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The use of structured treatment interruption (STI) in human immunodeficiency virus (HIV)–infected subjects
is currently being studied as an alternative therapeutic strategy for HIV-1. The potential risk for selection of
drug-resistant HIV-1 variants during STI is unknown and remains a concern. Therefore, the emergence of
drug resistance in sequential plasma samples obtained from 28 subjects with chronic HIV infection was studied.
They underwent 4 cycles of 2-week STI, followed by 8-week retreatment with highly active antiretroviral
therapy identical to that used before STI, and they had never failed treatment before undergoing STI. At week
40, treatment was stopped for a longer period. Minor populations of drug-resistant variants were detected by
quantitative real-time polymerase chain reaction, by use of allele-discriminating oligonucleotides for 2 key
resistance mutations: L90M (protease) and M184V (reverse transcriptase). The approximate discriminative
power was 0.1%. In 14 of 25 and in 3 of 25 subjects, the M184V and the L90M mutations, respectively, were
detected as minor populations, at different times during STI. Overall, these results indicate that, in subjects
undergoing multiple STIs, HIV-1 variants carrying drug-resistance mutations can emerge during periods of
increased HIV-1 replication.

Highly active antiretroviral therapy (HAART) has re-

duced the morbidity and mortality of subjects infected
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with human immunodeficiency virus type 1 (HIV-1)

[1, 2]. However, the existence of a long-lived reservoir

of latently infected CD4+ T lymphocytes makes it un-

likely that HIV-1 can be eradicated by currently avail-

able antiretroviral drugs [3–7]. Adverse effects and

long-term toxicity, associated with prolonged use of

these drugs, has become a critical issue when consid-

ering the beneficial effects of HAART [8, 9].

Structured treatment interruption (STI) is an alter-

native therapeutic strategy for HIV-1 that is currently

under investigation. STI is used as a means of boosting

HIV-1–specific immune responses, while, at the same

time, reducing the adverse effects, toxicity, and cost

associated with HAART. Encouraging results from the

use of STI in subjects with acute HIV-1 infection, the

majority of whom controlled viral replication after ces-

sation of treatment, have been reported [10]. The clin-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85219561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1434 • JID 2003:188 (15 November) • Metzner at al.

ical benefits of STI in subjects with chronic HIV-1 infection

remain unclear [11–13]. The largest STI trial undertaken thus

far, the Swiss-Spanish Intermittent Treatment Trial (SSITT),

enrolled 133 subjects with chronic HIV-1 infection who un-

derwent STI after successful HAART. The results of that trial

did not show a relationship between control of HIV-1 viremia

and induction of virus-specific cytotoxic T lymphocytes [14–

16]. However, SSITT demonstrated that STI is safe in subjects

with chronic HIV-1 infection. The risk of selecting drug-resis-

tant HIV-1 variants during STI is unknown and remains a

concern [17]. A recent report demonstrates selection of drug-

resistant viruses in the context of STI: 2 of 12 subjects with

chronic HIV-1 infection developed the M184V mutation, which

is associated with reduced susceptibility to lamivudine [18].

Genotypic mutations associated with drug resistance are gen-

erally detected by direct sequencing or hybridization to allele-

specific oligonucleotides. One drawback to these techniques is

their inability to detect and quantify minor (!20%) populations

of either the wild-type or mutant variants. This is mainly due

to the failure of polymerase chain reaction (PCR) primers to

discriminate, and subsequently to amplify, variants with a low

molar ratio [19, 20]. In a previous study, we reported a new

method for differential amplification of simian immunodefi-

ciency virus species that is based on real-time PCR using mo-

lecular beacons and selective oligonucleotides [21]. Subse-

quently, other groups have reported similar assays for the

selective quantification of resistant HIV-1 viral sequences [22].

In the present study, this technique was modified to detect 2

key HIV-1 drug-resistance mutations, L90M (protease) and

M184V (reverse transcriptase [RT]). This assay allows simul-

taneous detection of both the wild-type and drug-resistant var-

iants in the same sample, enabling direct quantification and

analysis of changes in each virus population.

To evaluate the development of minor drug-resistant HIV-

1 variants, we used this assay to assess subjects with chronic

HIV-1 infection during STI. Our results indicate the presence

of minor populations of HIV-1 with L90M and M184V mu-

tations in subjects undergoing STI.

SUBJECTS, MATERIALS, AND METHODS

Study design and subjects. Of the 29 subjects enrolled from

the Zurich cohort of the SSITT [14], 28 participated in the

present study. Of those, 15 participated in an extended protocol

with frequent blood sampling [16]. All subjects also participated

in the Swiss HIV Cohort Study.

To be eligible for the SSITT, subjects had to be receiving their

first combination antiretroviral therapy (ART) with 2 or 3 drugs

(excluding nonnucleoside RT inhibitors) for 16 months and

never have experienced therapy failure. Subjects who had re-

ceived previous nonsuppressive treatment with 1 or 2 nucleo-

side RT inhibitors were excluded. Plasma viremia had to be

!50 HIV-1 RNA copies/mL for at least 6 months, and CD4+

T cell counts had to be 1300 cells/mL. The baseline charac-

teristics of the study subjects are summarized in table 1. The

trial consisted of 4 cycles, each consisting of a 2-week treatment

interruption followed by resumed treatment for 8–10 weeks.

