

1

σ (r )

)(
∂r�H (r)

∂r

)
− iωμ0�H (r) = −P(r). (A23)

Substituting eq. (A22) into eq. (A12) we obtain

E(r) = 1

σ (r )

{∇ × σ (r )(−iωμ0�H (r) + T (r))r r̂ + ∇ × (∇ × �H (r)r r̂)
} − δ(r − r0)

σ (r )
. (A24)

To reduce the original 3-D partial differential eqs (A22) and (A23) to a 1-D differential equations, spherical harmonic expansions are invoked
for the functions in eqs (A22) and (A23)

�H (r) ≡
∑
n,m

�̃m
n (r )Y m

n (θ, ϕ), (A25)

�H (r) ≡
∑
n,m

�̃m
n (r )Y m

n (θ, ϕ), (A26)

T (r) ≡
∑
n,m

T̃ m
n (r )Y m

n (θ, ϕ), (A27)

P(r) ≡
∑
n,m

P̃m
n (r )Y m

n (θ, ϕ), (A28)

where Y m
n (θ, ϕ) are spherical harmonic functions of degree n and order m. �̃m

n (r ), �̃m
n (r ), T̃ m

n (r ) and P̃m
n (r ) are scalar functions of r.

Substituting these expansions into eqs (A24) and (A8) we obtain

E(r) =
∑
n,m

[
1

σ (r )
{∇ × (

σ (r )(−iωμ0�̃
m
n (r ) + T̃ m

n (r ))Y m
n (θ, ϕ)r r̂

) + ∇ × (∇ × (�̃m
n (r )Y m

n (θ, ϕ)r r̂)
) }

]
− δ(r − r0)

σ (r )
, (A29)

H(r) =
∑
n,m

[∇ × {∇ × (
�̃m

n (r )Y m
n (θ, ϕ)r r̂

)} + ∇ × (
�̃m

n (r )Y m
n (θ, ϕ)r r̂

)]
. (A30)

Thus we will derive the expression of �̃m
n (r ) and �̃m

n (r ) instead of �H (r) and �H (r). Substituting them into eqs (A22) and (A23), each mode
of spherical harmonics satisfies the following equations of r:

1

r 2σ (r )

d

dr

(
r 2 d

dr
�̃m

n (r )

)
− n(n + 1)

r 2σ (r )
�̃m

n (r ) − iωμ0�̃
m
n (r ) = −T̃ m

n (r ), (A31)

1

r 2σ (r )

d

dr

(
r 2 d

dr
�̃m

n (r )

)
− n(n + 1)

r 2σ (r )
�̃m

n (r ) + 1

r

(
d

dr

1

σ (r )

)(
dr �̃m

n (r )

dr

)
− iωμ0�̃

m
n (r ) = −P̃m

n (r ). (A32)
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Therefore we should estimate �̃m
n (r ) and �̃m

n (r ) for each n and m with a source term T̃ m
n and P̃m

n . Let us rewrite eqs (A31) and (A32) as
follows:

d

dr

(
r 2 d

dr
�̃m

n (r )

)
− n(n + 1)�̃m

n (r ) − iωμ0σ (r )r 2�̃m
n (r ) = −r 2σ (r )T̃ m

n (r ), (A33)

d

dr

(
r 2

σ (r )

d

dr
�̃m

n (r )

)
− n(n + 1)

σ (r )
�̃m

n (r ) +
(

r
d

dr

1

σ (r )

)
�̃m

n (r ) − iωμ0r 2�̃m
n (r ) = −r 2 P̃m

n (r ). (A34)

Eqs (A33) and (A34) are inhomogeneous Sturm–Liouville equations{
d

dr

(
p(r )

d

dr

)
+ q(r ) + λρ(r )

}
�(r ) = −v(r ), (A35)

where p(r), q(r), ρ(r) and v(r) are functions of r, and λ is a constant. A solution of eq. (A35), �(r), is well known (cf. Morse & Feshbach
1953):

