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452 F. CONTI AND E. WANKE

INTRODUCTION

The basic principles underlying fluctuation phenomena in thermo-
dynamics have long been understood (for reviews see Kubo, 1957;
Kubo, Matsuo & Kazuhiro 1973; Lax, i960). Classical examples of
how fluctuation analysis can provide an insight into the corpuscular
nature of matter are the determination of Avogadro's number according
to Einstein's theory of Brownian motion (see, e.g. Uhlenbeck & Orn-
stein, 1930; Kac, 1947) and the evaluation of the electronic charge from
the shot noise in vacuum tubes (see Van der Ziel, 1970). In most cases,
however, fluctuations have been considered until recently as mere
disturbances to the measurements of average values of macroscopic
variables. To this aspect of the phenomenon the term 'noise' applies
quite legitimately. Particularly in the field of electronics the minimiza-
tion of noise for the purpose of optimizing measuring devices was the
major task of fluctuation analysis. Also the initial studies of electrical
noise in nerve membranes (Derksen, 1965.; Derksen & Verveen 1966;
Verveen & Derksen, 1968) aimed merely at the understanding of, and
accounting for, the disturbances produced by spontaneous fluctuations
in the operation of the nervous system. The effects of membrane noise
on thresholds, latencies, generator potentials, etc. were the main con-
cern of these early investigations. For a review of this aspect of mem-
brane noise see Lecar & Nossal (1971).

The possibility of measuring the small electrical fluctuations occur-
ring at the nerve membrane level led gradually to the realization that
such phenomena could also provide a novel insight into the microscopic
mechanisms of ionic conduction. The present review will be concerned
exclusively with this latter aspect of membrane noise, either in nerves
or in artificial lipid bilayers (BLM). The full application of noise tech-
niques to BLM containing a large average number of extrinsic ionic
channels, rather than the direct observation of single channel kinetics,
has been made only in very recent studies (Neher & Zingsheim, 1974;
Zingsheim & Neher, 1974; Kolb, Laiiger & Bamberg, 1975; Wanke,
1975). However, due to the precise characterization of these systems,
the interpretation of the results is very clear and instructive. For this
reason, and because of the relevance of the behaviour of these model
membranes to the understanding of nerve membranes, fluctuation studies
in BLM are also included in the review. Examination of the electrical
fluctuations in postsynaptic membranes due to the chemically mediated
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Channel noise in nerve membranes and lipid bilayers 453

open-close kinetics of ionic channels, constitutes the first and still the
best example of the application of noise techniques to unravel the
subtle mechanism of ionic conduction in biological membranes (Katz
& Miledi, 1970, 1972, 1973; Anderson & Stevens, 1973). The under-
lying phenomena and their theoretical interpretation, which led to
important estimates of single channel parameters, are substantially the
same as those postulated in nerve membranes or BLM containing pore
forming substances. The acetylcholine receptor noise will not, however,
be discussed here in any detail, since this subject is already treated ex-
haustively in the original works (Katz & Miledi, 1973; Anderson &
Stevens, 1973).

Although the present review is confined to the application of fluctua-
tion analysis to study biological membranes, it is worth mentioning
here that the exploitation of noise measurements is becoming common
in many other fields of research. Chemical reactions (Feher & Weiss-
mann, 1973) and active transport (Segal, 1972; Van Driessche &
Borghgraef, 1975) are examples of such fields. The classical theoretical
equivalence of fluctuation and relaxation analysis (see e.g. Kubo, 1957;
Lax, i960) is beginning to find wide experimental application. Due to
the great improvement in the noise performance of commercially avail-
able solid-state devices, fluctuation analysis is today a valid alternative
or a very powerful complement to the method of relaxation kinetics.

THEORY

We present in this section the theoretical characterization of that elec-
trical noise which is expected to be found in membranes containing a
discrete number of localized ionic pathways (channels), as a consequence
of fluctuations in the conductance state and/or in the number of such
channels. Throughout this article we shall use the term channel noise
to indicate this type of fluctuation, which must be understood as clearly
distinct from that which would occur if the number and the state of the
channels were fixed. We shall see at the end of this section under what
particular conditions these two types of noise may simply add to each
other. When such conditions can be assumed to be valid, it is possible
in principle to separate the two different noise contributions on the basis
of their distinct spectral characteristics.

The term channel has here a general meaning, and can apply also
to ionic pathways produced by the presence of mobile ionophores. We
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454 F. CONTI AND E. WANKE

shall see, in fact, that the distinction between porous ionic pathways
and ionophores does not imply qualitatively different types of noise.
One can sometimes discriminate between the two mechanisms only on
the basis of the absolute amplitude of the fluctuations to which they
give rise.

We shall be mostly concerned with the case of statistically indepen-
dent channels. This model is justified in general when the channels have
a low surface density and can be assumed to be chemically stable mole-
cular complexes, despite the fact that they might have a number of
allowed internal conformation^ states. A large amount of evidence
supports these assumptions insofar as the ionic channels of nerve
membranes are concerned. However, when the channels originate from
the formation of labile oligomeric complexes, as seems to be the case
for BLM containing gramicidin A or alametkicin, the assumption
of statistical independence cannot be made. An example of non-
statistically independent channels will be considered briefly when
reviewing the results of gramicidin A induced noise in BLM.

For independent channels formal expressions have been derived
(Chen & Hill, 1973) which can be applied quite generally to any parti-
cular model of channel kinetics. We shall confine ourselves, however,
only to those results which are easily expressed in a closed form and
are sufficient to account for the presently available data on nerve fibres
and lipid bilayers. We assume in this section that the reader has some
familiarity with the basic concepts of stochastic processes and random
variables. Otherwise the Appendix to this review should be read first.
Most of the results that we report below have been extracted from the
works of Stevens (1972), Hill & Chen (1972a), and Chen & Hill (1973).

Fixed number of two-state channels

One of the simplest types of channel noise arises when each channel
out of a fixed number has only two statistically significant macroscopic
states, and these states have different electrical conductances. The
equally simple case of channels with only one state, but fluctuating in
number, will be dealt with later. A macroscopic state of a channel is
meant here as a state having an average life time which is much larger
than that of any microscopic state compatible with it. It must also be
stressed that, while a two-state channel will have in general two different
conductance values, it is not generally true that channels with only two
conductance states are two-state channels. Thus, the ionic channels in
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Channel noise in nerve membranes and lipid bilayers 455

nerve membranes are usually described as having only two conductance
states, but many different configurations with the same conductance.
These channels are not two-state channels in the sense described above
(Chen & Hill, 1973).

We first discuss the current fluctuations expected to occur when a
fixed voltage, E, is applied across a membrane containing a single two-
state channel. Let y be the highest channel conductance associated
with state (1), let icy (K < 1) be the conductance in state (o), and let
Emf represent the membrane potential for zero current, which we
assume for simplicity to be independent of the channel configuration.
For a constant driving force, V = E—Emj, the current flowing through
the membrane, /, will fluctuate between the values KJV and yV, follow-
ing the fluctuations of the channel between state (o) and state (1),
respectively. Thus, the characterization of this latter stochastic process
is necessary and sufficient for the description of our current fluctua-
tions. The assumption that needs to be made, in order to achieve
simple results, is that such process is markovian. This assumption,
implying that the future development of the process depends solely
on its present state and not on its past history, is indeed justifiable under
very general conditions when the above definition of statistically signifi-
cant channel states is born in mind (Lax, i960). Our two-state marko-
vian process is then described completely by the transition probabilities,
^i,k{t) (*> k — °> l) representing the probabilities of finding the channel
in state (h) at time t, provided it was in state (i) at time zero. These are
obtained as the solution of a simple system of first order linear dif-
ferential equations (see e.g. Stevens, 1972):

dni>fc 1 1
— n ~ = 2J Hi,i aik> I /T\

aoi = - % > = a» «io = - « i i = P>>

where the rate constants, a and /?, are defined in such a way that aA* and
y?A< give the transition probabilities, in the infinitesimal time interval
A/, from state (o) to state (1) or vice versa. The solution of equation (1)
must satisfy the initial conditions

and is given by

- P f c ) e - ^ , (2)
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456 F. CONTI AND E. WANKE

where
Po = # ( « + A Pi = «/(«+/?), T = i/(a+/?) (3)

Po and Px are the stationary (equilibrium) probabilities of finding the
channel in state (o) or in state (i), respectively. The probability den-
sities, fTa(T) and fTl(T), of the lifetimes To and 7\, of state (o) and
state (i) respectively, are easily seen, from equations (2) and (3) to be
exponentials

fT (T)dT = (lim (1 -aAOr / A t) . *dT = a e - ' W , '

U (T)dt = lim (1 -pteyi*\./3dT =
U«->o )

with means

To = i/a, T, = xlfi (S)

A typical time course of the current flowing through a single channel,
undergoing the above stochastic process, is illustrated by the bottom
trace of Fig. 1. This signal was obtained by simulating the random
process described by (1) with a ~ fi and assigning arbitrary values to
the two current levels, KJV and yV. Indeed, as discussed later, similar
single channel current fluctuations are actually observed in BLM con-
taining EIM. For such systems there would be hardly any need of
pursuing further our theoretical analysis as done below. The verification
that the statistical distributions of the lifetimes To and 7\ are simple
exponentials provides in these cases a good test for the validity of the
two-state model assumed above. Furthermore, the measurement of the
two current levels and of the average lifetimes, To and Tx would yield
all the channel parameters (7, K, a, and /?) which can possibly be obtained
at this level of experimentation. In most cases, however, particularly
when dealing with natural membranes, the observation of isolated single
channel processes is impossible. The observed current is the sum of
the contributions from a large number of channels which independently
and simultaneously undergo random fluctuations.

It will be clear from what follows that the introduction of the covari-
ance, <j>z{t), is then essential. For the single channel case, <j>i(t) is given
by (see Appendix):

= {yVf ( s S y** Pi n«(f) - ( s A *)"], (7)
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Channel noise in nerve membranes and lipid bilayers 457

where the stochastic variable Y is defined as being equal to K in state (o)
and equal to unity in state (1) {yo = K\ J i = !)• Substitution of equation
(2) in (7) yields, after rearrangement

*, (8)
where

0; I=yVY, (9)

(10)

/ being the mean current which flows through the channel, Y being
the apparent probability of state (1) if one assumes K = o (only one
state of non-zero conductance), and p being the variance of Y relative
to the square of its mean. A regular markovian process, such as the one
we have assumed so far, is ergodic. We shall then have, according to the
Birkhoff theorem,

lim ~
T-*oo * J 0

where the time average on the left-hand side is the autocorrelation
function of any actually observed current signal, I*(t), whose average
value, /*, must also coincide with I. Furthermore, the power spectrum,
Si(f)> of the signal I*(t), should be given, according to the Wiener-
Khinchin theorem, by

Si(f) = 4 r
Jo

cos znft 6t = 4/2pr/[i + W^l («)

which is known as a Lorentzian spectrum. It is useful for later discus-
sion also to derive from equations (2) the time evolution (relaxation)
of the current expectation value, (/(*)) starting from state probabilities,

and Pj0), which are different from the stationary values, Po and Px:

From the simple expressions for niJ;(f) in (2), it is easy to verify that:

f > - F ) e - W , (14)

- / ) e - ^ , (15)
where

</(o)> = yVlKPiv+m = yV(Y(o)). (16)
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458 F. CONTI AND E. WANKE

Comparison of equation (15) with (8) illustrates, for the present particu-
lar case, that the average relaxation toward equilibrium and the auto-
correlation of the spontaneous fluctuations around equilibrium have the
same time dependence.