Subjects whose plasma viremia did not decrease to values of

!50 HIV-1 RNA copies/mL of plasma during periods of re-

sumed treatment were excluded from the study. After 4 STI

cycles (week 40), treatment was stopped for at least 3 months,

unless symptoms of acute HIV-1 infection occurred, CD4+ T

cell counts decreased to !300 cells/mL, or virus load exceeded

the following predetermined values: 3 consecutive measure-

ments of 150,000, 2 of 1100,000, or 1 of 1500,000 HIV-1 RNA

copies/mL of plasma. At week 52, treatment was resumed as

described elsewhere [14, 16]. The SSITT was approved by the

Ethics Committee of the University Hospital Zurich, and writ-

ten, informed consent was obtained from each subject.

Blood sampling and HIV-1 quantification. Blood samples

were obtained on days 0, 4, 8, 14, 18, 22, 24, 28, 35, 42, 56,

63, and 70 of each cycle, for the extended protocol, and on

days 0, 14, and 63 of each cycle, for the basic SSITT protocol.

From week 40 to 52, blood was drawn weekly from all subjects.

Plasma HIV-1 RNA was quantified by use of an Amplicor HIV-

1 Monitor test (version 1.5; Roche Diagnostics) with ultrasen-

sitive modifications, resulting in a level of detection of �50

HIV-1 RNA copies/mL of plasma [23, 24].

HIV-1 RNA from subjects’ plasma. Plasma samples col-

lected from blood in EDTA anticoagulant were centrifuged at

2000 g for 5 min, to pellet cell debris. Particle-associated HIV-

1 RNA was purified from cell-free plasma (250–500 mL) by use

of a QIAamp Viral RNA Mini Kit (Qiagen), in accordance with

the manufacturer’s instructions for large sample volumes. Part

of each RNA sample was used for cDNA synthesis immediately

after extraction, and the remainder was stored at �80�C.

Construction of DNA and RNA standards for quantitative

real-time PCR for differential amplification of L90M and

M184V mutations. The primers for PCR and RT-PCR were

designed on the basis of published sequences within the pol

region of HIV-1HXB2. Oligonucleotides were synthesized by

Operon Technologies (Alameda, California). A plasmid encod-

ing HIV-1HXB2 (Aaron Diamond AIDS Research Repository) was

used as a background DNA template for the construction of

DNA and RNA transcripts. Regions within the pol gene of

HIV-1HXB2 were cloned into pGEM-T (Promega), in accordance

with the manufacturer’s instructions. The L90M (TTG to ATG

transversion in codon 90 of the protease gene) and M184V

(ATG to GTG transversion in codon 184 of the RT gene) drug-

resistance mutations were introduced into the pGEM-T HIV-

1HXB2 plasmid by site-directed mutagenesis, by use of a Quik-

Change Site-Directed Mutagenesis Kit (Stratagene) and the
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Table 1. Baseline characteristics of subjects before structured treatment interruptions (STIs).

