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ABSTRACT

Motivation:Massspectrometry (MS)combinedwith high-performance

liquid chromatography (LC) has received considerable attention for

high-throughput analysis of proteomes. Isotopic labeling techniques

such as ICAT [5,6] have been successfully applied to derive differential

quantitative information for two protein samples, however at the price

of significantly increasedcomplexity of the experimental setup. To over-

come these limitations, we consider a label-free setting where corre-

spondences between elements of two samples have to be established

prior to the comparative analysis. The alignment between samples is

achieved by nonlinear robust ridge regression. The correspondence

estimates are guided in a semi-supervised fashion by prior information

which is derived from sequenced tandem mass spectra.

Results: The semi-supervised method for finding correspondences

was successfully applied to aligning highly complex protein samples,

even if theyexhibit large variationsdue to different biological conditions.

A large-scale experiment clearly demonstrates that the proposed

method bridges the gap between statistical data analysis and label-

free quantitative differential proteomics.

Availability:Thesoftwarewill beavailableon thewebsitehttp://people.

inf.ethz.ch/befische/proteomics

Contact: bernd.fischer@inf.ethz.ch

1 INTRODUCTION AND RELATED WORK

A widely used approach to the sample-alignment problem fits a

piece-wise linear function to maximize the correlation between

the two samples. Methods of this kind are often characterized as

correlation optimized warping (COW) (12). Other approaches are

based on hidden Markov models (HMM) which formally define

generative models for aligned samples, see e.g. Listgarten et al.,
(11). From a machine learning perspective, both COW and HMM

methods are purely unsupervised in nature, since they do not exploit
prior information of known correspondences. Both approaches

share also the commonality that they have been solely applied to

aligning total ion counts. Figure 1 depicts total ion count curves for
two samples under two different biological conditions. Aligning

these two samples is very difficult when the total ion counts are

exclusively used as the information source.

In principle, both COW and HMM can be extended to aligning

multi-dimensional data. It is, however, extremely difficult to handle

LC/MS data of complex samples which are typically characterized

by a very large input dimension (up to a mass range of 2500 Da for

doubly charged peptides). The data analysis situation becomes even

more complicated if we have to align highly heterogeneous samples

that were taken under different biological conditions. Under these

conditions one typically finds many peaks that do not match to any
other peak in the second sample.

A first attempt to overcome these problems was made by

Tibshirani et al. (14), who introduced an aligning technique

based on hierarchical clustering.

In this paper we describe a new approach for LC/MS alignment

exploiting additional information from sequenced tandem mass

spectra rather than aligning only peaks from the LC/MS image.

The second spectrometry stage is used to acquire sequence informa-

tion. From a subset of these sequences which are identified in

both samples, a time warping function is estimated by fitting a

nonlinear regression function. Since there exists a number of

false-identifications we use a robust regression model to reduce

the sensitivity to outliers. Starting from an initial alignment

hypothesis, we further improve the model by combining supervision

information (sequenced peaks) and unlabeled information (all other

peaks) within an iterative self-training scheme: the predictive vari-

ance is computed for each of the peaks, and peaks with a very small

uncertainty are assigned a target value. Then, the model is re-trained

based on the enlarged dataset, and the whole procedure is iterated

until all peaks are labeled. This inclusion of unlabeled data yields an

improved detection of peak correspondences. All free model

parameters are selected by employing a cross-validation loop.

With this novel machine learning technique we are able to align

the underlying experiments of Figure 1.

2 EXPERIMENTAL SETTING AND DATA
GENERATION

2.1 Liquid chromatography and mass spectrometry

Before analyzing the proteins in a cell, the proteins are digested by

a specific enzyme like Trypsin, resulting in a mixture of small

peptides. The peptides are separated by high-performance liquid

chromatography. At (almost) equally spaced retention time steps

a mass spectrum is acquired from the peptide sample eluting from

the LC-column. The recording of a mass spectrum requires that a

peptide is ionized and transferred into the gas phase, typically by

electro-spray ionization. Most of the peptides are doubly or triply

charged, but singly charged peptides also appear in proteomics

experiments. The data are represented in form of a two dimensional�To whom correspondence should be addressed.
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measurement, where one dimension is the retention time (t) and the
other dimension is defined by the peptide mass over charge (m/z)
(See Figure 2). We will refer to this two dimensional measurement