�(r ) = −y2(r )
∫ r

a
dr ′ v(r ′)y1(r ′)

�(y1, y2)p(r ′)
− y1(r )

∫ b

r
dr ′ v(r ′)y2(r ′)

�(y1, y2)p(r ′)
, (A36)

where a ≤ r ≤ b. y1(r) and y2(r) are two general solutions of eq. (A35) with v(r) = 0. Note that �(r) ∝ y1(r) at the lower bound a, and
�(r) ∝ y2(r) at the upper bound b. Therefore, �(r) follows the boundary condition of y1(r) at the lower bound a, and follows the boundary
condition of y2(r) at the upper bound b. �(y1, y2) in eq. (A36) is a following Wronskian:

�(y1, y2) ≡
∣∣∣∣∣

y1(r ′) dy1(r ′)/dr ′

y2(r ′) dy2(r ′)/dr ′

∣∣∣∣∣ = y1(r ′)
dy2(r ′)

dr ′ − y2(r ′)
dy1(r ′)

dr ′ . (A37)

Note that it can be derived that �(y1, y2)p(r′) is independent of r′ (cf. Morse & Feshbach 1953).
�(r), p(r), q(r) and v(r) as applied to eq. (A31), correspond to �̃m

n (r ), r 2, (−n(n + 1) − iωμ0σ (r )r 2) and r 2σ (r )T m
n (r ), respectively, with

λ = 0. Substituting these values in eq. (A36) we have

�̃m
n (r ) = −�̃n,2(r )

∫ r

rl

dr ′ r
′2σ (r ′)T̃ m

n (r ′)�̃n,1(r ′)

�(�̃n,1, �̃n,2)r ′2 − �̃n,1(r )
∫ ru

r
dr ′ r

′2σ (r ′)T̃ m
n (r ′)�̃n,2(r ′)

�(�̃n,1, �̃n,2)r ′2 , (A38)

where �̃n,1(r ) and �̃n,2(r ) are solutions of eq. (A31) with T̃ m
n = 0, satisfying boundary conditions at the lower layer boundary rl and upper

layer boundary ru, respectively. �̃n,1(r ) and �̃n,2(r ) depend on the degree n of spherical harmonics. Note also that �(�̃n,1, �̃n,2)r ′2 is constant.
It is important that the formulation (A38) needs only �̃n,1(r ) and �̃n,2(r ) with a known source term T̃ m

n . This means that the second-order
Green’s tensors GE(r, r0) and GH(r, r0) can be expressed by using just 1-D function �̃n,1(r ) and �̃n,2(r ), and thus it is possible to reduce
computational memory and efforts (cf. Avdeev & Knizhnik 2009).

�(r), p(r), q(r) and v(r) as applied to eq. (A32), correspond to �̃m
n (r ), r2

σ (r ) , ( −n(n+1)
σ (r ) + (r d

dr
1

σ (r ) ) − iωμ0r 2) and r 2T m
n (r ), respectively, with

λ = 0. Substituting these values in eq. (A36) we obtain

�̃m
n (r ) = −�̃n,2(r )

∫ r

rl

dr ′ r ′2 P̃m
n (r ′)�̃n,1(r ′)

�(�̃n,1, �̃n,2)r ′2/σ (r ′)
− �̃n,1(r )

∫ ru

r
dr ′ r ′2 P̃m

n (r ′)�̃n,2(r ′)

�(�̃n,1, �̃n,2)r ′2/σ (r ′)
, (A39)

where �(�̃n,1, �̃n,2) r ′2
σ (r ′) is constant. �̃n,1(r ) and �̃n,2(r ) are solutions of eq. (A32) with P̃m

n = 0 satisfying boundary conditions at the rl and
ru, respectively.

