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Alteration of endothelial cell functions, including reduced endothelial nitric oxide (NO) availability, increased endothelial cell apoptosis, adhesion
molecule/chemokine expression and pro-thrombotic activation are thought to contribute to the pathophysiology of atherosclerosis and coron-
ary-artery-disease (CAD) with its clinical complications, such as acute coronary syndromes. High-density lipoproteins (HDL) from healthy
subjects or reconstituted HDL have been observed to exert potential direct anti-atherogenic effects by modulating these endothelial cell func-
tions. Importantly, endothelial effects of HDL have now been reported to be highly heterogeneous, and are modulated as part of immune
responses. More recently, this has also been observed for HDL of patients with CAD, where HDL becomes potentially pro-inflammatory
and endothelial-protective properties are markedly altered. Several mechanisms may lead to these altered endothelial effects of HDL in patients
with CAD, including oxidative modification of HDL-associated lipids and proteins, such as apoA-I and paraoxonase-1, and alterations of
HDL-proteome. These findings have to be considered with respect to interpretation of recent clinical studies failing to demonstrate reduced
cardiovascular events by HDL-cholesterol raising strategies in patients with CAD. Both clinical and genetic studies suggest that HDL-cholesterol
levels alone are not a sufficient therapeutic target in patients with CAD. The focus of this review is to summarize the role of HDL onto endothelial
homeostasis and to describe recently characterized molecular pathways involved. We highlight how structural and functional modifications
of HDL particles in patients with CAD may perturb the physiological homeostasis and lead to a loss of endothelial-protective properties
of HDL in patients with CAD.
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1. Endothelial cell function
and atherosclerosis
The endothelium, the inner cellular lining of blood vessels and
lymphatics, plays a key role for vascular homeostasis beyond its
barrier function, e.g. by controlling vascular tone, immune cell recruit-
ment for innate and adaptive immune responses, haemostasis and angio-
genesis.1 – 4 Alterations in endothelial cell functions, including a reduced
endothelial cell nitric oxide (NO) availability, endothelial cell pro-
inflammatory activation, increased endothelial cell apoptosis, and pro-
thrombotic activation have been suggested to contribute to vascular
pathology, in particular to the development of atherosclerosis and
coronary artery disease with its clinical sequelae.4,5

Of note, endothelial cells have a marked phenotypic heterogeneity
in structure and function across the vascular tree6–8 and vary between

different organs and blood vessel types, in part due to different tissue
environments and epigenetics2,6 –11 A better understanding of under-
lying mechanisms may aid in the development of vascular bed-specific
therapies.2,6– 11

Common cardiovascular risk factors, such as smoking, hyperten-
sion, hypercholesterolaemia, type-2 diabetes, and ageing are associated
with altered arterial endothelial cell functions, including an impaired
endothelium-dependent vasodilation.1,3,4,12–15 Clinical studies have ob-
served that altered endothelium-dependent vasodilation, in part due to
a reduced endothelial NO availability, is associated with an increased
risk of adverse cardiovascular events.5,16,17

In addition to the well-known pro-atherogenic role of low-density
lipoprotein (LDL) with its potential adverse effects on endothelial cell
functions, there is now an increasing interest towards a better under-
standing of the vascular effects of high-density lipoprotein (HDL), that
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has been observed to exert direct effects on endothelial cell function, that
have been suggested to be potentially anti-atherogenic, when HDL was
isolated from healthy subjects,18–21 but are highly heterogeneous when
HDL from patients with coronary disease is examined.22–24

2. HDL and its relation to coronary
disease
HDL, a small lipoprotein (7–17 nm diameter), is constituted of an outer
layer of phospholipids (PL) and free cholesterol (FC) stabilized by apo-
lipoproteins (2–7 per particle) and a lipid core containing cholesterol
esters (CE) and triglycerides (TG).25– 27 Relative proportions of HDL
components are modified along its biogenesis by the action of several
enzymes and interactions with specific receptors.28 ApoA-I, the main
HDL protein, is mainly synthesized by hepatocytes and in the intestine
and associates PL and FC to form lipid-poor complexes, most often
depicted as discoidal particles.28 The enzyme lecithin cholesterol acyl-
transferase (LCAT) enriches the lipid core pool with CE generating
spherical HDL particles, that follow subsequent interchange of lipids
with other lipoproteins (VLDL, LDL) mediated by cholesterol ester
transfer protein (CETP) and phospholipid transfer protein (PLTP).26,29