Subject
Age,
years Sex

Route of
infection

Duration of HIV-1
infection, years

CD4 cell counts,
cells/mm3 HIV subtype

VL before HAART,
copies/mL

HAART received
before STIb

Time of VL
!50 copies/mL

before STI,
months

101 40 M Het 114 719 B 46,452a ddI, d4T, NFV 17

102 41 M MSM 17 723 B 561,831 AZT, 3TC, IDV 32

103 42 M Het 17 272 E/CRF1 26,568a ddI, d4T, NFV 12

104 47 M MSM 12 526 A 1,502,850 AZT, 3TC, NFV 26

105 52 F Het 3 1269 B 128,555a AZT, 3TC, IDV 26

106 39 M IVDA 19 878 B 506a AZT, 3TC 36

107 44 F Het 17 544 B 5216 AZT, 3TC, NFV 25

109 38 M MSM 19 1115 B 34,752 AZT, 3TC, RTV 31

111 38 M MSM 13 422 B 122,902a ddI, d4T, NFV 11

112 46 M IVDA 14 347 B 32,608a AZT, 3TC, IDV 25

113 59 M MSM 13 995 B 107,303 AZT, 3TC, RTV 20

114 32 M MSM 17 907 B 9275 AZT, 3TC, RTV 29

115 24 M MSM 12 570 B 54,693a d4T, 3TC, NFV 21

116 53 M Het 12 350 B 467,593 AZT, 3TC, IDV 32

117 33 F IVDA 4 489 B 29,345a AZT, 3TC, RTV 36

118 33 M MSM 4 832 B 16,927 AZT, 3TC, IDV 30

119 35 M Het 11 440 B 114,117a d4T, 3TC, SQV, RTV 12

120 55 M Het 12 766 B 162,701a AZT, 3TC, IDV 28

121 38 M Het 12 591 B 164,772 d4T, 3TC, NFV 12

122 40 M MSM 114 669 B 13,348a AZT, 3TC, IDV 30

123 39 F IVDA 18 1335 B 14,410 AZT, 3TC, RTV 25

124 43 M IVDA 12 715 B 19,453a ddI, d4T, NFV 19

125 35 F Het 15 777 E/CRF1 11,298 ddI, d4T, NFV 23

126 49 M MSM 17 842 B 63,698 AZT, 3TC, RTV 34

127 52 F Het 14 839 B 25,417 d4T, 3TC, NFV 22

128 43 F IVDA 12 749 B 9404 AZT, ddI, NFV 25

129 44 F Het 11 639 C 1,287,812 AZT, 3TC, IDV 29

130 66 M Het 1 670 A 821a AZT, 3TC, NFV 30

Median 42 4 717 33,680 26

Average 43 5 720 179,808 25

SD 9 4 261 368,727 7

NOTE. 3TC, lamivudine; AZT, zidovudine; d4T, stavudine; ddI, didanosine; HAART, highly active antiretroviral therapy; Het, heterosexual; HIV, human im-
munodeficiency virus; IDV, indinavir; IVDA, intravenous drug abuse; MSM, men who have sex with men; NFV, nelfinavir; RTV, ritonavir; SQV, saquinavir; VL, virus
load.

a Mean pretreatment HIV-RNA values when 2 values before initiation of HAART were available.
b All subjects reached full suppression of plasma viremia (!50 copies/mL) after receiving these combination antiretroviral drug regimens and had never received

nonsuppressive mono- or double nucleoside reverse-transcriptase inhibitor therapy.

oligonucleotides tgL90M 5′-CTGTCAACATAATTGGAAGA-

AATCTGATGACTCAGATTGGTTGCAC-3′ (nt 2494–2539),

tgL90Mrc 5′-GTGCAACCAATCTGAGTCATCAGATTTCTTC-

CAATTATGTTGACAG-3′ (nt 2494–2539), tgM184V 5′-GACA-

TAGTTATCTATCAATACGTGGATGATTTGTATGTAGGATC-

TGAC-3′ (nt 3078–3125), and tgM184Vrc 5′-GTCAGATCCTAC-

ATACAAATCATCCACGTATTGATAGATAACTATGTC-3′ (nt

3078–3125), in accordance with the manufacturer’s instructions.

The introduction of each mutation into the pGEM-T HIV-1HXB2

template DNA was confirmed by sequencing.

DNA standards for quantification were prepared by PCR

from plasmid DNA constructed by in vitro mutagenesis. Wild-

type and mutant L90M-M184V plasmid DNA were amplified

by PCR, and the amplicons were purified from excess prim-

ers, dNTPs, and protein by use of a QIAquick PCR purification

Kit (QIAGEN). The PCR contained 1� PCR buffer (QIAGEN),

0.5 mmol/L dNTPs (Gibco BRL), 0.4 mmol/L each primer (pol

2259 5′-GTCACTCTTTGCCAACGACC-3′ [HXB2 2259–2279]

and pol 3287 5′-CAGCACTATAGGCTGTACTGTC-3′ [HXB2

3266–3287]) and 2.5 U of HotStarTaq DNA polymerase

(QIAGEN; final volume, 50 mL). The thermal-cycling condi-

tions consisted of 15 min at 95�C, to activate the DNA poly-

merase, followed by 40 cycles (30 s at 94�C, 30 s at 55�C, and

1 min at 72�C) and a termination of 5 min at 72�C. The con-
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centrations of the purified wild-type and L90M-M184V am-

plicons (dsDNA, 1029 nt in length) were measured by UV-

absorbance spectrophotometry. Ten-fold serial dilutions of the

purified dsDNA transcripts with known molar concentrations

were used as templates to generate the standard curves used

for selective amplification by fluorescence-based real-time PCR.

RNA transcripts corresponding to the wild-type and L90M

and M184V drug-resistance mutations were prepared by in

vitro transcription of PCR products that contained the T7 RNA

polymerase promoter site, by use of the MEGAscript T7 kit

(Ambion). DNA templates for in vitro transcription were gen-

erated by PCR from wild-type and L90M-M184V plasmid

DNA. The PCR contained 1� PCR buffer, 0.5 mmol/L dNTPs,

0.4 mmol/L each primer (T7-pol 2258 5′-TAATACGACTCA-

CTATAGGGGTCACTCTTTGCCAACGACC-3 [nt 2258–2279;

T7 promoter sequence is underlined] and pol 3458 5′-TTAGA-

ATCTCTCTGTTTTCTGCC-3′ [HXB2 3458–3480]) and 2.5 U

of HotStarTaq DNA polymerase (final volume, 50 mL). The

thermal-cycling conditions consisted of 15 min at 95�C, fol-

lowed by 40 cycles (30 s at 94�C, 30 s at 55�C, and 80 s at

72�C) and a termination of 5 min at 72�C. The concentrations

of the purified DNAse-treated RNA transcripts (1223 nt in

length) were measured by UV-absorbance spectrophotometry.