We consider now the case of a membrane containing M independent
but identical channels. At any instant of time the total current through
the membrane will be the sum of the currents through each separate
channel. It is a very simple result of elementary probability theory
that the average value of the total current is just M times the average
single channel current, given by equation (9). However, the most
important result for fluctuation analysis is that also the autocorrelation
function and the power spectrum of the total current are simply M times
those of each individual channel, given by equations (8) and (12). It is
then straightforward to write, for a membrane with M independent
two-state channels,

I = MvVY, (17)

fait) = M-U2p e-**, (18)

while the average current relaxation, (/(<)>, is still described by the same
equation (15). It is important to stress that Y, p, and T in equations (17)-
(19), are the same single channel parameters as are defined by (3),
(9) and (10). Thus, equations (8) and (9) show that fluctuation analysis
yields direct information about single channel parameters even when
the number of channels is so large that elementary contributions to the
total fluctuations are impossible to resolve. Equation (5) shows, on
the other hand, that relaxation analysis yields comparatively poorer
information, which concerns only the kinetics (T) of the elementary
processes and not their size or their number.

Figure 1 illustrates how power spectrum analysis still leads to simple
results despite the increasingly 'noisy' random signals which originate
from an increased number of random elementary events. The insets
show current fluctuations from a simulated membrane system contain-
ing (from bottom to top) 1, 4, 8 or 16 two-state channels with a ~ /?.
In the latter case (top trace) single channel fluctuations are already
practically inappreciable, and it is easy to realize that a further increase
in the number of elementary events would render hopeless any direct
analysis of the signals. The main part of Fig. 1 shows the power spectra

https://doi.org/10.1017/S0033583500001967
Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. 
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:16:23, subject to the

https://doi.org/10.1017/S0033583500001967
https:/www.cambridge.org/core/terms
https:/www.cambridge.org/core


Channel noise in nerve membranes and lipid bilayers 459

100

5
4
3
2

10

4
3

S(f)

01s

01 10 100

Hz
Fig. i. Random current signals and related power spectral densities in
a simulated membrane system containing an increasing number (indicated
in the figure) of independent channels undergoing stochastic transitions
between open and closed states. The single channel rate constants, a and /?
have approximately the same value ( ~ 20 s"1). The amplitudes are in
arbitrary units. Notice that the power spectra are merely proportional to
each other according to the number of channels present.

obtained from long samples of the signals shown in the insets. All the
spectra have exactly the same shape, corresponding to equation 19,
with a low frequency amplitude which is merely proportional to the
number of channels.

So far we have been considering current fluctuations for a constant
voltage across the membrane. The properties of the fluctuations in the
voltage across the membrane for a constant current are easily derived
from the previous ones. Their power spectrum, Sv(f), must be related
to 5/(/) through the complex membrane impedance, Z(f) (see e.g.
Wanke, De Felice & Conti, 1974):

Sy(f) = |^(/) | "/(y )> (20)

Sv(f) is in general no longer a simple Lorentzian since the membrane
impedance is rarely frequency independent, particularly in biological
membranes or lipid bilayers which have a very large capacitance.
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460 F. CONTI AND E. WANKE

However, the knowledge of |Z(/)|2 allows us in principle to unfold in a
simple way the behaviour of Sj(f) from that of Sv(f). This is one of
the contexts in which the spectral analysis offers great advantages with
respect to the autocorrelation analysis. No simple relation as equation
(20) exists between the voltage and current autocorrelation functions.

Fixed number of multistate channels

The case of M independent and identical channels, which can exist in
more than two states, is conceptually identical to the previous one. If we
indicate with yi the single channel conductance in state (i)(i= 1,2,..., r)
the autocorrelation function of the current fluctuations around equili-
brium, (j>i{t), and the relaxation of the average current towards equili-
brium, <I(t)) — I, will be given by:

jkyt yk Pt nitk(t) )

-i = Mv\i iyk^nitk{t)-ipi7i}, (22)

where P4 is the stationary probability of state (1), Pj0) is the initial prob-
ability of state (i) in the relaxation process, and the transition probabilities
ITi>fc(2) are the solutions of the system of linear differential equations:

^- i^f l t t (23)

with the initial conditions Uik = 8ik. The coefficients alk in equation
(23) can be expressed in terms of the rate constants amn, where amn At
represents the transition probability in time A* from state (m) to state
(n):

«ifc = aki ik * ']• (24)
•m+k

Chen & Hill (1973) have derived formal expressions of <fii(t) and of
its Fourier transform, Sj(f), for the most general multistate channel
system described by equation (23). The formulas are, however, rather
involved and we shall mention here only the most important qualitative
results. Quite generally, the solution of (23) leads to an expression for
(IIi(&(*) - Pk), which is a linear combination with constant coefficients,
of ( r - i ) exponentially decaying functions with time constants solely
determined by the rate constants amn, and independent of i and k.
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Channel noise in nerve membranes and lipid bilayers 461

Similar expressions consequently describe the time dependences of
<f>j(t) and (/(*))-/, both being linear superpositions of the Uiik(t) which
decay to zero at infinite time. This is again a particular direct demon-
stration of the equivalence between the time course of fluctuations and
relaxations. Finally, the current noise power spectrum, Sz(f) is ex-
pressed by a linear combination of (r— 1) simple Lorentzian spectra.

The multistate channel model which seems most relevant to the
discussion of channel noise in nerve membranes can be treated easily
without going through the formal solution of equation (23). Following
Hill & Chen (1972a), we consider a generalization of the model which is
implicitly assumed in the Hodgkin-Huxley (HH) description of voltage-
clamp data (Hodgkin & Huxley, 1952). Each channel contains x in-
dependent two-state subunits, each affecting the channel conductance
through a multiplicative factor which depends on its state. For this
case, the current through a single channel can be written as:

i = yvnji, (25)

where y is the maximum channel conductance and the stochastic
variable Intakes the value of /q(< 1) or unity, depending on whether
the subunit i is, respectively, in state (o) (yielding a lower conductance)
or in state (1). The covariance and the average relaxation of the
current, for a membrane containing M (independent) channels of this
type, are then derived directly from simple properties of the product
of independent variables:

= (y*W n
U=I

fi [1 + Pi e-t/T'j - 1 j , (26)

i. (28)
<=i

The autocorrelation 4>i{i)y a n d the average relaxation, (/(*)>, in equa-
tions (26) and (27) will in general contain 2X— 1 different exponentials,
and the power spectrum will be a linear combination of zx — 1 Lorentz-
ians. This is in agreement with the fact that, in general, the number
of distinct states of our channel with * subunits is 2X.
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462 F. CONTI AND E. WANKE

Three special cases of (26) are particularly relevant to the discussion
of current noise in squid giant axons.

For four identical subunits, all characterized by the same rate
constants, an and /?„, and for KX = KZ ... = o, equations (26) and (27)
become:

W +/>ne-**«]«-1}, (29)

</(*)> = ill + nl°k-? e-*/'«T; 1 = MyVn\ (30)

where, according to equations (3), (9) and (10), in this particular case,
Pn = fij*», n = <y> = an/(an+/?j , rn = i/(an+^n). The power spec-
trum corresponding to (29) is given by:

Si(f) = ± I^i^jpim + z-nrJiif}. (31)

Equations (29) and (31) describe the current fluctuations due to the
open-close kinetics of the potassium channels in nerve membranes,
according to the simplest translation in stochastic terms of the HH
equations, which are based on the description of relaxation (voltage-
clamp) measurements according to equation (30).

A similar special case of equations (26) and (27) leads to the
characterization of the noise from sodium channels, which according to
the HH formulation are assumed to contain three identical subunits
with rate constants am and ftm and a fourth subunit with rate constants
cch and fih, /q being zero for all subunits. For this case:

-1}, (32)

rn

where pm = fijam, ph = fih/ah, and m, h, Tm and Th correspond to
parameters used in the HH equations. The power spectrum corre-
sponding to the autocorrelation function given by (32) can be approxi-
mated for Th > rm (as in the case of the HH equations), as:

(34)
< = ]
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Channel noise in nerve membranes and lipid bilayers 463

Finally, for * identical subunits with KX = K2... = KX — K, equations
(35) and (36) characterize the V case' of the generalized model of the
potassium channels discussed by Hill & Chen (1972a) and Chen & Hill

<?>e-*/*>]«-1}, (35)

=/ [1 + < ^ M z I ^ e-t/rjr'j, I = M7V[YW]*. (36)

Fluctuations in channel number

The most general case of channel noise from independent channels also
involves fluctuations in the number of existing channels. This further
complication may for example be required in artificial lipid bilayers
which may exchange channel-inducing substances with the bathing
aqueous solutions. In addition to the rate constants for internal con-
version it is then necessary to specify the channel formation rates in
state (i), Ai( and the disappearance rate constants, fti0, fii0 At being the
probability that a channel in state (i) disappears in time At. The auto-
correlation function will again be of the form of a linear combination
of exponentials. However, for r internal channel states we shall have in
this case r (not r— 1) time constants,, all of which will depend both on
the internal conversion rate constants, ai3- (i, j = 1,2,..., r) and on the
disappearance rate constants fiiQ (i = 1, 2, ..., r). The formation rates,
Ai( will influence the average number of channels in the various states,
and, therefore, the coefficients of the various exponentials in the auto-
correlation function. A simple special case is obtained when, for any
sta t e(0> R <* v „

fc*i,0

This condition implies that the lifetime of a channel in any state is long
enough to allow equilibration among all possible internal channel states.
It can be shown that the current autocorrelation function for this special
case is:

{̂ ^ j } (37)
where M is the total average number of channels present at any time,
independently of their internal state; (pi^t) and Ix are the covariance
and the average value of the current which would flow through a single,
permanent, channel; Pj is the equilibrium probability of state (i) for
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464 F. CONTI AND E. WANKE

such a permanent channel. The first contribution to ^(i) in equation
(37) is identical to what is expected from M permanent channels.
The second contribution is due to the formation and disappearance of
channels carrying an average current Iv For channels with only one
S t a t C : <}>1{t) = MItt-llt = M-Wz-l>t, (38)

where Ix is the current through a single channel and /S"1 is the average
channel lifetime.

Channel noise modulating intrachannel noise

So far we have considered only the noise associated with fluctuations
in the conductance or in the number of channels, and we have assumed
that the current flowing through a channel in any fixed configuration is
constant, free of what we may call intrachannel noise. Such assumption
cannot be maintained in general, since thermal, shot and 1//noise are
expected to be present anyway, even if the channels are stable single
state pores. However, as shown below, our preceding simplified analysis
is justified by the fact that, under certain conditions, channel noise and
intrachannel noise are expected to be additive to one another.

Let us first consider the case of channels, with only one non-zero
conductance value and assume that the current, /, through a single
channel can be written as the product of two independent stochastic
variables:

= y ^
where the fluctuations of J account for intrachannel noise and Y
fluctuates between zero and unity. The assumption that the stochastic
fluctuations of J are not influenced by the random switching of channel
state is very reasonable for thermal or shot noise, which have very short
correlation times. However, for 1//noise the independence of J and Y
has no obvious justification other than that it predicts a 1//noise power
proportional to the square of the average current, as observed experi-
mentally in nerve membranes. From a simple property of the covariance
of the product of independent variables, it follows from equation (39):

W <f>¥, (40)

For thermal noise or shot noise we expect 0 7 to decay to zero much

faster than <j)Y so that ^>j (j)Y — <S>j 0 F ( ° ) >
 a n d :

(40
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where the last equality derives from the fact that, in the present simple
case, (Y = {o, 1}), <F>> = F.