Finally we derive the expression of T̃ m
n (r ) and P̃m

n (r ). Spherical harmonics expansion can be performed on the delta function δ(r − r0) (cf.
Morse & Feshbach 1953) as

δ(r − r0) = 1

r 2 sin θ
δ(r − r0)δ(θ − θ0)δ(ϕ − ϕ0) = δ(r − r0)

r 2

∑
n,m

Y m
n

∗(θ0, ϕ0)Y m
n (θ, ϕ), (A40)

where r ≡ (r, θ, ϕ) and r0 ≡ (r0, θ0, ϕ0). A superscript ∗ indicates complex conjugate.
In the case of the source δ(r − r0) = δ(r − r0)r̂ , the source has only a radial component. Thus T̃ m

n and P̃m
n are easily derived from eq.

(A20) as follows:

T̃ m
n (r ) = 0, (A41)

P̃m
n (r ) = δ(r − r0)

r 3σ (r )
Y m

n
∗(θ0, ϕ0). (A42)

In the case of the source δ(r − r0) = δ(r − r0)θ̂ , r̂ · ∇× acts on eq. (A20). LHS of eq. (A20) is then

r̂ · ∇ × δ(r − r0)

σ (r )
θ̂ = − 1

rσ (r ) sin θ

∂δ(r − r0)

∂ϕ
= 1

rσ (r ) sin θ0

∂δ(r − r0)

∂ϕ0
=

∑
n,m

δ(r − r0)

r 3σ (r )

∂Y m
n

∗(θ0, ϕ0)

sin θ0∂ϕ0
Y m

n (θ, ϕ). (A43)

RHS of eq. (A20) is

r̂ · ∇ × {∇ × (T (r)r r̂)
} =

∑
n,m

n(n + 1)

r
T̃ m

n (r )Y m
n (θ, ϕ). (A44)
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Thus

T̃ m
n (r ) = δ(r − r0)

n(n + 1)r 2σ (r )

∂

sin θ0∂ϕ0
Y m

n
∗(θ0, ϕ0). (A45)

Next, r̂ · ∇ × ∇× acts on eq. (A20). LHS of eq. (A20) is

r̂ · ∇ ×
{
∇ ×

(
δ(r − r0)

σ (r )
θ̂

)}
= 1

r

∂

∂θ

[
∂

r∂r

rδ(r − r0)

σ (r )

]
= −1

r

∂

∂θ0

[
∂

r∂r

rδ(r − r0)

σ (r )

]
=

∑
n,m

− ∂

r 2∂r

{
δ(r − r0)

rσ (r )

}
∂Y m

n
∗(θ0, ϕ0)

∂θ0
Y m

n (θ, ϕ).

(A46)

RHS of eq. (A20) is

r̂ · ∇ × {∇ × (P(r)r r̂)
} =

∑
n,m

n(n + 1)

r
P̃m

n (r )Y m
n (θ, ϕ). (A47)

Thus

P̃m
n (r ) = −1

n(n + 1)

∂

r∂r

{
δ(r − r0)

rσ (r )

}
∂

∂θ0
Y m

n
∗(θ0, ϕ0). (A48)

Continuing in the similar way for δ(r − r0) = δ(r − r0)ϕ̂ the following formulae can be derived:

T̃ m
n (r ) = −δ(r − r0)

n(n + 1)r 2σ (r )

∂

∂θ0
Y m

n
∗(θ0, ϕ0), (A49)

P̃m
n (r ) = −1

n(n + 1)

∂

r∂r

{
δ(r − r0)

rσ (r )

}
∂

sin θ0∂φ0
Y m

n
∗(θ0, ϕ0). (A50)

Summing up we can express E(r) and H(r) due to the source δ(r − r0), which are equivalent to Green’s tensors G E (r, r0) and G H (r, r0),
respectively, as

E(r) =
∑
n,m

[
1

σ (r )

{∇ × (
σ (r )(−iωμ0�̃

m
n (r ) + T̃ m

n (r ))Y m
n (θ, ϕ)r r̂

) + ∇ × (∇ × (
�̃m

n (r )Y m
n (θ, ϕ)r r̂

))}] − δ(r − r0)

σ (r )
, (A51)