Selective quantification of wild-type and L90M and M184V

drug-resistant HIV-1 strains. Reverse transcription with viral

RNA from plasma samples was performed as described else-

where [21]. In brief, 20 mL of viral RNA and 0.5 mmol/L of a

gene-specific primer recognizing either the HIV-1 protease gene

(5′-GCCATCCATTCC-3′ [nt 2592–2603]) or the HIV-1 RT

gene (5′-GGTTCTTTCTGATG-3′ [nt 3210–3223]) were used.

Amplification of HIV-1 cDNA or genomic DNA was per-

formed by use of 2 external primer pairs in the same reaction:

1 primer pair for each region of interest (either wild type or

mutant), to optimize the primer binding sites. PCRs consisted

of 20 mL of cDNA, 1� PCR buffer II (Applied Biosystems),

3.5 mmol/L MgCl2, 0.5 mmol/L dNTPs (GibcoBRL), 0.4 mmol/

L each upstream primer (L90 EP1 5′-GAAGCTCTATTAGATA-

CAGG-3′ [nt 2313–2332] and M184 EP1 5′-AATCCAGACATA-

GTTATCTATC-3′ [nt 3072–3093]), 0.4 mmol/L each down-

stream primer (L90 EP2 5′-TTTAAAGTGCAACCAATCTGAG-

3′ [nt 2524–2545] and M184 EP2 5′-TTTTTTGTCTGGTGTG-

GTAAATC-3′ [nt 3187–3209]), and 2.5 U of AmpliTaq Gold

DNA polymerase (Applied Biosystems; final volume, 50 mL).

Amplification was performed for 15 cycles (15 s at 94�C, 1 min

at 43�C, and 30 s at 72�C) in a Mastercycler gradient (Eppendorf

Scientific). PCR products were purified by use of a QIAquick

PCR purification kit (Qiagen), in accordance with the manu-

facturer’s instructions.

Nested real-time amplification of HIV-1 DNA was performed

separately for each region of interest (either wild type or mu-

tant), by use of 10 mL of first-round PCR product, 1� x-

rhodamine–PCR buffer, 3.5 mmol/L MgCl2, 0.5 mmol/L dNTPs

(GibcoBRL), 0.2� SYBR green (Molecular Probes), 0.4 mmol/

L each primer (pol 2316 5′-GCTCTATTAGATACAGGAGC

AG-3′ [nt 2316–2337] and IN L90 5′-TGCAACCAATCTGA-

GTCIA-3′ [nt 2520 -2538] or IN L90M 5′-TGCAACCAATCTG-

AGTCIT-3′ [nt 2520–2538]; and pol 3206 5′-TTTGTCTGGTGT

GGTAAATCCCCAC-3′ [nt 3182–3206] and IN M184 5′-CCA-

GACATAGTTATCTATCAATA IA-3′ [nt 3075–3099] or IN

M184V 5′-CCAGACATAGTTATCTATCAAT AIG-3′ [nt 3075–

3099]), and 2.5 U of AmpliTaq Gold DNA polymerase (Applied

Biosystems; final volume, 50 mL). Fifty cycles of amplification

(15 s at 94�C, 30 s at 60�C, and 30 s at 72�C) were performed

in an Applied Biosystems 7700 Prism spectrofluorometric ther-

mal cycler (Applied Biosystems).

DNA standards were tested in duplicate for each experiment.

The standards were prepared by serial dilution from 106–10

copies/reaction. Viral RNA samples were also tested in dupli-

cate. Copy numbers were calculated by interpolation of the

experimentally determined threshold cycle for the test specimen

onto a control standard regression curve [25]. The ratio of

wild-type and mutant sequences was calculated on the basis of

copy numbers for each population. Nested real-time PCR assays

have a detection limit of 10 HIV-1 DNA copies/reaction, with

a linear dynamic range of 16 logs.

Since low virus loads diminish the discriminatory ability of

each assay, the final calculation of the percentage of minor

variants was dependent on the virus load. On the basis of the

protocol used in the present study, the equivalent of 11.2% of

the virus load (in RNA copies per milliliter) was estimated for

use in the first round of PCR and, subsequently, in the quan-

titative real-time PCR assays for differential amplification (virus

load in 1 mL of plasma � 100%; 560 mL of plasma used for

RNA isolation � 56%; two-fifths of eluted RNA used for cDNA

synthesis � 22.4%, and half of cDNA used for first round of

PCR � 11.2%). For each sample, the limit of detection of

minority variants was calculated on the basis of the virus load.

For instance, a virus load of 893 RNA copies/mL of plasma

results in 100 cDNA copies (11.2%) used in the first round of

amplification. Therefore, the equivalent of 100 cDNA copies is

used in quantitative real-time PCR for differential amplifica-

tion. Because of the detection limit of 10 DNA copies/reaction

in each real-time PCR, at least 10 copies of the initial 100 cDNA

copies have to carry the mutant to be detectable; this equals

10% in this example—anything !10% is not detectable. Thus,

an individual cut-off value was estimated for every sample.