For 1 If noise, we expect <fir to decay much faster than <pj so that

(42)

It can be shown, with a slightly more involved argument, that equation
(41) is more generally applicable to the case of an arbitrary number of
channel conductance states, under the only assumption that the corre-
lation times of Y are much longer than those of thermal or shot noise.
Rather than the independence of J and Y one should require in this
case that the thermal or shot noise, during each channel state lifetime,
have powers proportional respectively to the channel conductance or
to the average current.

EXPERIMENTAL TECHNIQUES

The major technical problem in noise measurements is that of minimi-
zing all possible sources of fluctuations that are not intrinsic to the
system under study. Typical sources of unwanted disturbances are
microphonics, electromagnetic pick-up, fluctuations in junctional emfs,
(either metal-metal or metal-electrolyte), and amplifier noise. All these
sources can be reduced through a careful design of the experimental
apparatus. Alternatively, or in addition, ways of subtracting extraneous
noise from the noise under study can often be found.

In membrane studies, electrode noise is of particular concern, since
it is not easily removed a posteriori. Pt-Pt black electrodes with a low
impedance down to low frequencies are particularly recommended,
as an alternative to Ag-AgCl (Wanke et al. 1974).

Amplifier noise deserves special discussion. Design techniques exist
for assemblage of available components for lowest noise performance
(see e.g. Motchenbauer & Fitchen, 1973), but the lowest attainable
levels of amplifier noise depend ultimately on the quality of the
commercially available solid-state devices. The input stage is usually
the most critical part of the set-up, and selected junction field effect tran-
sistors (JFET) should be employed for it. Apart from the above general
comments, the problem of amplifier noise presents different aspects
for different membrane preparations, and depending on whether
current noise or voltage noise is measured. These have been discussed
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Fig. 2. Current noise power spectrum, O, voltage noise power spectrum,
0 , and the square modulus of the impedance, x , in a large area (0-36 cm8)
of squid axon membrane at resting potential in normal physiological condi-
tions. Temperature: 9 °C. (From Wanke et al. 1974.)

in detail by various authors, for example Derksen (1965) and Siebenga,
Meyer & Verveen (1973) for frog node preparations; Poussart (1971)
and Fishman (1973, 1975) for artificial node preparations in giant
axons; Wanke et al. (1974), De Felice, Wanke & Conti (1975), and
Conti, De Felice & Wanke (1975) for large areas of squid axon
membrane.

The difference between voltage-noise and current-noise measurements
is worth stressing here. As already mentioned, the two measurements
yield in principle the same information provided the membrane im-
pedance locus is known (equation (20)), but Sj(f) can be directly related
to channel noise, without requiring supplementary impedance studies.
Sj{f) and Sv(f) are expected to be quite different particularly in well
isolated areas of nerve membrane, whose impedance varies strongly in
the range of frequencies where channel noise is studied (Wanke et al.
1974). This is illustrated in Fig. 2, showing plots of experimental mea-
surementsof Sv(f), Sz(f) and |Z(/)|2, from the same preparation of squid
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giant axon. The contrasting result reported by Fishman (1973), that
current noise and voltage noise spectra from very small patches of
squid axon membrane are practically identical, must be due to the large
shunt conductance in parallel with the artificial node (Fishman, 1975),
creating a poor isolation of the node (see also Pooler & Oxford, 1972).
Invasion of currents from lateral regions bordering the gap might
seriously impair in this preparation the possibility of actually clamping
either the current or the voltage in the central area under study.

The advantage of obtaining more direct information from current
noise is obtained at the expense of simplicity of the measuring setup.
The measurements must be performed under voltage-clamp conditions
using special feedback circuits whose specifications have been discussed
in detail by Poussart (1971, 1973)-

When some freedom in selecting the membrane area under study is
allowed, the problem of optimizing such area for best membrane noise
detection is of some importance. It can be shown quite generally (see
e.g. De Felice et al. 1975) that the maximum ratio between membrane
noise and amplifier noise is obtained when: \Z\2 = e2/*2. Here Zis the
membrane impedance, and e^ and i\ are the voltage and current spectral
densities of the amplifier input noise. The above relationship cannot
in general be satisfied at all frequencies, but it leads anyhow to an esti-
mate of the optimal range of membrane impedances and, therefore, of
membrane areas. It should be stressed, however, that such optimization
is not always critical, while other considerations may actually make it
preferable to depart considerably from it. For example, typical figures
for the input noise of commercially available electronic devices

(e2 ~ io-16 V2 s; i\ ~ io-28 A2 s)

lead to optimal membrane impendances of the order of 1 MQ. For the
squid axon membrane (\Z\ ~ 1 Kfi cm2 at low frequencies, and
\Z\ ~ 160 Q. cm2 at 1 KHz), this corresponds to an optimal area of
io"3 cm2 or less, and such an estimate seems to have been the leading
motivation for the use of artificial nodes (Fishman, 1975). However,
recent experiments (Wanke et al. 1974; De Felice et al. 1975; Conti
et al. 1975) have shown that the requirement of optimal area can be
freely disobeyed without seriously impairing good membrane noise
detection. Working with much larger membrane areas (~ 03 cm2)
leads to great advantages, such as an easier nerve preparation to set up,
with better control of its physiological and isolation properties.

30 QRB 8
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The analysis of the random noise signals may constitute a major
part of noise experiments. However, a discussion of the problems in-
volved in signal processing (e.g. anti-aliasing filtering, sampling, time
windows, etc.) is beyond the scope of the present review and can be
found elsewhere (e.g. Rabiner & Rader, 1972). Furthermore, present
day noise analysis is often greatly simplified by the availability of special
purpose machines, such as correlators or power spectrum analysers,
which can process directly on-line the analogue random signal, having
all the necessary processing steps built in. Alternatively, analogue data
stored on magnetic tape can easily be processed with digital com-
puters using standard available software (e.g. the Fourier Analyzer
System HP 5451A). A general theoretical result which is worth
keeping in mind is that the accuracy of noise data increases as the
square root of the duration, T, of the analysed noise sample. Thus, the
ratio between the standard deviation and the average value of the
measured noise power in the frequency interval, A/, is approximately
equal to (TA/)-1^ (Rice, 1944).

Whether to analyse noise signals in terms of autocorrelation functions
or power spectra may be in many cases a matter of convenience or taste.
However, in studies of nerve membranes, power spectra are largely
preferred, since they allow an easy separation of channel noise from
1//noise, and even when correlation analysis is used, the data are finally
converted into power spectra through a Fourier transformation (Sie-
benga et al. 1973; Siebenga, De Goede & Verveen, 1974). On the other
hand, the noise from lipid bilayers containing gramicidin A does not
show a significant 1// component, and has preferably been analysed in
terms of its autocorrelation function (Neher & Zingsheim, 1974; Zing-
sheim & Neher, 1974; Kolb et al. 1975).

N O I S E FROM NERVE MEMBRANES

Early studies (1 If noise and burst noise)

The first studies of membrane noise, performed on the node of Ranvier
of isolated frog sciatic nerve fibres, were published in 1965 (Derksen,
1965; Verveen & Derksen, 1965). In addition to thermal noise, the
membrane voltage was found to contain a large excess noise of the 1//
type in the range of frequencies from o-i to 10 000 Hz. Compelling
evidence suggested that the 1// noise was mainly associated with the
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passive movement of potassium ions, and this result was confirmed by
later experiments on the same preparation (Derksen & Verveen, 1966;
Verveen & Derksen, 1968; Siebenga & Verveen, 1970) and also on giant
axons of lobsters (Poussart, 1971). A detailed discussion of 1//noise in
nerve membranes is given by Verveen & De Felice (1974). We believe
that quantitative experimental studies of 1//noise, together with a better
theoretical understanding of its origin, will eventually yield some
information about ion-ion and ion-channel interactions in the ionic
channels of nerve membranes, but clear results in this direction are still
missing.

The measurements of small voltage fluctuations in frog nodes
showed also the presence of another type of excess noise which became
generally evident only for large hyperpolarizations, in the form of
irregularly occurring miniature depolarizing potentials (Derksen, 1965;
Verveen & Derksen, 1968, 1969). This was termed by the above
authors ' burst noise'. It was found to be independent of the extracellular
concentration of potassium and of resting potential, while substitution
of sucrose for extracellular NaCl shifted its appearance toward higher
hyperpolarizations. From these observations it was speculated that
burst noise could be associated to the passive movement of sodium ions,
or even with the random opening of sodium channels (Verveen &
Derksen, 1969). The latter interpretation seems untenable since burst
noise increases, while the probability of opening of sodium channels
decreases, with increased hyperpolarization. The absence of any effect
of the sodium channel blocking drug, tetrodotoxin (TTX), upon burst
noise (Siebenga et al. 1974), leads to the same conclusion (Verveen
& De Felice, 1974). The association of burst noise with sodium ion
flow was suggested mainly by the NaCl versus sucrose substitution
experiment. However, it is known (Conti, Fioravanti & Wanke, 1973)
that lowering the ionic strength of the extracellular solution increases
drastically the membrane potential at which (macroscopic) membrane
dielectric breakdown occurs. Thus, the results of such experiments are
also consistent with the hypothesis that the bursts are transient localized
dielectric breakdowns (Del Castillo & Katz, 1954). Such an hypothesis
is further supported by the observation of very similar phenomena in
simple lipid bilayers (Yafuso, Kennedy & Freeman, 1974).

30-2
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Evidence for channel noise

In more recent years, experiments on depolarized nodes of Ranvier have
revealed the presence of other additional voltage noise components
which could be described fairly well as simple Lorentzian noise added
on top of i// noise (Siebenga & Verveen, 1971, 1972; Siebenga et al.
1973, 1974). The order of magnitude, and the temperature dependence
of the Lorentzian cut-off frequency were found to be in qualitative
agreement with the expected behaviour of the noise due to fluctuations
in the conductance state of the ionic channels governing the late (potas-
sium) voltage-clamp current. The most compelling evidence for the
identification with potassium channel noise was the sensitivity to the
addition of tetraethylammonium ions (TEA) (Siebenga et al. 1974).
A quantitative account of the observed Lorentzians in terms of the HH
description of relaxation (voltage-clamp) experiments, was not given.
As discussed below, this requires the direct comparison of voltage-clamp
and noise data from the same preparation, and according to the same
microscopic model of channel kinetics. Thus, the potassium channel
density of 1000/im~2, estimated by Siebenga et al. (1973) (according
to a model implying only two channel states of equal probability)
although indicative, might be very inaccurate. Using a more general
model, in which each channel is assumed to have only one possible non-
zero conductance value (but an arbitrary number of states), Begenisich
& Stevens (1975) have obtained an estimate of the single potassium
channel conductance, from their measurements on frog nodes, of
4xio~1 2S. This value is about six times smaller than the average
estimate of Siebenga et al. (1973).

Very recently it has also been reported that the Lorentzian noise
component expected to be associated with the h process in sodium
channels (the first component in equation (34)) can be observed in
depolarized frog nodes after blocking the potassium current with intra-
cellular caesium ions and TEA (Van den Berg, 1975). Although de-
tailed data have not been published yet, the results seem to be in
good agreement with the simple HH model and to lead to a correct
estimate (2-4 x io~12 S) of the single sodium channel conductance (see
later).