as the LC/MS image. The local maxima in the LC/MS image cor-

respond to different peptides with different m/z values. The bottom
figure shows an accumulation of peaks over a large number of singly

charged peptides. One can recognize three different isotopes for

each peptide. Isotopes are common, since peptides are composed of

a large amount of C-atoms. The integral over the peak areami yields

the amount of ions of a specific peptide i.

2.2 Quantitative measurement

The over-all goal of quantitative proteomics is the estimation of

the absolute protein expression. Let I(p) denote the set of peptide

indices for protein p. Assuming that all peptides I(p) of a protein

produce the same amount of ions and assuming a log-normal error

distribution, one can estimate the log protein expression as

dlog elog ep ¼
1

j IðpÞ j
X
i2IðpÞ

logmi : ð1Þ

The log-normal error model seems to describe expression levels

well in practice, although we are not aware of any systematic study

of this observation. The other assumption, however, that all peptides

produce the same amount of ions rarely holds. The peak-area inte-

grals are typically quite different for peptides of the same protein.

One reason lies in the ionization efficiency of the peptides and

suppression effects between peptides. An incomplete or overcom-

plete digestion process can also contribute to this discrepancy.

There is still too little known about the reason for the different

behavior of peptides. These uncertainties in the measurements ren-

der absolute quantitative proteomics infeasible today, but for pep-

tide specific multiplicative errors, the ratio of peak area integrals can

reliably be estimated. In our experience this assumption holds as

long as the two samples are fairly similar. For two very different

samples, peptide unspecific suppression effects play the major role.

Given two samples that both contain a certain peptide i and two

corresponding measurements m
ð1Þ
i and m

ð2Þ
i , the log-protein ratio in
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Fig. 1. The total ion count per time unit of two protein samples under two

different biological conditions.
Fig. 2. Top: LC/MS image. The x-axis is the retention time, the y-axis is the

peptide mass. Bottom: One peak in the LC/MS image accumulated over all

singly charged peptides.
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both samples can be estimated by

log rp ¼
1

j IðpÞ j
X
i2IðpÞ

log
m

ð1Þ
i

m
ð2Þ
i

: ð2Þ

A common procedure to measure peptides under two conditions is

isotopic labeling like ICAT (5,6). The peptides in the two samples

are marked with labels of different weights. The two samples are

then mixed together and measured together. In the resulting LC/MS

image, peptides of the two samples occur with a mass shift corre-

sponding to the different weights of the labels. In addition to the fact

that labels are still expensive, this approach carries the disadvantage

that the two samples have to be mixed together. In many applica-

tions, however, it is advantageous to measure both samples sepa-

rately. For example in cancer detection, one would like to first

analyze a certain number of collected disease samples which

then can be compared with patient probes without analyzing the

disease samples over and over again.

Label-free techniques do not suffer from these shortcomings.

Without the label information, on the other hand, one is forced

to detect corresponding peaks in the two samples. In order to

solve this correspondence problem we first have to shed some

light on the procedure of peak picking which extracts peaks in

the LC/MS image.

2.3 Peak detection

At the beginning of the analysis process, the mass spectrometry data

is stored in a large data matrix, the columns of which represent mass

spectra taken at different retention times. The m/z axis of these

spectra is discretized in 1.00045 Da bins which can be justified

as follows: If an amino acid is divided by its elementary mass

(the number of protons and neutrons), the average mass of one

elementary unit (a proton or neutron) is 1.00045 Da. Thus a peptide
with 2000 elementary units has a mean mass of 2000.9 Da. The
difference of 0.9 Da to the naively expected mean mass of 2000 Da
is clearly detectable by our mass spectrometer and this mass cor-

rection significantly increases e.g. the peptide retrieval in de novo

sequencing (3).

To ensure a standardized representation, each mass spectrum is

normalized by its total ion count, i.e. by the sum over the spectrum.