Therefore, samples with virus loads of !500 HIV-1 RNA copies/

mL of plasma were not tested. The results of quantitative real-

time PCR assays were then compared with these calculations

and were adjusted such that detection of minor populations

was considered to be negative when the limit of detectable

minorities was higher on the basis of individual cut-off values.
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Figure 1. Scheme and discriminatory ability of quantitative real-time
polymerase chain reaction (PCR) for differential amplification. A, Wild-
type– or mutant-specific primers and a nonselective primer were used
to amplify the region of interest. Amplicons were quantified by real-time
PCR by use of SYBR green. B, Equal amounts of either wild-type (�) or
mutant (�) standard DNA templates were amplified with the wild-type–
specific (left panels) or mutation-specific (right panels) primers. The dis-
criminatory abilities (DCT) are indicated in the upper left corner, for each
assay. C, Discriminatory ability of real-time PCR for differential amplifi-
cation. Amplification of wild-type human immunodeficiency virus type 1
(HIV-1) DNA was performed by use of a serial dilution of standard wild-
type HIV-1 DNA either with (�) or without (�) the addition of 106 copies
of standard mutant HIV-1 DNA. Reactions were performed in duplicate,
and the mean values are shown. The solid lines indicate amplification
without the addition of mutant DNA (left panel). Amplification of mutant
HIV-1 DNA was performed by use of a serial dilution of standard mutant
HIV-1 DNA either with (�) or without (�) the addition of 106 copies of
standard wild-type HIV-1 DNA. The linear standard curve for amplification
of mutant DNA alone is shown in black (right panel). SDs are contained
within the data points. NT, without correct DNA template.

RESULTS

Differential amplification of HIV-1 variants by quantitative

real-time PCR. The quantitative real-time PCR assay used in

the present study is based on the amplification refractory mu-

tation system (ARMS) [26]. This assay uses allele-specific oli-

gonucleotides for detection of either wild-type or mutant se-

quences (figure 1A). To evaluate the discriminatory ability of

each assay, wild-type and mutant DNA standards were used for

amplification with the corresponding and the noncorresponding

oligonucleotides. Amplification of L90M DNA by the wild-type–

specific primer was detected by a positive fluorescent signal,

which appeared ∼14 PCR cycles after the signal for the wild-type

target. This is equivalent to a decreased efficiency of amplification

of 110,000-fold (figure 1B). The discriminatory ability (DCT) for

the amplification of both targets, with the mutation-specific

primer, is 16, which is equivalent to a 160,000-fold decrease in

efficiency of amplification of the incorrect target. Evaluating the

discriminatory ability of the M184/V assay resulted in DCT values

of 11 and 10 for M184 and M184V, respectively (data not shown).

In addition, the discriminatory ability of each assay was

tested in reciprocal mixing experiments by adding 106 copies

of noncomplementary DNA to a serial dilution (106–10 copies)

of either wild-type or mutant standard DNA. In each case, the

threshold cycle was compared to PCRs performed without the

addition of noncomplementary DNA. The discriminatory abil-

ity of this assay was comparable to that obtained from the

experiments described above (figure 1C). Taking into account

SD, the estimated discriminatory abilities for the different wild-

type and mutant sequences are as follows: 0.01% for detection

of L90 wild type as minority population, 0.01% for L90M, 0.1%

for M184, and 0.2% for M184V. The dynamic range of all assays

is 16 logs.

To overcome the problem of HIV-1 heterogeneity, multiplex

PCR with external primer pairs was performed before the sam-

ples were amplified by quantitative real-time PCR. Oligonu-

cleotides were chosen, covering almost the entire primer bind-

ing site used for selective amplification. Only a few PCR cycles

at low annealing temperatures were necessary to prepare viral

genomes from different subjects, for quantitative real-time

PCR. Standard DNA was tested by use of 1 or all external primer

pairs in the same reaction. No differences in threshold cycles

and discriminatory abilities were observed. Clones with differ-

ent known mutations in primer binding sites were first am-

plified with external primer pairs and then were used for nested

quantitative real-time PCR for differential amplification. Use

of sequences carrying 1 or 2 mutations in primer binding sites

did not result in any significant difference in threshold cycles

and discriminatory ability, compared with standard templates

that were completely homologous. When sequences contained

3 or 4 mutations in the primer binding site, a positive fluo-
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rescent signal appeared 14 cycles later. However, the discrim-

inatory ability was not affected (data not shown).

Quantification of minor populations of drug-resistant HIV-

1 in subjects undergoing STI. A total of 28 subjects under-

going STI were enrolled in this study. The baseline character-

istics of the study subjects are shown in table 1. All subjects

had chronic HIV-1 infection and were successfully treated with

HAART (virus load of !50 HIV-1 RNA copies/mL of plasma).

At least 1 protease inhibitor was included in the treatment

regimens of 27 subjects. All subjects were evaluated for HIV-

1 carrying the L90M and M184V mutations. Subjects 102, 103,

109, and 116 had to be retreated, according to the protocol,

between weeks 40 and 52. Subject 104 dropped out of the study

because his virus load measurements were 150 HIV-1 RNA

copies/mL of plasma after 10 weeks of retreatment. Analyses

of viral and immunological responses in these subjects have

been published elsewhere [14–16, 27].