Observations of channel noise have been reported also for artificial
nodes (Fishman, 1973, 1975) and for large voltage-clamped areas
(Wanke et al. 1974; De Felice et al. 1975; Conti et al. 1975) of the squid
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giant axon. The results of the latter experiments will be discussed in
detail in the next section. As mentioned in experimental techniques
(pp. 467-8), the sugar gap artificial node preparation is subject to criti-
cism, there being doubts about the unequivocal correlation between the
observed 'humps' in the noise spectra, and potassium channel noise
(Wanke et al. 1974). It seems that, with such a technique, what one really
measures are the voltage fluctuations across the shunt resistance in the
gap regions, due to current fluctuations both in the central (clamped) area
and in the lateral (uncontrolled) regions. Thus, while Fishman's obser-
vations may indicate qualitatively the presence of potassium channel
noise in squid axons, it seems clear that the results are very difficult to
interpret quantitatively.

Channel noise in voltage-clamped squid giant axons

Noise measurements from long (~ 20 mm) segments of squid giant
axons, well isolated from lateral regions by air-gaps, and kept under
good space- and voltage-clamp conditions, can be performed using
techniques described elsewhere (Wanke et al. 1974; De Felice et al.
1975; Conti et al. 1975). In addition to the good control of its physiologi-
cal and isolation properties, this preparation offers major advantages
such as the possibility of simultaneous noise and average current
measurements, together with an independent continuous monitoring of
the absolute membrane potential. Furthermore, measurements of large
voltage-clamp currents under exactly the same conditions and possibly
in the same axon, allow a direct comparison between macroscopic
relaxation and noise data, needed for quantitative analysis of the
results.

A typical current noise power spectrum, S^f), from an axon voltage
clamped near its resting potential at a temperature of 9 °C is shown in
Fig. 3. The figure contains also a plot of the membrane impedance modu-
lus squared, \Zm\2, measured from small sine wave analysis (Conti,
1970), from which the amplifier's noise contribution, e|/|Zm|2, and the
theoretical thermal noise, ^kTRe(Zm)~x, could be evaluated. It is seen
that, apart from a small correction for frequencies above 200 Hz most
of the measured noise can be attributed to excess (non-thermal) mem-
brane noise shown in the figure as 5/c)(/). Fitting the power spectrum
of Fig. 3 with a straight line would lead to a slope very close to — 1
showing the presence of a major 1//noise component. However, signifi-
cant departures from such a straight line are also apparent and were
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Fig. 3. Current noise spectral density, S/(/), and the square amplitude of the
impedance, \Zm\s, in a squid axon membrane, plotted together with the
expected Nyquist noise, ^kTReZ^1, and amplifier noise, ejJ/IZml2-
The dashed line, >S/c)(/), gives the membrane current noise spectrum
corrected for the latter contribution. Temperature: 9 °C. Membrane area
0-32 cm2, Vm = — 56 mV. (From Conti et al. 1975.)

attributed to channel noise modulation of intrachannel, mainly 1//,
noise (Conti et al. 1975).

According to the HH analysis of voltage-clamp experiments (Hodgkin
& Huxley, 1952) and following the theory previously discussed, the
power spectrum, Sj(c\f) should be dissected into the sum of three
components with distinct spectral characteristics. 1//noise, as a general
characteristic of passive ionic fluxes (De Felice & Firth, 1970; Hooge
& Gaal, 1970; De Felice & Michalides. 1972; Michalides, Wallaart &
De Felice, 1973) is expected to affect the currents flowing through the
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Fig. 4. Current noise spectral density Si(f) from a squid axon treated with
20 nM TTX at Vm = — 53 mV. The dashed line is the sum of a Lorentzian,
a 1// component and the amplifier noise e%/\Zm\a. The three separate com-
ponents an: drawn as continuous lines. Temperature: 9 CC. Membrane area
0-28 cm2. (From Conti et al. 1975.)

leakage pathway and through the potassium or sodium selective channels.
The random opening and closing of these channels is further expected
to produce current fluctuations with power spectra which are sums of a
small number of Lorentzians (see equations (31) and (34)). Distinct
spectral characteristics of the sodium versus potassium channel noise
are expected on the basis of the different relaxation times which
characterize the kinetics of the two types of channels (see e.g. Fig. 3.32
of Cole, 1968).

K channel noise. The actual extraction of potassium channel noise,
SK(f), from <Sj(c'(/) can be most easily performed by eliminating sodium
currents with TTX (Narahashi, Moore & Scott, 1964) and approxima-
ting the sum of Lorentzians in equation (31) with a simple Lorentzian.
In the range of membrane voltages explored by Conti et al. (1975), this
approximation seems fairly justified according to the actual values for
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Fig. 5. Current noise spectral density for Vm = — 41 mV, from an axon
injected intracellularly with 70 mM-TEAchloride, compared with the
spectrum at the same Vm from an axon treated with 20 nM TTX. The two
axons had approximately the same area (031 cm2) and the two spectra were
obtained at the same temperature, 9 °C. The continuous lines show the
two components (i//+Lorentzian) whose addition approximates each
spectrum. The arrows indicate the half power points of the Lorentzian com-
ponents. (From Conti et al. 1975.)

the potassium channel parameters extracted from voltage-clamp data.
SK(f) can then be extracted from TTX treated axons by expressing
the total noise (apart from amplifier noise correction) as the sum of a 1//
component and a simple Lorentzian. This procedure is illustrated in
Fig. 4. It is seen that the fitting of the measured spectrum with the sum
of the three solid lines, representing 1//, Lorentzian and amplifier noise,
is quite good down from 5 Hz up to 500 Hz. The slight discrepancy in
the range from 500 Hz to 1 KHz could be due to a slightly wrong
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estimate of the amplifier noise, which becomes predominant at such
frequencies. Should it have any real significance it would constitute any-
how a minor feature of the overall spectrum.

An independent check that SK(f), extracted with the above procedure
is associated with K channel noise is obtained by studying the noise from
axons containing intracellular concentrations of TEA sufficient to block
the potassium currents completely (Tasaki & Hagiwara, 1957; Arm-
strong & Binstock, 1965). Fig. 5 shows the current noise power spectrum
from an axon treated with 70 mM-TEA and held at a membrane potential,
Vm, of —41 mV, as compared with the spectrum from a TTX-treated
axon at the same Vm and temperature (9 °C). The whole low-frequency
region of the TTX spectrum is seen to be strongly depleted by TEA.
On the other hand, the TEA spectrum becomes larger than that of
TTX at high frequencies, a feature which is expected from the presence
of the sodium channel noise, discussed below.

At the level of approximation implicit in the extraction procedure of
Fig. 4, SK(f) is fully characterized by its low frequency limit, SK(o),
and by the cut-off frequency, /(^p, at which SK(f(^) = SK(o)J2. In
agreement with the theoretical expectation of the simple model leading
to equation (31), the experimental results of Conti et al. (1975) showed
a temperature dependence of SK{6) or /(jp, which was very close to that
of rn (Q10 ~ 3) or i/rn. The slight dependence of /(f' on membrane
potential and the range of its experimental values also agreed with the
simple HH kinetic model. Furthermore, the strong voltage dependence
of SK(o) could be fitted fairly well according to (31), using the HH
voltage-clamp parameters appropriately extracted from the same giant
axon preparation. The fitting obtained by Conti et al. (1975) is shown
by the dots and the solid line in Fig. 6, where similar data for the
sodium channel noise, to be discussed below, are also reported. Since,
for any model of independent channels, the absolute value of the current
noise power for a fixed average current is simply inversely proportional
to the number of channels, such fitting leads to an estimate of the
density of potassium channels, MK, which, according to the simplest
HH model, was found to be of the order of 60 fiver2. This estimate was
little affected by the particular model assumed for the potassium inactiva-
tion process (Ehrenstein & Gilbert, 1966), which is anyhow small in the
range of Vm applicable to the data of Fig. 6. A discussion of how critical,
for the estimate of MK, the assumption of the simple HH channel
kinetics is, and of the relevance of the above results for restricting the
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realm of models with plausible channel kinetics is given later. From the
measured maximum potassium conductance, gK — 7x io~25cm~2, and
the estimated channel density, MK = 60 fim~2, the conductance of one
open potassium channel in the axon of Loligo vulgaris is of the order of
I2XIO~12S.

Na channel noise. The separation of the Na channel noise, SNa(f)
can be obtained with two different methods. In axons injected intra-
cellularly with large concentraions of TEA only 1// noise and sodium
channel noise are expected to be present. The total noise from these
preparations (after amplifier noise correction) was approximated by
Conti et al. (1975) with the sum of a 1// spectrum plus a Lorentzian,
this latter component being attributed to Na channel noise. Alternatively
one can subtract the noise power spectrum obtained in TTX from that
obtained in normal sea water, from the same axon at the same tem-
perature and the same membrane potential. This differential method is
largely preferable, since it requires neither accurate estimates of
amplifier noise (which is cancelled automatically) nor assumptions about
the shape of the expected sodium channel noise. In the experiments
reported by Conti et al. (1975), a difference spectrum could be deter-
mined with reasonable accuracy for frequencies larger than about 100 Hz
and it showed in that range a pseudo-Lorentzian shape without signifi-
cant 1 If noise contribution.

Both methods yielded similar results in terms of the relatively low
(~ 100 Hz) frequency limit, SNa (o), of the channel noise spectrum and
of its cut-off frequency,/^(iVa). The data were compared with what was
expected from the second component in equation (34), involving essen-
tially only the m process of the HH model. The first component, related
to the h process, could in fact be disregarded above 100 Hz. As in the
case of the potassium channel noise, the temperature and voltage
dependence of SNa(o) and/ j W a ) , were found to be in good agreement
with the theoretical expectations from the simple HH model. The
plot of SNa(o) data is shown in Fig. 6 (triangles) together with the
theoretical curve (interrupted line).

From the absolute values of SNa(o) the density of sodium channels,
MNa, was estimated to be about 330 /im~2. This figure is fairly close to
those (ranging from 400 to 500 fim~2) obtained in the last few years by
various authors using three different experimental approaches, other
than noise. These include measurements of gating currents (Armstrong
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Fig. 6. Plots of the low frequency spectral density of potassium, 9 , and
sodium, A, channel noise in squid giant axons, against membrane potential.
The data, obtained from many axons, are all scaled to 6 °C (£)10 = 3) and to
i cm2 of membrane area. The continuous and the interrupted theoretical
curves give the expectations from the simple HH channel kinetics assuming
ME = 60 /1m"2 and MNa = 330 /tm~a respectively.

The dashed line shows the theoretical expectation according to a four
subunits 'K model' for the potassium channels (Hill & Chen, 1972) with
K = o-i and Ms = 4o/tm~a. (Modified from Conti et al. 1975.)

& Bezanilla, 1974; Rojas & Keynes, 1975), of TTX uptake and release
kinetics (Keynes et al. 1975), and of tritiated TTX binding (Levinson
& Meves, 1975). From the measured maximum sodium conductance,
ENO, = O-I3 & cm~2> the conductance, yNa, of one open sodium channel in
giant axons of Loligo vulgaris was estimated to be about 4X io~12 S,
roughly 3-5 smaller than that of potassium channels. It is interesting
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to notice that approximately the same yNa has been obtained in frog
nodes, from measurements of gating currents, despite the fact that in
this preparation MNa is estimated to be one order of magnitude higher
than in squid axons (Nonner, Rojas & Stampfli, 1975). It is also worth
stressing here that the very different estimates for MNa and MK provide
further support for the idea that sodium and potassium channels exist
as distinct physical entities, in contrast with the single channel hypo-
thesis describing the sodium and potassium currents as temporally
separated processes utilizing the same type of membrane site (Mullins,
1959, 1968).