In the next step of the analysis process we measure the background

noise level by median filtering over a window of ±50 in time and

mass direction. This estimated noise level is then subtracted from

the measurements. An entry in the LC/MS matrix is marked as a

peak area, if the mean over ±5 in time direction and +1 in mass

direction exceeds at least 3.0 times the mean over pixels surround-

ing the potential peak. The local maximum in each connected com-

ponent defines the peak position with time and mass coordinates.

Figure 3 shows the detected peaks in the LC/MS image.

2.4 Sequence identifications

At this stage of the analysis process the amino-acid sequence of the

detected peaks is not available. We can, however, acquire sequence

information for a certain fraction of peaks by way of Tandem mass
spectrometry. From a measured MS spectrum a MS/MS device

selects one of the peaks exceeding a predefined level. The ions

in a small mass window around the selected mass are stabilized

in an ion trap and fragmented by collision with a noble gas. The

mass spectrum of the fragment ions contains information about the

peptide sequence. The tandem mass spectra are denoted MS/MS

spectra to distinguish them from standard MS spectra. Searching the

spectrum against a database (2,7) produces hypotheses about the

underlying peptide sequence. The hypothesized sequences are then

validated by using PeptideProphet (10). In our experiments we

consider spectrum identifications with a posterior probability

p � 0.97 as being valid. Successful sequence identification without

database knowledge is still a challenging problem. We have shown

that small subsequences can be identified by de novo peptide

sequencing (3) in many cases. In this work, however, we only

use the database search results.

To identify each MS/MS spectrum with one of the detected peaks

in the LC/MS image, we search for a detected peak in the neigh-

borhood of the mass/time coordinate of the MS/MS spectrum. We

observed that in most cases the mass of the detected peak is correct

or increased by 1 Da. Such increments might occur, if the first

isotope is much larger than the mono-isotopic peak. Figure 4 depicts

the fraction of sequenced MS/MS spectra that can be assigned to a

peak. The quantity w0 denotes the size of the window, in which a

peak is accepted if the mass is correct, and w1 is the corresponding

window for mass differences of one. The asymmetry in the figure

shows that the majority of peaks have the correct mass. Choosing

Fig. 3. Top: The detected peaks in the LC/MS image. Bottom: detailed view

of sub-image.
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w0¼ 10 and w1¼ 5 we can assign 52.2% of all identified sequences

to a peak. This rate might be increased by using larger windows,

however at the price of a higher false-positive rate. We will discuss

this issue in more detail later. The large fraction of not assignable

sequenced spectra is due to peaks that can hardly be distinguished

from the background.

The search includes all singly, doubly, and triply charged

peptides. Denoting the mono-isotopic mass of a peptide by m,
the m/z-values of a singly (i ¼ 1), doubly (i ¼ 2) and triply (i ¼
3) charged peptide are observed as mass/charge ratios

mðiÞ

z
¼ mþ i

i
ð3Þ

due to protone capture. On average there are about 5000 peaks per

LC/MS image from which roughly 200 could be sequenced.

Figure 5 depicts the distribution of the different charge states

over the LC/MS image. The green circles show the singly charged

peptides, the red crosses are the doubly charged peptides and the

blue filled circles are the triply charged ones.

2.5 Scenarios in quantitative proteomics

The analysis process described above extracts two different types of

information from the mass spectrometry data:

� a list of peaks in the LC/MS image, and

� sequence information for a small subset of the peak list.

A quantitative analysis based on these input data can pursue dif-

ferent goals:

(i) in a classification scenarioonewould like to separate a certain

protein sample under one biological condition (extracted e.g.

fromadiseasedpatient) fromsamples under another biological

condition (extracted e.g. from a control group). For the mere

classification task one does not need the peptide sequence

information. One rather tries to find as many corresponding

peaks between two samples of different biological conditions

as possible.