The assay for detection of the L90M mutation was performed

on samples from 27 subjects. It was not possible to successfully

amplify wild-type or mutant sequences from 2 of these subjects

(129 and 130). These subjects were infected with HIV-1 sub-

types A and C, respectively. The L90M mutation was detected

as a minor variant in 3 of 25 subjects (subjects 102, 116, and

118) (table 2). In subject 102, 5.6% of the total HIV-1 popu-

lation carried the L90M mutation during the first cycle of STI

(figure 2). Interestingly, the L90M mutation was not detected

in this subject’s virus population during subsequent STI cycles.

In subject 116, 0.3% of the virus population carried the L90M

mutation during the third cycle of STI. Similarly, in subject

118, 0.06% of the virus population carried the L90M mutation

at 1 time point during the fifth cycle of STI. No evidence was

found for the presence of the L90M mutation in viruses from

any other study subjects.

All 28 subjects were tested for the presence of the M184V

mutation. We were unable to amplify either wild-type or

M184V mutant sequences in samples from 3 subjects (103, 129,

and 130). These subjects were infected with HIV-1 subtypes

different from subtype B (table 1). Overall, drug-resistant HIV-

1 variants carrying the M184V mutation were detected in 14

of 25 subjects. In 9 subjects, minority virus populations carrying

the M184V mutation were detected at only 1 or 2 time points.

In 7 subjects, this mutation was detected once, as a minority,

during the fifth cycle of STI (see “subject 106” in figure 2 and

table 2), with percentages ranging from 0.3% to 9.8% (average,

3.1%). The M184V mutation was not detected in subsequent

samples from these subjects. Among viral sequences identified

for subject 127, 5.4% carried the M184V mutation during the

second STI cycle, but not during subsequent STI cycles. In

subject 106, the M184V mutation represented 56.9% of the

sequences detected during the beginning of the fifth STI cycle.

This population decreased to 1% 2 weeks later and decreased

to !0.3% after an additional 2 weeks. Lower virus loads in

subsequent samples did not allow us to discriminate between

wild-type and mutant variants below the range of 2.6%–6.6%.

Because of low virus loads during the first 4 STI cycles, only

time points from the fifth STI cycle were measured. However,

calculating the positive values of the M184V mutation relative

to the virus load revealed that 56.9% corresponded to ∼782

HIV-1 RNA copies/mL of plasma. Because of a rapid increase

in virus load in this subject (106), 1% corresponds to ∼451

HIV-1 RNA copies/mL of plasma. This indicates that the wild-

type population was increasing during this period, whereas the

M184V mutant population was slowly decreasing.

Five subjects showed diverse patterns, with regard to the

appearance of the M184V mutation (figure 2 and table 2).

Analysis of samples from subject 102 revealed a continuous

decrease in viruses carrying the M184V mutation, during the

first 3 cycles of STI (20.1%, 5.2%, and 4.9%, respectively). The

M184V mutation was not detected within the range of de-

tectable minor variants during subsequent STI cycles. This sub-

ject resumed ART (zidovudine, lamivudine, and indinavir) on

day 329. The majority of viruses identified for subject 104

carried the M184V mutation at baseline, with 93.9% detected

by day 8 of the first STI cycle. After reintroduction of HAART,

the virus load decreased; however, the M184V mutation was

detectable at levels of ∼60%–80%, up to day 70. This subject

subsequently dropped out of the STI study because his virus

load did not decrease to !50 HIV-1 RNA copies/mL of plasma

after the first STI cycle. Viremia continued to decrease but

remained detectable at low levels (!500 HIV-1 RNA copies/

mL of plasma). Five months later, virus load rebounded to

11000 HIV-1 RNA copies/mL of plasma. Population sequenc-

ing revealed the M184V mutation and the protease inhibitor–

associated mutations 46L, 54V, 63P, and 82A. A salvage regimen

was started with abacavir, saquinavir, ritonavir (changed to

lopinavir/ritonavir after 20 months), and stavudine. Efavirenz

was added to the regimen after 1 month. Virus load decreased

and remained undetectable in plasma for the duration of

follow-up (figure 2).