Restrictions on possible channel models

The simple kinetic scheme used in the HH equations (Hodgkin &
Huxley, 1952) implies a rather precise picture of the potassium and
sodium channels in nerve membranes. Such picture has been assumed
in deriving equations (29), (31), (32) and (34), which are consistent with
the HH description of the average relaxation (voltage-clamp) currents,
as shown by (30) and (33). It is known, however, that a large variety
of different models of channel kinetics may lead to equally adequate
descriptions of the voltage-clamp experimental curves (Stevens, 1972;
Hill & Chen, 1972 a; Chen & Hill, 1973). Indeed, in the case of potassium
currents, it was even shown that depolarizations from a wide range of
holding potentials, including large hyperpolarizations, are much better
fitted by exponentials raised to a 25th, rather than to a 4th, power (Cole
& Moore, i960).

These considerations raise two problems concerning the analysis of
noise data. First, since the estimates of MK and MNa constitute the
only information extracted from noise measurements that is not con-
tained in voltage-clamp data, one should ask how much such estimates
depend on the theoretical model used. Second, one may investigate
whether the realm of plausible channel models is restricted by the
results of noise measurements. For sodium channels these problems
are of minor relevance, mainly because estimates of MNa are available
which do not depend on particular models of channel kinetics (Keynes
et al. 1975; Levinson & Meves, 1975). Furthermore, the simple m3h
kinetic scheme has already received strong support at the microscopic
level from the measurements of the displacement currents associated
with the movement of three independent channel-activating gates (for
reviews see Armstrong, 1975; Keynes, 1975).
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Accurate sodium channel noise measurements might yield valuable
independent contributions to the understanding of many problems,
concerning the refined kinetics of the Na channels, which have been
raised by gating currents measurements (see Keynes, 1975). However,
such a contribution is impossible within the accuracy and the range of
present data.

For potassium channels, the above problems require a more detailed
discussion. No direct estimates of MK exist, while the observations of
Cole & Moore (i960) raise serious doubts about the validity of the
simple w4 kinetic scheme adopted by Hodgkin & Huxley (1952), which
is not supported by gating current measurements as in the case of
sodium channels. We shall examine in what follows the consequences
of interpreting the above reported potassium channel noise data in squid
giant axons, according to two generalized HH type models discussed
theoretically by Hill & Chen (1972a) and Chen & Hill (1973), or
according to a continuous model discussed by Stevens (1972).

The most important considerations, in interpreting noise measure-
ments according to different microscopic models, is that the para-
meters required for the fitting of noise data should be derived from
voltage-clamp experiments according to the same models.

X subuntts HH model. The theoretical characterization of this model
is given by equations (35) and (36), with p($ = [1 —F^'J/FJf' (see
equation (10) for K = o). For x = 25 equation (36) yields the kinetic
scheme for the description of potassium repolarization adopted by Cole
& Moore (i960).

Following (35) the power spectrum, S^>(f), for the potassium
channel noise according to this model is given, for arbitrary x, by:

(43)

where the average current, IK, should be considered as a purely experi-
mental, fixed, quantity; the function s$(f) represents the single
channel noise spectral density relative to the mean single channel
current squared; and where p^ = (i — Y^/Y^ and rff should be
derived from a fitting of voltage-clamp curves according to equation (36).

Figure 7 shows an example of how yojf> and T<f} are derived from a
real experiment. The experiment was performed on a giant axon
immersed in normal sea water containing IO~7M TTX at 6 °C. The
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lmS.

10 ms

Fig. 7. Time course of the potassium current, /*(t) a n £ l potassium con-
ductance, gx(t) in a voltage-clamp experiment on a squid giant axon of
Loligo vulgaris. The axon was immersed in normal sea water at 6 °C in the
presence of 100 nM-TTX and kept at a holding (hyperpolarizing) membrane
potential of —80 mV. Square depolarizing voltage pulses of 35 mV ampli-
tude and various durations were then applied, producing the solid line
current traces drawn in the figure (where capacitative artifacts have been
removed). The time course of the potassium conductance was obtained from
the current jumps at the end of the various pulses. The slope of the tangent
to g&(t) at the inflection point, and the plateau value of gx(t) are independent
of the holding potential. For the use of the time constant, T*,1', see text.

axon was normally maintained in space-clamp, voltage-clamp conditions
at a holding potential of — 80 mV, from which sudden depolarizations
to — 45 mV were applied in successive trials with increasing duration.
The superposed records of the measured potassium currents (suitably
corrected for capacitive artifacts) are shown in Fig. 7 as solid lines.
The time course of the potassium conductance, gK(t), derived from
the current jumps at the end of each pulse, is also drawn in the figure.
This describes the kinetics of potassium channels more accurately
than the time course of the current, which is also affected by changes in
the potassium equilibrium potential due to potassium ion accumulation
in the extracellular space (Frankenhaeuser & Hodgkin, 1956). From
the asymptotic value of gK) £K(OO), and the maximum potassium con-
ductance, gK, obtained from similar experiments with large depolarizing
voltage steps (to Vm > +50 mV), pjf' is derived as:

P^fe/feW-i- (44)
Finally, rjf' is obtained from the maximum slope o{gK(t)lgE(co), I/T£>,

M : TW = {(X-I)IX}*-I.TV. (45)

It is important to stress that the determination of p^ and r%\ according
to equations (44) and (45), involves only measurements of £K(°°) and
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Fig. 8. Log-log plot of the relative current noise spectral density,
4x)(/) MK S^ (/)/4 1%, of a single x subunit HH potassium channel, for
different values of x. The curves were obtained using the following parameters,
derived from the experiment of Fig. 7:

P(n = 1-22 Pn* = O-49 P(1
B

6) = 0-22

T'J> = 9-2 ms T<« = 8-6 ms T™ = 8-4 ms
The arrows indicate the half power frequencies of the various spectra.

/»«' = 3-94
T«> = 11 ms

T^', which are experimentally independent of the holding potential
(Cole & Moore, i960; also our observations).

The values of T<f> and p<f} for Vm = — 45 mV, obtained from the
experiment of Fig. 7, have been used to draw the plots of ^'(/)> shown
in Fig. 8, for x = 2, 4, 8 and 16. Similar data at four different membrane
potentials have been used to determine the voltage dependence of s^^o),
for the same values of x, shown in Fig. 9. These figures contain all the
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Fig. 9. Plot of log SJJ'(O) versus membrane potential for the same x values of
Fig. 8. The curves were obtained using the values of pj,x) and rjf> extracted
from four experiments, similar to that of Fig. 7, performed on the same
axon with different depolarizing voltage steps (25, 30, 35 and 40 mV).

required information to answer the two questions posed at the beginning
of this section, for the * subunit HH channel model.

It is seen from Fig. 9 that the expected voltage dependence of
<S(i:(o) is fairly independent of x. Thus the experimental SK(o) data
do not indicate whether a particular value of the parameter x is better
than another. On the other hand, the estimate of MK is not strongly
affected by the choice of x. The value MK = 60 /im~2, obtained by
Conti et al. (1975) assuming * = 4, would become MK ~ 100/im~2

for x = 2, and MK ~ 40 /«n-2, for x = 16.
The measurements of f±{K) seem to allow a better discrimination

between permissible x values. It is seen from Fig. 8 that the expected
value o{f^iK\ at - 45 mV and 6 °C, increases from about 20 Hz to about
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38 Hz upon increasing x from 2 to 16. In the measurements of Conti
et al. (1975; Fig. 7)/cf> fell in the range between 20 and 40 Hz. More
recent results, obtained by the present authors, led to a smaller scattering
of / ( ? } data, which at — 45 mV and 6 °C ranged in four experiments
between 20 and 30 Hz. Thus, these measurements indicate that the
x subunit HH model can adequately fit noise data only for 2 ^ x ^ 4.
This conclusion could be reconciled with Cole & Moore's (i960)
observations by assuming, as proposed by Hill & Chen (19726), that
hyperpolarization introduces some additional phenomenon which is
more faithfully described by a real delay in the start of the normal HH
potassium activation, than by a large value of x. Since such pheno-
menon would become very important only below the resting potential
(VB ~ — 60 mV), and it is not expected to show up in the small fluc-
tuations occurring near or above VR. It is interesting that a similar delay
seems to occur also in the sodium channels (Keynes & Rojas, 1975)
for which the evidence of a small number of subunits is independently
supported by measurements of gating currents.

4 subunits 'K case'. Among the possible generalized HH models,
which succeed in predicting average current relaxations compatible
with voltage-clamp data, the 'K model' introduced by Hill & Chen
(1972 a) is particularly attractive for its simplicity and physical soundness.
The model merely relaxes the condition that an ionic channel is com-
pletely impermeable to ions whenever one of its subunits is in the
'closed* state. Rather it assumes that the transition of any subunit from
the 'open' to the 'closed' state decreases the channel conductance,
e.g. by raising a potential barrier to the passage of ions, by a factor
K~X {K < 1}. For potassium channels, the conductance in any given
channel configuration is then y/ca, where a is the number of channel
subunits in the closed state. The theoretical characterization of this
model is given by equations (35) and (36) and the power spectrum by
(43), where ^ = ^ ^ [F<*> _ ^/jyj*>]* (46)

Conti et al. (1975) have analysed their noise data according to this
model, for x = 4. They found that only for K < o-i a fair fitting of the
experimental voltage dependence of SK{6) could be obtained. For
K = o-i the estimate of MK changed from 60 to 40/mi"2.

Continuous state model. This model was discussed by Stevens (1972),
and was indicated by Fishman (1973) as yielding a better fit of the

31 QRB 8

https://doi.org/10.1017/S0033583500001967
Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. 
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:16:23, subject to the

https://doi.org/10.1017/S0033583500001967
https:/www.cambridge.org/core/terms
https:/www.cambridge.org/core


484 F- CONTI AND E. WANKE

cut-off frequencies of 'voltage noise' from small patches of squid axon
membrane. It hypothesizes that the conductance of a single potassium
channel is given by yK w4, where n is a stochastic variable, ranging
between 0 and i, which fully describes the statistical properties of the
channel. For Aw <̂  n, the relaxation of yK w4 is linear in Aw and,
according to the HH equations, follows an exponential decay with
time constant rn. For this model the fluctuation-dissipation theorem
(see Appendix) leads to an expected potassium channel noise power
spectrum in the form of a simple Lorentzian with cut-off frequency
(ZTTT^P1 (Stevens, 1972). Quite apart from the general comments of
Chen & Hill (1973) it appears that this model should be discarded
because of the following quantitative considerations.

Although it is impossible to obtain a theoretical estimate of the
absolute power of the expected noise, an upper limit for it is imposed by
the implicit assumption that crn -4, n, where <xn is the standard deviation
of the fluctuations of w around its average value n. If A^ indicates the
displacement of the single channel conductance from its average value,
g, this assumption implies that:

< ~ 0-16. (47)

On the other hand, the simple HH model predicts for the single channel
conductance fluctuations at Vm = — 45 mV (equation (29) for M = 1):

<(A£)2>/|2 = UoW = (1+PJ4 - 1 ~ 20, (48)

where the value pn = 1-22 is obtained from the experiment of Fig. 7.
Even larger values of ([Ag]2)/g2 would result from values of pn at smaller
depolarizations. Comparison of equations (47) and (48) shows that the
continuous model would require that the density of the potassium
channels is at least two orders of magnitude lower than that estimated
by Conti et ah (1975). These channels, more than 1 /an apart from
each other, would have a conductance in the open state much larger
than 1 nS, two orders of magnitude higher than that of the non-selective
gramicidin A channels in artificial lipid bilayers (Hladky & Haydon,
1970, 1972).