(ii) A different scenario is known as biomarker discovery (9). In

addition to classification, one would like to identify proteins

or peptides which are causally related to a certain biological

condition (e.g. a certain disease). From a machine learning

point of view this identification problem defines a feature
selection task. Having selected ‘relevant’ features one is

typically interested in the underlying sequences. Thus, if we

pursue biomarker discovery as our goal, we have to sequence
as many peptides as possible. Ultimately, we try to compare

the complete proteome using these processing steps.

In this paper we will show that the number of peak correspon-

dences (for classification) as well as the number of sequence iden-

tified correspondences (for biomarker discovery) can be increased

by combining labeled and unlabeled information.

2.6 Sample preparation

The peptides we used for the analysis were derived from plant cell

culture samples that were exposed to different illumination pro-

grams (light versus dark). The proteins are fractionated by SDS-

PAGE and in-gel digested. The peptide mixture was loaded onto a

C18 reversed phase column and eluted with a gradient developed

from solvent A (5% ACN, 0.2% formic acid) and solvent B (80%

ACN, 0.2% formic acid). Gradient shape was as follows: 26 minutes

100% solvent A, within 0.2 minutes up to 5% solvent B, within

additional 69 minutes up to 55% solvent B and in one additional

minute up to 100% B. The flow rate at the tip of the column was

adjusted to �200 nl/min. The chromatography (LC) was coupled

online to an LTQ ion trap mass spectrometer (Thermo-Finnigan,

San Jose, CA, USA) equipped with a nanospray ionization source.

Mass analysis was performed with a spray voltage of 2.0–2.5 kV

and one MS full scan followed by three data-dependent MS/MS

scans of the three most intensive parent ions. The dynamic exclusion

function was enabled to permit one measurement of a particular
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parent ion followed by an exclusion of the aquisition of MS/MS

spectra for this parent ion over a periode of 4 min.

3 LC/MS ALIGNMENT

When comparing two subsequent LC/MS scans, slight changes of

the time scale can often be observed in different experimental

situations. To compensate these time differences, an alignment

function of the form f : tð1Þ 7!tð2Þ maps the time scale of one experi-

ment to that of the second experiment. Instead of directly mapping

the scale itself, one can alternatively map one scale to the scale
differences between the two samples:

g : tð1Þ 7!tð2Þ � tð1Þ: ð4Þ

This formulation provides a clear visualization of the inherent non-

linearities of the warping process. Within the subset of peaks

sequenced in the second MS stage, we typically find an overlap

of 10-70 identified peaks that are common in both experiments.

Figure 6 depicts such time-warping functions learned from the

subset of common peptides for two different pairs of biological

samples. The non-linear relationship between the time-scales is

clearly visible in the top panel.

3.1 Warping by way of robust regression

Identifying the t
ð1Þ
i -values with xi, and the time differences

t
ð2Þ
i � t

ð1Þ
i with yi, the warping function depicted in Figure 6 is

determined by first expanding the x-values in a k-th order polyno-

mial basis

fi :¼fðxiÞ ¼ ð1‚xi‚x2i ‚ . . . ‚xki Þ
t
‚ ð5Þ

and then by fitting a robust ridge-regression model. The latter finds

the k + 1 dimensional weight vector b which minimizes

Xn
i¼1

Lcðft
ib � yiÞ þ lbtb‚ ð6Þ

where Lc(j)denotes a robust loss function of Huber’s type:

LcðjÞ ¼
c j j j � c2

2
‚ for j j j > c

j2

2
‚ for j j j � c:

8>><
>>: ð7Þ

Both the degree k of the polynomial and the ridge-penalty l are

chosen by 10-fold cross-validation. The reader should notice that

the above nonlinear regression model is equivalent to using a kernel
regression model with polynomial kernal of degree k. For compu-

tational reasons, in this special application it is better to explicitly
expand the input data in the polynomial basis, rather than using the

kernelized version.