Viral variants carrying the M184V mutation were detectable

as a minority population in samples obtained from subject 105

during the fifth STI cycle. The percentage of M184V mutants

varied between 0.5% and 11% during this time but did not

disappear, despite the fact that the subject was not receiving

ART. Time points before the fifth STI cycle were not analyzed,

because of low virus load. The first sample from subject 112

that was measured was obtained during the third STI cycle;

samples of earlier STI cycles have not been used for differential

amplification, because of low virus loads. Approximately 50%

of the virus population from subject 112 carried the M184V

mutation during the third STI cycle. During the fourth STI

cycle, the M184V mutation was not detectable (!2.1%), but it
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Figure 2. Kinetics of virus load and detection of drug-resistant viral sequences in subjects undergoing structured treatment interruption (STI).
Human immunodeficiency virus type 1 (HIV-1) RNA in plasma was measured by use of an Amplicor HIV-1 Monitor test (version 1.5; Roche Diagnostics)
(�). Drug-resistant variants carrying either the L90M or M184V mutations were detected by quantitative real-time polymerase chain reaction for
differential amplification. The percentage of the virus population carrying the specific mutation was used to calculate the absolute HIV-1 RNA copies
per milliliter of plasma, on the basis of the corresponding virus load measurement. Copy numbers representing the L90M variants (�) and M184V
variants (�) are shown. Numbers represent percentages of each drug-resistant virus population. Percentage values below the limit of detectable
minorities, because of low virus load, are printed in italic type. The limit of sensitivity (90 copies of HIV-1 RNA) is indicated by the dotted line. The
shaded areas represent periods of STI comprising 4 cycles; each cycle comprised 2 weeks without HAART followed by 8 weeks of resumed treatment.
Treatment was discontinued for at least 3 months, at week 40, and was resumed if necessary. Subject 104 dropped out of the study because his
virus load did not decrease to !50 HIV-1 RNA copies/mL of plasma after the first STI cycle.
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appeared again during the fifth STI cycle, showing an increase

over time. In subject 116, the M184V mutation was detectable

as a minor variant during the first STI cycle (0.9%), the second

STI cycle (0.3%), and the third STI cycle, at days 148 (5.9%)

and 154 (0.8%). During the fourth STI cycle, the level of viruses

carrying the M184V mutation reached 27.3%. HAART was

reintroduced in this subject 33 days after the fifth STI.

All subjects had received their first ART before they were

enrolled in SSITT. To determine whether minor populations

carrying the L90M and M184V mutations were already present,

before initiation of HAART, in our subjects’ virus populations,

we also tested plasma samples obtained from 24 of these sub-

jects when they were still drug naive—that is, before any ART

was started. No successful amplification of wild-type or mutant

sequences was possible in samples from 3 (L90/M) and 2

(M184/V) subjects, respectively. In the remaining samples, no

minor variants of viruses carrying the L90M or M184V mu-

tations were detectable. With regard to the L90M mutation,

frequencies were !0.03%–!1% (median, !0.2%) in samples

from 21 subjects. The M184V mutation was not detectable in

22 subjects, at frequencies of !0.2%–9.1% (median, !0.5%).

DISCUSSION

The present study was undertaken to analyze the potential

emergence of drug-resistant HIV-1 in subjects undergoing STI.

Genotypic analysis of minor populations was performed by use

of a novel, quantitative real-time PCR assay for differential

amplification with selective oligonucleotides that detect 2 key

resistance mutations: L90M (protease) and M184V (RT). This

methodology is based on the ARMS [26]. Gene-specific oli-

gonucleotides contained a deoxyinosine at the �2 position of

the 3′ end that, because of destabilizing effects on the formation

of duplexes, increased the discriminatory ability 5–10-fold (data

not shown). In addition, since deoxyinosine is less tolerant of

mismatches, variability in the second position, among different

viral sequences, is less critical [28]. This methodology is able

to detect a low percentage of minor populations of L90 wild-

type and L90M drug-resistant variants (0.01%), as well as M184

wild-type (0.1%) and M184V drug-resistant variants (0.2%).

A total of 28 subjects were enrolled in the present study; 181

plasma samples from 25 subjects were analyzed for the presence

of the L90M mutation. This mutation was detected as a minor

population in 3 samples from 3 of 25 subjects. A total of 216

plasma samples from 25 subjects were analyzed for the presence

of the M184V mutation: 40 samples from 14 subjects were

positive for the M184V mutation. The predominance of the

M184V mutation, compared with the L90M mutation, was not

unexpected. The selection of mutations associated with drug

resistance to protease inhibitors is a slow, stepwise process [29,

30], compared with the emergence of M184V, which is a single-

point mutation selected by lamivudine [31]. Thus, the more

frequent detection of the M184V mutation, compared with the

L90M mutation, might represent a very early event in the emer-

gence of drug resistance in our subjects undergoing several

periods of significant HIV-1 replication [26].

The majority of subjects in this study were infected with

HIV-1 subtype B (table 1), and samples from each of these

subjects have been successfully amplified. Five subjects were

infected with other HIV-1 subtypes. Although HIV-1 clones

containing mutations at different positions in the primer bind-

ing sites were successfully amplified in the set up of validation

of this method, only HIV-1 from 2 of these subjects was am-

plified by use of both L90M and M184V real-time PCR; how-

ever, it was not possible to amplify samples from 2 other sub-

jects (129 and 130). Samples from subject 103 were successfully

analyzed, with respect to the L90M mutation, but we were

unable to generate amplicons to detect the M184V mutation.