N O I S E FROM LIPID BILAYERS

It is well known that artificial lipid bilayers (BLM), although being
intrinsically almost impermeable to ions, can acquire electrical con-
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Channel noise in nerve membranes and lipid bilayers 485

ductances comparable to those of natural biological membranes in the
presence of a large number of substances providing extrinsic ionic
pathways across their hydrocarbon region (Mueller et al. 1962; for
a comprehensive treatise of the basic properties of BLM systems, see
e.g. Fettiplace et al. 1975). These substances seem to operate following
two basically distinct physical mechanisms. A carrier mediated trans-
port mechanism, in which ions are solubilized in the lipid phase by form-
ing complexes with large liposoluble molecules, describes quite accurately
the effect on lipid bilayers of macrocyclic antibiotics, such as valinomycin
and nonactin (for a review see e.g. Laiiger, 1972). On the other hand,
the very low ionic selectivity and the current voltage characteristics of
BLM incorporating monazomycin (Muller & Finkelstein, 1972 a, 19726)
or the polyene antibiotics Nystatin and Amphotericin B (Cass,
Finkelstein & Crespi, 1970; Finkelstein & Holz, 1972) suggest that
these substances form real pores across the lipid structure.

Perhaps the most unequivocal characterization of a pore mechanism
as opposed to a carrier mediated one, is obtained in terms of the con-
ductance of a single elementary ionic pathway. In fact the upper limit
of about io4 s~1, for the turnover of a carrier such as a nonactin molecule
(Laiiger, 1972), places an upper boundary of the order of io~14 S to
the conductance of a single channel operating with such a mechanism.
Thus the measurements, in BLM systems incorporating EIM, grami-
cidin A, alamethicin, nystatin and monazomycin, of single channel
conductances which are several orders of magnitude higher than the
above figure, confirm other less direct evidence that these sub-
stances act as pores. All single channel conductance estimates in BLM
are based on the measurements of channel conductance fluctuations
reviewed below. Of course, the importance of such measurements is
not limited to the possibility of discriminating pores versus mobile
carriers. They provide also basic information about the kinetic pro-
perties of the ionic channels, which is not contained in measurements
of average steady state currents and may be difficult to extract from
relaxation measurements.

Measurements of channel conductance fluctuations have been mostly
performed on BLM systems containing (either semi-permanently or on
the average) just one or very few ionic channels (Bean et al. 1969;
Ehrenstein, Lecar & Nossal, 1970; Hladky & Haydon, 1970, 1972;
Gordon & Haydon, 1972; Haydon, Hladky & Gordon, 1972; Latorre,
Ehrenstein & Lecar, 1972; Bean, 1972; Eisenberg, Hall & Mead, 1973;
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486 F. CONTI AND E. WANKE

Boheim, 1974; Ehrenstein e* a/. 1974; Alvarez, Latorre & Vergudo, 1975.
Gordon & Haydon, 1975). The application of the more general type of
noise analysis discussed in this review, to BLM systems containing a
large number of channels, is relatively more recent (Zingsheim & Neher,
1974; Neher & Zingsheim, 1974; Kolb et al. 1975; Wanke, 1975)
We shall discuss these two types of measurements separately.

Single channel conductance fluctuations

EIM. EIM (excitability inducing material) is a still uncharacterized
proteinaceous substance which confers large ionic conductances and
excitability properties on lipid bilayers (Mueller & Rudin, 1963). As
first realized by Bean et al. (1969), the addition to one of the two mem-
brane bathing solutions of trace amounts of EIM, produces discrete
progressive conductance increments attributed by the authors to the
incorporation in the membrane of an increasing number of individual
EIM molecules. Later studies by Ehrenstein et al. (1970) confirmed
that in oxidized cholesterol membranes, EIM forms individual ionic
channels with lifetimes of many minutes, which can exist in two dif-
ferent conductance states with probabilities dependent on membrane
voltage. Although it has been shown that in BLM with different com-
position the EIM channels may have more than two states (Bean, 1972),
we shall discuss only the case of oxidized cholesterol membranes which is
simpler and better studied.

All the experimental evidence (Ehrenstein et al. 1970, 1972, 1974;
Latorre et al. 1972; Alvarez et al. 1975) indicates that the EIM channel
in oxidized cholesterol membranes is fully characterized by its two con-
ductance levels, yc and y0, and by the two rate constants a and /? which
determine its stochastic behaviour according to equations (2), (3) and
(4). It was found that yc and y0 do not depend on voltage, while they are
changed by altering the concentration of monovalent cations in the
bathing solutions. The selectivity among different monovalent cations,
either measured by the ratios of y0 or by the permeability ratios derived
from bionic potentials, was found to follow the scale of the cation
mobilities in free solution, suggesting that the channels are wide pores
(~ 16 A in diameter) containing inside a negative electronic charge
(Latorree/fl/. 1972). Typical reported values for y0 andycino.i MV-KCI

are: y0 = 0.4 ns ; yc = 0.08 nS. The rate constants a and ft were
found to be exponential functions of membrane potential, and led to
a correct estimate of the time constant, and of the percentage channel
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activation measured from voltage-clamp experiments on membranes
containing a large number of channels (EhrensteineJa/. 1974). The agree-
ment between single channel kinetics and macroscopic relaxation pro-
perties is maintained also when a and ft are changed by altering the tem-
perature or the lipid composition of the membranes (Alvarez et al. 1975).

The results summarized above show that the similarity between the
EIM channels in BLM and the ionic channels in nerve membranes goes
beyond the simple phenomenological analogy of the excitability pro-
perties of the two systems. Each EIM molecule behaves very similarly
to the individual subunits postulated in sodium or potassium HH
channels. A major difference consists in the absolute value of
T = (a+fl)-1, which is one or two orders of magnitude higher for EIM
channels. However, this difference is not a qualitative one, and it might
merely indicate that the 'gate' of EIM channels has to overcome a
higher energy barrier than its equivalent structures in the nerve mem-
branes. It is a real pity that the lack of characterization of EIM in terms
of molecular structure makes this gating mechanism not better under-
stood than those operating in nerves.

Alamethicin. Elementary conductance changes in BLM containing
alamethicin have been studied by various authors (Gordon & Haydon,
1972; Haydon et al. 1972; Eisenberg et al. 1973; Boheim, 1974; Gordon
& Haydon, 1975). The alamethicin channels appear from these studies
to be far more complicated than EIM channels. Thus the unitary event
associated with the appearance of a channel at a constant membrane
voltage is a train of many discontinuous jumps between as many as 9
(according to Gordon & Haydon, 1975) different current levels. A chan-
nel state of zero conductance, which at low membrane potentials has
much higher probability of occurrence than any of the non-zero con-
ductance states, seems to exist as distinct from the situation of zero
current in the absence of any channel. The conducting states of alame-
thicin channels have very high ionic permeabilities. The various con-
ductance levels in 0-5 M-NaCl vary from about o-6 nS to about 10 nS,
and are independent of the membrane thickness which affects, however,
the frequency of opening and the average lifetime of the channels
(Gordon & Haydon, 1972; Haydon et al. 1972). At all levels of con-
ductance, the channels show very little discrimination between cations
and anions or even between mono- and divalent ions, the ratios of the
conductances for univalent cations being close to those in aqueous
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solution (Haydon et al. 1972). All these results provided strong evidence
for identifying the alamethicin channels as long-lived wide pores, whose
structure is little affected by changes in the host lipid membrane matrix.

The most interesting feature of the electric conductance of lipid
bilayers containing alamethicin is its very strong voltage dependence.
Studies of single channel fluctuations have identified this voltage
dependence as being mainly confined to the probability of leaving the
zero conductance state, while the transition probabilities between
different conducting states are comparatively little affected by voltage
(Eisenberg et al. 1973; Boheim, 1974; Gordon & Haydon, 1975). This
result is in agreement with voltage-clamp data (Mauro, Nanavati &
Heyer, 1972; Eisenberg et al. 1973) showing essentially a single
exponential relaxation of the conductance in BLM containing a large
average number of alamethicin channels. It is in fact expected that the
voltage steps should mainly alter the relative population of channels
in the zero conductance state while they should produce little re-
distributions within the probabilities of the conducting states. These
redistributions would account for the initial inductive behaviour of the
voltage-clamp currents which occurs on a time scale comparable with
the average lifetime of the various conducting states.

The physical interpretation at the molecular level of the various
states of alamethicin channels is still debated. The dependence of the
average membrane conductance on the 9th power of the alamethicin
concentration indicates that oligomers containing up to 9 alamethicin
molecules may be involved in the formation of a single channel. However,
according to Boheim (1974) this does not imply that only complexes of
9 molecules can form a channel. Instead, it may be that oligomers con-
taining from 2 to 9 molecules are associated with channel states of in-
creasing conductance, the dimer configuration corresponding to the zero
conductance state of a formed channel. In support of this interpretation
(which, incidentally, implies only 7 non-zero conductance levels), it is
estimated that the diameter of a ring-shaped oligomeric pore would
increase by addition of monomers in a way which is consistent with the
increase in the various conductance levels. Apart from other evidence
against the hypothesis of an increasing pore diameter (Gordon &
Haydon, 1975), it is difficult to understand in this model why the rate
constants involved in the formation and disappearance of the dimer state
should be orders of magnitude smaller than those involved in the succes-
sive growing of the channel. It seems also odd that the transition from
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Channel noise in nerve membranes and lipid bilayers 489

a dimer to a trimer should be far more voltage dependent than the
further growth of the channel.

In the model proposed by Gordon & Haydon (1975) only oligomers
containing 9 alamethicin molecules can form a channel. Such complexes
can exist in a non-conductive state (e.g. when merely adsorbed at one
membrane solution interface) or in a conductive state (when more
deeply embedded in the membrane), the latter configuration favouring
the possible successive transformation of each monomer in a direct
channel spanning across the membrane. The actual opening of these
channel subunits requires a last step (e.g. the removal of a residual layer
of lipids on the side opposite to the penetration of the complex) whose
probability is fairly independent of membrane potential. In this model
the membrane potential mainly affects the penetration of the formed
complex into the membrane. By assuming that this occurs through the
interaction of the electric dipole moment of the complex with the
applied electric field one can also account qualitatively for the asym-
metric properties of alamethicin channels upon reversal of the mem-
brane potential. The evidence in support of the parallel functioning of
manymonomeric channels is based on selectivity data, showing an abrupt
cut-off of the permeability for cations of certain ionic radius, indepen-
dently of the channel conductance state (Gordon & Haydon, 1975).
However, the physical reason why only a complex of 9 alamethicin
molecules should be able to flip to a conductive state, which only involves
monomeric pores, is not clear. Furthermore, this model fails to account
for the dependence on alamethicin concentration of the fast rebound
(50 /is -s- 1 ms) of voltage-clamp currents (Mauro et al. 1972). In fact
the only time constants which are expected to depend on the alamethicin
concentration are the very slow ones governing the formation of the
large complexes or the adsorption of monomers at the membrane-
solution interface. A qualitatively correct concentration dependence of
the fast rebound would be expected, however, if the transitions between
the various conductance states of the same channel involved oligomer-
monomer reactions, as in the first model discussed above.