In the usual regression setting, the observations y are assumed to

be generated by corrupting the values of f ðxiÞ ¼ ft
ib by additive

noise that follows some density p(j). Huber’s loss function turns out
to be optimal (in the sense that it guarantees the smallest loss in a

worst case scenario), if the true noise density is a mixture of two

components, one of which is known to be Gaussian distributed and

the other one is an arbitrary density (8). Huber’s loss function

penalizes large deviations j j j > c only linearly. Thus, it is superior
to its standard quadratic counterpart in situations where the data

contains outliers which are generated by an unknown and possibly

highly fluctuating noise source. The parameter c is typically esti-

mated from the data in an iterative fashion as a multiple of the

standard deviation of the observed residuals. A common scaling

formula is c¼ 1.345s, which yields 95% efficiency when the errors

are normal, and still protects against outliers. Usually a robust

measure of spread is employed in preference to the standard devia-

tion of the residuals. For example, a common approach is to

choose ŝs ¼ MAR/0:6745, where MAR is the median absolute

residual. This choice defines an unbiased estimator of the standard

deviation for Gaussian data, see (4).

The optimal weight vector b that minimizes eq. (6) is found

iteratively as the solution of a re-weighted least squares problem:

bnew ¼ ½FtWðbÞFþ 2lI��1FtWðbÞy‚ ð8Þ

where F denotes the (transformed) data matrix with rows fi, and

W(b) denotes the diagonal matrix

WðbÞ ¼ diagfvð½Fb�y�iÞg‚ ð9Þ
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Fig. 6. Examples of two different alignments.On the x-axis the retention time

is plotted, on the y-axis the difference in retention time. The red curve depicts

the estimated warping function, the light gray ones show 1s-confidence

intervals.
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with vðjÞ :¼ ð1/jÞ · @LcðjÞ
@j . The final entries Wii define weights for

the individual training data fðxÞi.

3.2 Semi-supervised alignment

In the above derivation, the regression function is learned exclu-

sively from the subset of identified correspondences in both sam-

ples. Due to technical limitations, the number of MS/MS spectra

and thus the number of peptide sequence identifications is usually

relatively small. We will now exploit the ideas of self-training (13),
to additionally extract the information contained in the remaining

peaks. Self-training is an incremental algorithm that labels the unla-

beled data and converts the most confidently predicted data points

into labeled training examples. This iteration proceeds until all the

unlabeled data are consistently labeled. In order to apply this

mechanism to our LC/MS alignment problem, we have to derive

a formula for the predictive uncertainty of test data.

We denote by FG the subset of training data which have been

assigned a weightWii ¼ 1 in the robust regression procedure defined

in eq. (8). These data points have small residuals j j j � k which are
penalized quadratically by the robust loss function eq. (7). Thus, for

these points the Gaussian noise assumption is valid. Since in this

case the posterior distribution is also Gaussian, a Bayesian treatment

of regression allows us to derive an analytical expression for the

uncertainty of the prediction for a new data point x
*
:

Var½f ðx
*
Þ� ¼ Eb jX½ð f ðx*Þ � E½ f ðx

*
Þ�Þ2�

¼ s2ftðx
*
ÞðlI þFt

GFGÞ�1
fðx

*
Þ:

ð10Þ

The total predictive variance, Var½yðx
*
Þ�, is the sum of the noise

variance s2 and the variance about the mean, Var½f ðx
*
Þ�, since both

sources of variation are uncorrelated, see e.g. (1) for details. For

estimating the noise variance one might again use the above equa-

tion ŝs ¼ MAR/0:6745 applied to the data in FG.

Our adaption of the self-training method now proceeds as fol-

lows:

Initialize: train the model on the correspondences verified by

sequencing.

Iterate:

(i) for a peak which elutes at time t
ð1Þ
i in the first LC/MS image,

predict the time difference t
ð2Þ
i � t

ð1Þ
i ;

(ii) for every such predicted peak, compute its predictive

variance;

(iii) for the 10% most certain peaks, search for a corresponding

peak in the second LC/MS image within a certain window.

(iv) include all found correspondences into the training set, and

retrain the model;

Until: No more peaks are found within a 2s-confidence interval

around the current fit.