H(r) =
∑
n,m

[∇ × {∇ × (
�̃m

n (r )Y m
n (θ, ϕ)r r̂

)} + ∇ × (
�̃m

n (r )Y m
n (θ, ϕ)r r̂

)]
, (A52)

where

�̃m
n (r ) = −�̃n,2(r )

∫ r

rl

dr ′ r
′2σ (r ′)T̃ m

n (r ′)�̃n,1(r ′)

�(�̃n,1, �̃n,2)r ′2 − �̃n,1(r )
∫ ru

r
dr ′ r

′2σ (r ′)T̃ m
n (r ′)�̃n,2(r ′)

�(�̃n,1, �̃n,2)r ′2 , (A53)

�̃m
n (r ) = −�̃n,2(r )

∫ r

rl

dr ′ r ′2 P̃m
n (r ′)�̃n,1(r ′)

�(�̃n,1, �̃n,2)r ′2/σ (r ′)
− �̃n,1(r )

∫ ru

r
dr ′ r ′2 P̃m

n (r ′)�̃n,2(r ′)

�(�̃n,1, �̃n,2)r ′2/σ (r ′)
, (A54)

T̃ m
n (r ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for δ(r − r0) = δ(r − r0)r̂,

δ(r − r0)

n(n + 1)r 2σ (r )

∂

sin θ0∂ϕ0
Y m

n
∗(θ0, ϕ0) for δ(r − r0) = δ(r − r0)θ̂,

−δ(r − r0)

n(n + 1)r 2σ (r )

∂

∂θ0
Y m

n
∗(θ0, ϕ0) for δ(r − r0) = δ(r − r0)ϕ̂,

(A55)

P̃m
n (r ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ(r − r0)

r 3σ (r )
Y m

n
∗(θ0, ϕ0) for δ(r − r0) = δ(r − r0)r̂,

−1

n(n + 1)

∂

r∂r

{
δ(r − r0)

rσ (r )

}
∂

∂θ0
Y m

n
∗(θ0, ϕ0) for δ(r − r0) = δ(r − r0)θ̂,

−1

n(n + 1)

∂

r∂r

{
δ(r − r0)

rσ (r )

}
∂

sin θ0∂φ0
Y m

n
∗(θ0, ϕ0) for δ(r − r0) = δ(r − r0)ϕ̂.

(A56)

Here �̃n,1(r ) and �̃n,2(r ) are solutions �̃(r ) of the following equation:

d

dr

(
r 2 d

dr
�̃(r )

)
− n(n + 1)�̃(r ) − iωμ0σ (r )r 2�̃(r ) = 0, (A57)
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satisfying the boundary conditions at the lower layer boundary rl and the upper layer boundary ru, respectively, and �̃n,1(r ) and �̃n,2(r ) are
solutions �̃(r ) of the following equations:

d

dr

(
r 2

σ (r )

d

dr
�̃(r )

)
− n(n + 1)

σ (r )
�̃(r ) +

(
r

d

dr

1

σ (r )

)
�̃(r ) − iωμ0r 2�̃(r ) = 0, (A58)

satisfying the boundary conditions at the lower layer boundary rl and the upper layer boundary ru, respectively.
In our implementation, we assume that σ (r) has the layered structure where σ (r) is constant in each layer. In this case the solutions of eqs

(A57) and (A58), �̃(r ) and �̃(r ), are spherical Bessel functions (e.g. Banks 1969).
Note also that in numerical calculations, the degree n of spherical harmonics is truncated at some reasonable value.