Thus, it appears that the best physical description of the alamethicin
channels should be found in a compromise between the two proposed
models. A careful study, of the single channel fluctuations or of the noise
from many channels, as a function of alamethicin concentration could
yield very useful information in this respect, as it did in the case of the
gramicidin A channels discussed below.
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49° F. CONTI AND E. WANKE

Gramicidin A. Black lipid membranes containing the linear poly-
peptide gramicidin A owe their high electrical conductance to the
formation by the antibiotic molecules of porous structures spanning
across the bilayer. The best experimental evidence of these pores was
provided by single channel kinetic studies (Hladky & Haydon, 1970,
1972). The essential results of these works are summarized below.

In the presence of trace amounts of gramicidin, lipid bilayers of
various compositions show discrete, randomly occurring conductance
steps of approximately constant amplitude. When multiple steps are
observed, their amplitude distribution is Poissonian, indicating that they
derive from the contribution of statistically independent unitary steps.
The unitary conductance change, for a constant ionic composition of
the bathing solutions, is fairly independent of membrane thickness
(varied by changing the membrane composition) and of temperature
(<2i0 — 1'4). This elementary event is then attributed to the creation
of a single pore whose internal structure is not much influenced by the
host membrane matrix. The pore conductance, fairly ohmic, has typical
values of 2 x io~u S and 4-8 x io"11 S in 1 M-NaCl and 1 M-KC1,
respectively. On the other hand, the average value of the exponential
distribution of the pores' lifetime is strongly dependent of membrane
thickness and temperature (Q10 ~ 3), in agreement with the idea that
the anchorage between two gramicidin A molecules from opposite mem-
brane sides is responsible for the creation of the pore (Urry, 1971;
Urry et al. 1971)- More precisely, according to Hladky & Haydon
(1972), the quantitative data are only consistent with the special model
of such a dimeric channel proposed by Urry et al. (1971).

The strongest direct evidence for the dimeric structure of the
gramicidin A channels was obtained from voltage-clamp relaxation
measurements (Bamberg & Laiiger, 1973). These measurements
exploited the significant dependence of the average number of channels
upon the voltage applied across the membrane, probably due to
electrostriction (Hladky & Haydon, 1972). It was found that the
current relaxation following a voltage step had a simple exponential
time course, with a time constant, T, which depended on the amount of
gramicidin A present. Assuming that the formation of gramicidin A
channels is governed by the reaction:

G + G~±G2, (49)
KD
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where G and G2 represent a monomer and a dimer, respectively, one
expects that I/T varies linearly with the average concentration of mem-
brane adsorbed monomers, Nm (Bamberg & Lauger, 1973). Further-
more, still according to equation (49), Nm is expected to be proportional
to the square root of the average dimer concentration, Nd, which deter-
mines the average current, /, flowing through the membrane. For a
fixed final voltage, the plot of I/T versus JI was actually found to lie
on a straight line, whose slope and intercept to the origin allowed to
evaluate the rate constants, KD and KR, in equation (49). The values
for KD agreed fairly well with the. reciprocal of the average single
channels life time measured by Hladky & Hay don (1972). In contrast to
KD, KR was found to be strongly voltage dependent, in qualitative agree-
ment with the observations on few channels, although the latter did not
allow an absolute estimate of KR. It should be stressed, on the other
hand, that the evaluation of KB from relaxation experiments required
the previous knowledge of the channel conductance, A, obtained from
single channel kinetic observations. It may be interesting to report here
the estimate for the equilibrium constant of the reaction (49),
K = KRjKD ~ 2xio1 4 cm2 M"1 (Vm = 125 mV) (Bamberg & Lauger,
1973). According to this figure, membrane areas as small as those used
by Hladky & Haydon (1972) (3 x io~5 cm2), contain on the average only
one open channel (dimer) in the presence of 300 monomers.

Noise in the presence of many channels

Detailed studies of noise from a large number of channels have been
concerned so far only with lipid bilayers containing gramicidin A (Neher
& Zingsheim, 1974; Zingsheim & Neher, 1974; Kolb et al. 1975). The
results of these works did not add new information to what had been
obtained from the single channel studies referred to above. Their main
relevance consists, therefore, in showing the validity of fluctuation
analysis for studies of biological membranes, the choice of an already
fully described system being most appropriate to this purpose. Thus,
it was shown that all the parameters required for the characterization
of the gramicidin A channels could be measured directly from the auto-
correlation function of the membrane current noise ^(t). As expected
from the fluctuation-dissipation theorem (see Appendix) and from the
linear relaxation properties of the system (Bamberg & Lauger, 1973),
0j(J) is found to follow a simple exponential decay with time constant T.
As for the analysis of the relaxation measurements (Bamberg & Lauger,
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1973) the plot of I/T as a function of the square root of the average
membrane conductance leads to the determination of the rate con-
stants, KD and KB in equation (49). However, while the evaluation
of KB from voltage-clamp data relies upon an independent estimate of
the single channel conductance, A, (Bamberg & Lauger, 1973) noise
data are completely self-consistent, since A can be evaluated from the
low conductance limit of ^7(0) (Neher & Zingsheim, 1974; Zingsheim
& Neher, 1974; Kolb et al. 1975). All the values of KD, KR and A
estimated from noise analysis were found to be in very good agreement
with those reported by Hladky & Hay don (1972) and by Bamberg &
Lauger (1973).

Very recently, observations of channel noise in lipid bilayers con-
taining monazomycin and nystatin have also been reported (Wanke,
1975). The results are still preliminary and have not yet been analysed
quantitatively. They merely show that the noise power of the current
fluctuations induced by these substances is far larger than that expected
from channels operating with a carrier mechanism, confirming the idea,
supported also by other evidence (Muller & Finkelstein, 1972 a, 1972ft;
Cass et al. 1970; Finkelstein & Holz, 1972), that monazomycin and
nystatin form real pores across the lipid structure. The estimates of
pore conductance given by Wanke (1975) (5 x icr14 S) for monazo-
mycin in o-i M-KCI; 6 x io~10 S for nystatin in 0-2 M-NaCl), based on a
simple model of two channel conductance states of equal probabilities,
should be considered purely indicative, since the choice of the correct
model, which should be also consistent with voltage-clamp data, may
be very critical for such estimates. These results indicate, however, that
noise analysis is at present the most powerful tool for investigating
ionic pores whose conductances are not large enough to allow single
channel kinetic studies.

APPENDIX

We give below a brief outline of the basic concepts and theoretical re-
sults underlying the analysis and the interpretation of random signals.
Exhaustive treatments can be found in any text-book on stochastic
processes and random signal analysis (e.g. Papoulis, 1965; Middleton,
1962; Lee, i960). The last section of this appendix is devoted to a short
discussion of the most common sources of electrical noise. This subject
is treated most exhaustively by Davenport & Root (1958) and Van der
Ziel (1970).
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Stochastic variables

Physically, a random signal is the time course of any observable, X,
whose value is determined by the random occurrence of a set of possible
states of a physical system, which are compatible with a particular
average state defining the conditions of the observation. Mathematically,
the random occurrence of the various states of the set is described as
a stochastic process and the assignment of an X value to each system
state characterizes X as a stochastic variable. As such, X is completely
specified by the knowledge of the multivariate probability densities,
/n[(*i. *i); (*2. h)* ••• (*n» *n)]. for a n v arbitrary integer n. Where
/n[(*i> fi)> •••» (xn> *»)] ^xi ••• ^n yields the probability of finding X
values between xx and x1 + dx1, ...,xn and xn + dxn, at times tv ..., tn,
respectively-^

For systems at equilibrium or in a steady state the stochastic process
underlying the fluctuations of X will be stationary, implying that:

/»[(*!. h+T);...; (xn,'tn + T)] = /n[(*lf t^; ... (xw tn)]. (A 1)

In what follows, we shall always implicitly assume that we are dealing
with stationary stochastic variables.

Expectation values and covariance

The expectation value, (?¥), of any function, Yf-X^), ..., X(tn)], of
the stochastic variable X, is defined as:

= f d*! f d* a . . . f dx^fa, x2> ..., xn] .fn [(xv tx), (x2> t2)... (xn, tn)]
J — CO J — CO J — 00

(A 2)

Expectation values provide the most direct connection between the
mathematical description of a stochastic variable and experiments,
since they must be approached by the equivalent statistical averages
when the statistics are performed on a large number of trials. In practice
the experimental characterization of a stochastic variable is in most
cases limited to the evaluation of particular statistical averages associated
with the moments of X. The moment of order k is defined as:

t The use of probability densities is most appropriate for the case of continuous
variable. However, also variables which can assume only a discrete set of values may
be described by generalized probability densities including Dirac S functions.

https://doi.org/10.1017/S0033583500001967
Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. 
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:16:23, subject to the

https://doi.org/10.1017/S0033583500001967
https:/www.cambridge.org/core/terms
https:/www.cambridge.org/core


494 F- CONTI AND E. WANKE

»*&, - , h) = <X{tl).X{t2) ... X(tk)}. (A 3)

The first order moment is the mean of X:

J», = = f" xMx)dx. (A 4)
J - 0 0

The moments of the variable (X—(X)) are called central moments
of X. The first non trivial central moment is that of the second order,
called the covariance of X <f>x(t) '•

(•oo ra>

<!>x{t) = (*i - mi) (*» - %) /2[(*i, h); (*a, tx+1)] dxlt dx2. (A 5)
J — tX>J — 0 0

One of the fundamental properties of the covariance, ^x(0> ̂
it is sufficient, together with {X), to completely characterize any gaussian
random process (see, e.g. ch. 8 of Davenport & Root, 1958). This is
indeed the most frequently encountered type of stochastic process in
physical systems, where the random fluctuations of an observed macro-
scopic variable usually derive from the contribution of a large number
of microscopic random events. The gaussian approximation is then
legitimized by the central limit theorem (see e.g. Khinchin, 1949).

We state below, without demonstration, some basic mathematical
properties of <j>x{t) '•

(0 M) = *A-*) - <x(t)X(o))-(xy. (A6)
(2) \<f>x(t)\ ^ <j>x{o) = {{X-mtf). (A7)

(3) Let X be the sum of iV independent stochastic variables,

N

x = zxi.
Then

4>x(t)=Ja4>x$- (A8)

When all the Xi have the same covariance, <j)(t):

<S>x{t) = Nftt).
N

(4) Let X be the product of N independent variables, X = Yl Xit
i=i

Then
fa® = n {^(0+<^>2}- n « 2 - (A 9)

1=1 »=i
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Fluctuation-dissipation theorem

Many of the theoretical approaches to noise problems try to correlate
the properties of the spontaneous fluctuations of an observable to those
of its average relaxation following an initial displacement of the system
from its final equilibrium state. A general type of fluctuation-dissipation
theorem, relating fluctuations and relaxation properties of macro variables
is applicable to a large variety of thermodynamic systems at equilibrium
or in a steady state (Kubo, 1957; Lax, 1960; Kubo et al. 1973). We shall
try below to state the essential meaning of such theorem, with particular
emphasis on the conditions of its applicability.