Figure 7 shows the outcome of this semi-supervised learning

algorithm for the two samples that were analyzed previously in

Figure 6. The labeled objects are colored dark blue. Compared

to the alignment computed exclusively on the labeled objects

(cf. Figure 6), the inclusion of unlabeled objects makes it possible

to model more details of the warping function. Compared to the

supervised solutions, where often only a straight line can be reliably

fitted to the data, the semi-supervised solutions typically use

regression models of higher complexity (measured in terms of

the polynomial degree k in the expansion eq. (5), which is auto-

matically selected by cross validation).

3.3 Detecting peak correspondences

First we analyze the performance of the alignment in the classi-

fication scenario, where all peaks (sequenced as well as unse-

quenced) are aligned. The alignment function computed by

minimizing eq. (6) treats the two samples in an non-symmetrical

fashion, since it warps the first time scale to the second. In order to

derive symmetric correspondences between peaks, we predict the

retention times in both directions separately, which allows us to

easily check the self-consistency of the prediction model. Given a

peak in sample A, our method predicts the retention time in sample

B. If we have detected a peak in sample Bwithin a window w around

the predicted peak position, we denote this a (directed) correspon-

dence. Here again we tolerate a mass difference of at most ±1 Da.

Predicting retention time in both directions between sample A
and sample B gives us a list of (directed) correspondences from

sample A to sample B and a list of (directed) correspondences
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Fig. 7. Example of two different alignments for semi-supervised learning.On

the x-axis the retention time is plotted, on the y-axis the difference in retention

time. The blue (light gray) dots are the sequenced (non-sequenced) peaks. The

light gray curves depict 1s-intervals of the predictive uncertainty.
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from sample B to sample A. A correspondence is called confirmed if
we find a correspondence in both directions. If we find a peak only in

one of the directions, we call the correspondence unconfirmed. If we
obtain two different mappings for one peak, we declare the ‘cor-

respondence’ as contradicting. Denoting by n1 the number of con-

firmed, by n2 the number of unconfirmed and by n3 the number of

contradicting correspondences, the respective rates ni/(n1 + n2 + n3)
are depicted in Figure 8. It is obvious that the fraction of contra-

dicting correspondences monotonically increases if the window is

enlarged. For very small windows most correspondences remain

unconfirmed, whereas the fraction of confirmed correspondences

attains a maximum for windows of intermediate size. In practice, we

have to balance the number of confirmed correspondences against

the unconfirmed and/or contradicting ones. Figure 9 shows the

quotient n1/(n2 + n3) both for the semi-supervised and supervised

variants. These two curves nicely summarize the benefits of the

inclusion of unlabeled data: the maximum is higher (which is obvi-

ously desirable), and it is attained at smaller window sizes, which is

also desirable, since it yields better localization in the mass-

retention time space.
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Fig. 10. Top: cross-validation error of the alignment. Bottom: The gain of

semi-supervised learning over supervised learning.
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3.4 Cross-validation

To show the efficiency of our approach we test it by cross-validation

for biomarker discovery. For each alignment we divide the set of

the known correspondences in a training set and a test set with size

proportions (75%/25%). Only the training set is used as supervi-

sion information during alignment. On the test set we evaluate the

error of the alignment. Such an error occurs, if the known

sequences are assigned to different peaks. Figure 10 (top) depicts

the cross-validation error for sequenced peaks. The error is plotted

against the window size of acceptance for peak correspondences.

An error of less than 0.03 is achieved for window sizes smaller than

15. Window sizes smaller than 10 are excluded from the plot,

because the corresponding error bars are extremely large, since

only very few identifications could be found. Compared to the

fraction of contradicting peaks in Figure 8, the error rate on the

subset of sequenced peaks is much smaller. The reason for this

reduced error is that many of the contradicting peaks in the

unsupervised setting are not counting for an error in this

supervised setting: a contradiction in the unsupervised setting

occurs, if two different peaks from sample 1 are assigned to the

same peak in sample 2. In the supervised setting such an inconsis-

tency produces an error only if both peaks from sample 1 are

differently sequenced. Sometimes the peak picking algorithm

finds two peaks where only one peak should be placed. The

sequenced MS/MS spectrum, however, is only assigned to one of

the two ‘‘pseudo’’-peaks. In the unsupervised setting, such a

situation would be treated as a contradiction, whereas in the super-

vised setting no error occurs.