It is likely that the oligonucleotides did not hybridize to the

HIV-1 targets of the subjects, because of too many mutations

in the primer binding site. The use of external primer pairs in

combination with low annealing temperatures during the first

PCR reaction and a deoxyinosine at the �2 position of the 3′

end of the selective oligonucleotides are efforts to minimize the

influence of differences in viral sequences. This procedure is

successful, with respect to HIV-1 subtype B. However, a small

risk of underestimating 1 or the other HIV-1 variant cannot

completely be denied.

Sporadic occurrence of the L90M mutation was detected in

3 subjects during STI. This mutation appeared only once in

each subject, during different STI cycles. The percentage of

viruses carrying the L90M mutation was !0.3% in subjects 116

and 118. We cannot rule out the possibility that a minor pop-

ulation of L90M variants within this range may be present at

other time points; however, for most of the other samples, low

virus loads did not allow us to discriminate !1%. In 9 subjects,

the M184V mutation was detected during the fifth STI cycle in

only 1 or 2 samples. It is possible that M184V was also selected

during prior STI cycles, but, because of lower virus loads during

these periods, the M184V mutation was not detectable. On the

other hand, more samples were suitable for testing during the

last (fifth) STI cycle, increasing the probability of detecting mu-

tations, because of the occurrence of a full rebound in virus load,

compared with the shorter, prior STI cycles. Interestingly, 2 of

these subjects were treatment naive with respect to lamivudine.

Instead, their regimen contained didanosine. That virus strains

harboring the M184V mutation show reduced sensitivity against

didanosine in vitro may potentially lead to selection of minor

populations carrying the M184V mutation in subjects receiving

didanosine treatment [32].

Baseline samples (from the first STI cycle, if available) from

3 subjects were positive for the M184V mutation. This mutation
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was not detected in subsequent samples obtained from subject

102 during successive STI cycles. In subject 116, the frequency

of variants carrying M184V increased in subsequent STI cycles.

Drug-specific pharmacokinetic factors were excluded as an ex-

planation for the divergent outcomes, because subjects 102 and

116 each received the same drugs. However, we cannot rule

out the possibility that other pharmacokinetic factors, such as

differences in drug absorption, led to concentrations that fa-

vored the outgrowth of the M184V mutation in this subject.

Of the 25 subjects studied, only subject 104 developed drug-

resistance mutations associated with treatment failure. On day

8 of the first STI cycle, the majority (193%) of viruses from

this subject already harbored the M184V mutation (figure 2).

This finding was confirmed by direct sequencing (L. Perrin,

personal communication). The M184V mutation was found,

in addition to multiple mutations associated with resistance to

protease inhibitors. The subject dropped out of the study with

a virus load of 150 HIV-1 RNA copies/mL of plasma after the

first STI cycle. A salvage regimen was subsequently introduced

with successful suppression of plasma viremia to !50 HIV-1

RNA copies/mL for 127 months.

In subject 105, minor populations carrying the M184V mu-

tation were detected at frequencies of 0.5%–11% throughout

the fifth STI cycle. No consistent pattern of change was ob-

served, suggesting that other mutations, in addition to M184V,

may influence the replication of minor variants in this subject

and in others (e.g., subject 112). During the third STI cycle,

approximately half of the virus population contained the

M184V mutation. This mutation decreased during the fourth

and fifth STI cycles, to percentages between !1.4% and 9.4%,

and increased again, to 46.4%, between weeks 9 and 10 of the

fifth STI cycle. Fluctuations in the frequency of the M184V

mutation have been observed in some subjects. The appearance

of different quasi species at different time points might reflect

the heterogeneity of HIV-1. Changes in the ratio between wild-

type and mutant virus populations may be related to different

advantages, such as viral fitness, for certain virus populations

at different stages.

There is one potential caveat to our study: the very high

sensitivity of our assay to detect the 2 mutations at very low

frequencies, in theory, may have lead to detection of randomly

occurring minor populations present in subjects with chronic

infection, independent of treatment and, in particular, STI.

However, that the rapidly emerging single-point mutation

M184V was detected in 14 of 25 subjects, compared with only

3 of 25 subjects harboring the slow-emerging L90M mutation

( , Fisher’s exact test), suggests that our results are caus-P p .02

ally linked to treatment and STI. The finding of a higher fre-

quency of the M184V mutation, compared with the L90M

mutation, is even more prominent if one considers the 20-

times higher sensitivity of the L90M assay. Furthermore, both

mutations have not been detected in plasma samples obtained

from these subjects at time points before they received their

first ART.

In conclusion, drug-resistant viruses were detected as minor

populations of HIV-1 in the majority of subjects undergoing

STI. It is not yet known whether a similar distribution occurs

in subjects who stop successful therapy for longer periods with-

out consistent reintroduction of HAART. However, our data

suggest that such variants can emerge during periods of in-

creased HIV-1 replication, when drug concentrations may be

suboptimal. We observed tremendous variation in the appear-

ance and disappearance, as well as in the timing of the emer-

gence, of these mutations. On the basis of these observations,

we suggest that STI should remain restricted to controlled clin-

ical trials, to minimize the risk of the development of drug-

resistant HIV-1 variants. The influence of minor populations

of drug-resistant variants on long-term treatment is currently

under investigation.
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