Let X be a stationary stochastic observable and let f2[(x0, °)> (#> 0]
be its second order probability density function. We can always write:

(**, o), (*, *)] = A W •/.[(*, *)/(*b. °)]> ( A I 0 )

where f2[(x, i)l(x0, o)], defined by (A 10), represents the conditional
probability density of finding the value x at time t provided the value
x0 is observed at time zero. If we confine ourselves to the observation
of only those situations for which X assumes the value x0 at time zero,
the average evolution of our observable for t > o will be given by:

= r
J -

Let us assume that, for all possible initial states with X = x0:

(Xtf^-iX) = (xo-(X)) e-*fr. (A 12)

It then follows from (A 5), (A 10), (A 11) and (A 12), that:

Ut) = j(xo-(X».((X(t)}Xo-(X)).f(Xo) d*0 = <(*0-<X»*>e-'/'.
(A 13)

Equation A 13 shows that the covariance of the fluctuations of a variable
obeying a simple exponential relaxation law is also a simple exponential
with the same time constant.

The practical applicability of the equivalence between (X(t))Xo and
(j>x{t) relies on a very critical assumption, which is worth stressing more
explicitly. The average relaxation properties of our observable, X, can
be measured experimentally by following its actual time course, x(t),
from an initial value x0 which differs from {X) much more than in any
likely spontaneous fluctuation. Such an initial displacement from {X)
will be produced by applying appropriate constraints to the system,
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496 F. CONTI AND E. WANKE

and suddenly removing them at time zero. The observation of a simple
exponential relaxation in such experimental conditions is not in general
sufficient, however, to demonstrate the validity of the assumptions under-
lying the derivation of equation (A 13). It is very critical to show that
all possible states with X = x0, accessible by spontaneous fluctuations,
are also equally well represented in the population of initial states com-
patible with the applied constraints. For example, it may be that the
complete specification of the state of the system requires additional
macroscopic variables, Ylt Y2, ..., Yn, besides X, all undergoing inde-
pendent fluctuations on time scales larger than those characterizing our
observations (Lax, i960). In this case the linear relaxation of the whole
set of (n+1) variables will be in general described by the sum of (n+ 1)
exponentials with different time constants. Even if X itself happens to
relax (in particular conditions) with a single time constant, <f>x(t) will
generally contain a superposition of (n+i) exponentials, 'with coeffi-
cients which can only be evaluated from the kinetic behaviour of the
complete set of variables.

Statistical analysis of random signals

We have already stated that the experimental counterpart of the expecta-
tion values, of any function of the time course of a stochastic variable,
are the statistical averages over the empirical outcome of a large number
of trials. Thus, in principle, the experimental determination of, e.g.
<l>x{t) should derive from many independent observations of the time
course of the observable X, performed either on a large number
(ensemble) of statistically identical systems (wherefrom the term 'en-
semble average', widely used in statistical mechanics) or on the same
system (supposed to be in a stationary state) with large intervals of
time between successive observations. In practice the statistical analysis
of a random signal is considerably simplified by the assumption that
the underlying stochastic process is ergodic. Such a condition can be
best understood, in the absence of any rigorous background in prob-
ability theory, in terms of its most important practical consequence,
namely the equivalence between expectation values and time averages
(Birkhoff theorem). For an ergodic stochastic variable X:

<^[X{tx),X{t,),...,X{tn)])

[
T-coo i J o

= lim i [\[x(tx + t'), x(t,+t'), ..., x(tn + t')) dt\ (A 14)
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where x{t) is any (possible) outcome of a single observation of the time
course of the stochastic variable X. In particular, the mean and the
covariance of X are measured by the following time averages:

<Z> = lim L P V ) d*', (A 15)
r-*oo -1 Jo

Ut) = lim^ \TW)-(X)].[x(t' + t)-(X)] dt'. (A 16)

The time average in the right-hand side of (A 16) is usually called the
autocorrelation function of the signal x(t).

One of the most important consequences of the ergodic hypothesis
is that the techniques of Fourier analysis of time signals can be exploited
for studying random variables. The application is not straightforward,
since classical Fourier analysis concerns only periodic or transient
signals. However, a formidable generalization to include continuative
random signals was obtained by Wiener (for this topic see, in particular,
Lee, i960). We state below a major result of such generalization in the
form which is widely used in noise analysis. Let XT{u>) be the truncated
Fourier transform of a random signal x{t), with zero mean, denned as:

t. (A 17)

Let Wx be the average power of x(t), defined as:

M7 I.'m I -A(t\ At (A fSC\
VVX — 11111 ^ 3 ^ I i\ I t l U £ . \ /

T-+ca J J 0

It can be shown that:

f + 00 | y tM\12 /•+<»

Hm l ± 4 ^ L d « = W* = ^x(o) = ^ ( w ) d«, (A 19)
where 3>̂ (<w) is the Fourier transform of the autocorrelation function
<fix(t) of x(t) and the equality between Wx and 0JC(O) is a direct con-
sequence of the definitions, equations (A 18) and (A 16). $z(w) is called
the power spectrum of X (or of our signal x(t)). Equation (A 19) does
not imply the convergence of lim \XT{<j))\zjT. In practice, however, such

convergence is not strictly required, since only the total power within
a finite (although arbitrarily small) frequency interval is measured. Thus,
for all practical purposes, it can be stated that:
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l im \XTH\2 =O>X(W) = I f " ^(t) cos cot dt. (A 20)
T-»-oo -* n J 0

Equation (A 20) is known as the Wiener-Khinchin theorem, the last
equality being a direct consequence of the parity property of <j>x{t),
equation (A 6). $>x(to) is measured in units of [X]2 rad"1. Often a power
spectrum, Sx(t), in units [X]2.s, and with the positive and negative
frequency contributions lumped together is used.|Since Q>X(CJ)= ®x( ~ w ) :

Sx(f) = 27T[(PX((O) + OX(-W)] = 4 I (j>x{t) COS 23lft dt. (A 2l)
J 0

From the practical point of view (A 20) implies that random signals
can be equivalently analysed either in terms of Fourier spectra or
through measurements of autocorrelation functions. While the former
are more directly related to the actual features of the signals, the latter
yield more direct information about the intimate nature of the under-
lying stochastic process.

Modelling noise processes

Models of noise processes can derive either from assumptions directly
concerning the average time course of the noise signals or from the
characterization of the probability space of the underlying stochastic
process. One approach leads directly to the evaluation of time averages
such as autocorrelation functions or power spectra. The other deals
with expectation values, typically the covariance, of the stochastic
observable. For ergodic processes the two approaches are, in principle,
completely equivalent. In practical cases, however, one may be far
more convenient than the other.

Thus, it may occur that the time course of the observed variable can
be adequately described as the superposition of many random and
independent elementary contributions each constituting a rare event
of well defined shape. The fluctuations of such variables are better
characterized directly in terms of their power spectrum, which is related
in a very simple way to that of each elementary contribution (Campbell's
theorem; see Rice, 1944).

All models for shot effect noise processes follow this approach (for
an exhaustive review of such models see Verveen & De Felice, 1974).
The most classical type of such processes is the shot noise in vacuum
tubes due to the random extraction of electrons from the cathode. The
stochastic nature of these phenomena is mainly confined to the triggering
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Channel noise in nerve membranes and lipid bilayers 499

of each elementary waveform, further randomness being possibly
introduced when the shot events, rather than being of fixed shape,
are allowed to have statistical distributions of, e.g. amplitude and
duration.

In contrast with the above type of random processes, one may deal
with a stochastic observable, X, which is more conveniently described
in terms of its probability densities, fn[(xlt tj) ... (xn) tn)]. This is cer-
tainly the case when X can be assumed to be markovian, namely
satisfying the condition:

, h -h)l(xly o)] .../,[(*., t , - V i ) / ( V i . °)]- (A " )

Equation (A 22) merely implies that the probability of future values of
X depends only on its present value and not on its past time evolution.
Equation (A 22) has the far reaching consequence that the observable X
is completely specified (under stationary conditions) solely by the con-
ditional probability density f2[(x, t)j(x0, o)]. The theory of channel
noise discussed in the text is concerned with a particular case of (dis-
crete) markovian variable.

Common sources of electrical noise

At least three sources of random fluctuations are generally encountered
when measuring any electrical parameter in physical systems: thermal
noise, shot noise, 1// (flicker) noise. The main characteristics of these
electrical noise sources are briefly summarized below. Detailed dis-
cussions can be found in many books or reviews (e.g. Van der Ziel,
1970; Davenport & Root, 1958; Verveen & De Felice, 1974).

Thermal noise. This is the first type of electrical noise to have been
actually measured experimentally (Johnson, 1928). According to
Nyquist theorem (Nyquist, 1928) such noise is a universal characteristic
of any equilibrium thermodynamic system containing charged particles.
The voltage fluctuations across any two points of a system in thermal
equilibrium have a power spectrum given by:

Sp(f) = 4kT Re Z, (A 23)

where k is the Boltzman constant, T is the absolute temperature and
Re Z stands for the real part of the system electrical impedance across
the two measurement points. According to (A 23) the classical thermal

32 Q R B S
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noise across a pure ohmic resistance has a constant power spectrum
(white noise). However, the quantum mechanical generalization of the
Nyquist theorem leads to a spectral density which tends to zero at
frequencies of the order of kT/A, where h is the Planck constant (see,
e.g. Van der Ziel, 1970). Nyquist theorem can be generalized to systems
in steady state or generally in quasi-equilibrium (Lax, i960), although
other noise sources may also appear in such situations. It can also be
extended to encompass the fluctuations around equilibrium, or quasi
equilibrium, of any physical observable, other than electrical in origin.
It then relates the appropriate general admittance of the system to the
power spectrum of the fluctuations of the observable. It is practically
equivalent to the fluctuation-dissipation theorem (Kubo, 1957; Kubo
et al. 1973; Lax, i960).

Shot-noise. Whenever an average electric current, /, flows between
any two points of a system, this is no longer in equilibrium. In addition
to the thermal noise other noise sources may appear. The classical shot
noise is shown by those systems in which the charged carriers of the
electrical current, each bearing a charge which is a multiple integer of
the electronic charge, e, move independently from each other. For
electrons in vacuum tubes or solid-state junctions, the current shot-
noise has a power spectral density given by:

SI(f) = 2el (A 24)

yielding a white noise up to very high frequencies. Fo r / > ~ I/T,
where T is of the order of the electrons transit time, Sz(/) declines to
zero in various ways depending on the time characteristics of the single
'shot' current event (Van der Ziel, 1970; Davenport & Root, 1958).
Shot noise-like phenomena are expected to occur in any system where the
current is carried by non-interacting, or moderately interacting carriers.

1// noise. Current, and/or voltage, fluctuations with power spectral
densities which vary in a wide range of frequencies as f~a, where a is
close to unity, have been described in many systems. Being in excess
to the theoretical Nyquist noise, these phenomena can occur only in
non-equilibrium systems. Recent experimental work, mostly prompted
by the finding of a large 1//noise contribution in the electrical fluctua-
tions of nerve membranes, has shown that indeed 1// noise is a quite
general phenomenon affecting many systems away from thermodynamic
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equilibrium. Thus, 1//noise is found in artificial membranes (De Felice
& Michalides, 1972; Michalides et al. 1973), in microelectrodes (De
Felice & Firth, 1970), or across small holes separating two different
electrolytic solutions (Hooge & Gaal, 1970). A general interpretation
of the origin of iff noise is still lacking, despite the fact that many
particular models can be shown to lead to 1// noise expectations. An
exhaustive review of theoretical and experimental studies on 1// noise
in a large variety of systems is given by Verveen & De Felice (1974).
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