On the bottom of the figure the gain of the semi-supervised

method is plotted. We defined the gain as the ratio of confirmed

correspondences for semi-supervised learning compared to super-

vised learning. One achieves 5% more assignments with

semi-supervised learning than supervised learning at a window

size of 15. Here again the improvement due to the semi-supervised

method increases with smaller window size.

4 DIFFERENTIAL PROTEIN EXPRESSION

The first step towards biomarker discovery requires to compute a list

of differential protein expression values. To increase the number of
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Fig. 12. Top Protein ratios for replicate measurement. Bottom: Protein ratios for different biologically conditioned samples.
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sequenced peptides in each LC/MS image, we generate three repli-

cate LC/MS/MS measurements per condition. To compare two

differently conditioned samples, we compute pairwise alignments

of all six LC/MS images and predict the retention time of the

peptides that have been sequences from each LC/MS image to

all others. This procedure yields an extensive increment in the

number of sequenced peptides in each single LC/MS image.

For each protein we obtain a collection of differential peptide

measurements, from which the log protein ratio is estimated accord-

ing to eq. (2).

To demonstrate the possibility to derive differential quantitative

measurements from biological samples, we estimate the expression

ratio both for replicate measurements and for differently condi-

tioned samples. Figure 12 shows the differential protein expression.

For better visualization, only a (randomly drawn) subsample of the

proteins is plotted. Each protein corresponds to one column. The

dots on the columns depict the differential peptide measurements.

The vertical lines indicate one standard deviation. A t-test with a

significance level of 0.03 rates 3.9% (24 out of 610) of the peptides

as significantly over- or underexpressed for the replicate measure-

ments. The significantly over-/under expressed proteins are colored

red. For the biologically different samples (bottom panel) one can

detect 24.5% (165 out of 735) of the proteins as significantly under-

or overexpressed. These six times higher rate of significantly dif-

ferent expression levels between biologically different samples and

technical replicates demonstrate that our statistical analysis is sen-

sitive to changes in conditions. We conclude that we are able to

recognize differences in protein expression by label-free differential

quantitative proteomics. To conclude that the differences are caused

by the different conditions, one should still compare the result with

biological replicates.

5 DISCUSSION AND CONCLUSION

In the recent years the use of LC/MS measurements has received

considerable attention for high-throughput analysis of proteomes.

For quantitative differential measurements it is commonly accepted

that isotopic labeling techniques such as ICAT are needed for a

reliable quantitative comparison of two protein samples. These

labeling techniques are not ideal, however, because they require

a significantly increased complexity of the experimental setup and

the necessity to mix the two labeled samples from different bio-

logical conditions. The latter is particularly problematic in appli-

cations like biomarker discovery where one would like to treat

samples from different biological conditions separately in order

to avoid a time-consuming and costly re-analysis of the, e.g.,

disease-specific reference sample.

As an alternative approach, we consider a label-free setting for

comparative proteomics. The absence of isotopic labels that could

guide the search for correspondences, however, imposes a severe

alignment problem between the elements of the two samples from

different biological conditions. Current approaches to solve this

problem try to find alignments solely on the basis of the observed

LC/MS measurements while ignoring potentially relevant addi-

tional information from the underlying sequences. In contrast to

these approaches, we propose to use tandem mass spectrometry to

extract partial sequence information of the peptides contained in the

samples. Based on this subset of sequenced peptides, we compute

a ‘‘seed’’ alignment by estimating a nonlinear robust regression
function which warps one time scale into the other. Within a

semi-supervised learning framework, this seed alignment is itera-

tively refined by successively including the mass peaks for which no

sequence information is available. By assessing the self-consistency

of the time warping in both directions, we have shown that

this refinement process significantly improves the quality of the

alignment.

In a large-scale experiment we have demonstrated that our

method is capable of aligning highly complex protein samples,

even if they exhibit large variations due to different biological

conditions. It is possible to reliably discriminate between technical

replicates and truly different biological conditions. We conclude

that the proposed method bridges the gap between statistical data

analysis and label-free quantitative differential proteomics.
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