A P P E N D I X B : Q UA S I - N E W T O N M E T H O D

Quasi-Newton method is one of the algorithms to search an optimal model in unconstrained non-linear optimization problems (Fletcher 1970;
Broyden et al. 1973). An update of the model parameter by this method is performed as follows:

δmk = −Hk
∂�(mk)

∂m
, (B1)

where Hk is a matrix updated in each iteration k. A matrix Hk can be regarded as an approximation of an inverse Hessian matrix. Among
a lot of algorithms to update Hk, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) update based on conjugate gradients is often used. The
procedure of update of the matrix Hk is as follows:

Hk+1 = V T
k Hk Vk + Wk (k = 1, 2, . . .), (B2)

where

Vk = I − yk sT
k

sT
k yk

, (B3)

Wk = sk sT
k

sT
k yk

, (B4)

sk = mk+1 − mk, (B5)

yk = ∂�(mk+1)

∂m
− ∂�(mk)

∂m
. (B6)

This formulation shows that only ∂�(m)
∂m is needed to update the model. Therefore a quasi-Newton method does not need additional 3-D

forward calculations except for calculations of ∂�(m)
∂m . The initial matrix H1 can be an arbitrary positive definite matrix and may be expected

to preferably be similar to the inverse Hessian matrix. Usually any a priori information on the inverse Hessian matrix is not given, and thus
an identity matrix I is used as the initial matrix H1. Note that the steepest descent direction is used to search the model mk+1 when Hk = I, as
seen from eq. (B1).

Although a lot of computational memory must be used to store all the components of the matrix Hk, it can be reduced by expressing Hk + 1

as the recurrence relations of series sk and yk :

Hk+1 = V T
k Hk Vk + Wk

= (V1V2 · · · Vk)T (V1V2 · · · Vk) + (V2V3 · · · Vk)T W1(V2V3 · · · Vk) + · · · + (Vk−1Vk)T Wk−2(Vk−1Vk) + V T
k Wk−1Vk + Wk . (B7)

Therefore, from eq. (B1)

δmk+1 = −Hk+1
∂�(mk+1)

∂m

= Wk dk + V T
k

(
Wk−1dk−1 + V T

k−1

(
Wk−2dk−2 + V T

k−2

(· · · + V T
2

(
W1d1 + V T

1 d0

))))
, (B8)

where

dk = −∂�(mk+1)

∂m
, (B9)

dl−1 = Vl dl (l = 1, . . . , k). (B10)

This indicates that only vectors sl and yl (l = 1, . . . , k) are needed and the operations of inner product of vectors are calculated 3 × k times at
the most in eqs (B8) and (B10). Then when iteration number k of the inversion is much smaller than the number of model parameters which
is a usual case, the BFGS update does not consume much both the computational memory and computational time.

One considers giving up information on previous search directions sl and yl (l = 1, . . . , k − 1) and then storing only two vectors sk and
yk to save the memory. Because m j+1 should be the minimum point of �(m) in the direction of (m j+1 − m j ) by the exact line search, that
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is, sT
j

∂�(m j+1)

∂m = 0 (j = 1, . . . , k), the eq. (B8) is simplified by using the first two terms,

δmk+1 = Wk dk + V T
k dk−1

= −∂�(mk+1)

∂m
+

yT
k

∂�(mk+1)

∂m(∂�(mk)

∂m

)T (∂�(mk)

∂m

) δmk . (B11)

This update formula is equivalent to the NLCG (Non-linear Conjugate Gradient; e.g. Newman & Alumbaugh 2000). Therefore the NLCG is
regarded as an extremely limited-memory quasi-Newton method with the exact line search (Avdeev & Avdeeva 2009; Kuvshinov & Semenov
2012).

In this study we use the BFGS update rather than the NLCG, because the BFGS update has strong convergence properties. Moreover the
exact line search in the BFGS update is not required (Powell 1976) thus decreasing number of calls of 3-D forward problem calculations.

In the BFGS update, it can be easily shown from eq. (B2) that if a scalar sT
k yk is positive, the updated matrix Hk + 1 is guaranteed to be

positive definite. Conversely if sT
k yk is not positive, Hk + 1 is not positive definite because yT

k Hk+1 yk = yT
k sk ≤ 0 as it is seen from eq. (B2),

and then eq. (B1) cannot be used. Therefore while sT
k yk is not positive the steepest descent method is used instead of the quasi-Newton

method, and then the quasi-Newton method is restarted after sT
k yk becomes positive again.