While the causal involvement of LDL in coronary disease and the
associated risk of myocardial infarction has been strongly supported by
genetic studies,30,31 the association between HDL cholesterol levels and
the riskofmyocardial infarction is substantiallymore complex.30 Although
epidemiological studies consistently showed an inverse relation between
HDL cholesterol (HDLchol) plasma levels and the risk of coronary disease
or myocardial infarction in the primary prevention setting,32,33 the associ-
ation between HDLchol plasma levels and cardiovascular events is likely
altered in patients with established coronary disease.34,35

Moreover, genetic Mendelian randomization analyses examining
the relation of polymorphisms (SNPs) linked to changes in HDLchol

did not find a consistent association with an altered risk of myocardial
infarction, whereas LDLchol SNPs were consistently associated with
the riskofmyocardial infarction.30 Furthermore, genomewide association
scan (GWAS) studies showed an increased frequency of 11 LDLchol-
associated variants in a sample of patients with coronary artery disease
(CAD) vs. controls that was not reported for HDLchol-associated var-
iants.36 In addition, heterozygotes carriers of ABCA1 mutations with a
moderately decreased of HDLchol did not have an association with an
increased risk of ischaemic heart disease.37

Moreover, recent clinical trials evaluating HDLchol-raising therapies
such as the CETP inhibitors torcetrapib and dalcetrapib or niacin (with
laropiprant) did not demonstrate a reduced risk of cardiovascular
events in patients with coronary disease.38– 42 In fact, both clinical and
genetic studies suggest that HDLchol alone is not a sufficient therapeutic
target and that alterations of HDL function in patients with coronary
disease and in chronic inflammatory conditions likely need to be consid-
ered. In this respect, the lack of improved endothelial function after dal-
cetrapib treatment suggests that raising HDLchol levels alone cannot
restore endothelial function.43

An important factor to consider while evaluating these studies is that
unlike the genetic randomized studies, most of the clinical trials have
involved a markedly higher number of men both in the healthy and
disease groups (�80% men). As we will discuss in more detail, there
are likely significant gender differences with respect to HDL levels, com-
position, and metabolism that may be of relevance in this context.

Of note, the continuous remodelling and interchange of components
generates a very heterogeneous population of HDL particles in terms of
size, composition, and functionality.26,44 Various factors contribute to
the heterogeneity of HDL particles and the existence of multiple
subsets of particles (Figure 1):

(i) combinations of several exchangeable apolipoproteins (apoA-I,
apoA-II, and apoE as major constituents) and their capacity to
dissociate and/or interchange between particles;45,46

(ii) high plasticity of apolipoproteins with constant conformational
changes, induced by HDL particle composition and size, that
could affect interactions with other proteins and therefore their
functionality;47–50

(iii) numerous additional proteins associated to specific HDL particles
that accomplish multiple functions;51,52

(iv) a complex set of lipid species that not only act as an inert cargo but also
can activate different signalling pathways in numerous cell types.53

3. Effects of HDL from healthy
subjects or reconstituted HDL on
endothelial cell function
Endothelial cells (EC) are highly exposed to HDL, both at the luminal
side, i.e. in contact with the circulating lipoprotein, as well as from the
subendothelial side.54,55 ApoA-I and HDL can be transferred through
the endothelium via transcytosis, being internalized on the luminal
side and released into the arterial intima.56 Two different pathways
have been described, lipid-poor ApoA-I internalization and transcytosis
are ABCA1-mediated, whereas HDL particle internalization is depend-
ent on SR-BI and ABCG1.54,55,57 Additionally, endothelial lipase (EL) has
been also implicated in the HDL transcytosis process.58 Lymphatic
vessels express SR-BI and have recently been shown to play a role in
the transport of HDL back to the circulation.59,60

3.1 Effects of HDL on endothelial
NO production
3.1.1 Mechanisms whereby HDL may stimulate
endothelial NO production
Production of the vasodilator NO by endothelial nitric oxide synthase
(eNOS) is a highly regulated process and important for vascular homeo-
stasis.61 HDL modulates eNOS activity as has been demonstrated in
in vitro studies using human primary endothelial cells,23 but also in
in vivo studies using animal models23,62 and in humans after applying intra-
venous rHDL infusion.63 HDL has been shown to stimulate endothelial
cell eNOS activity through the endothelial SR-BI receptor.64 In recent
years, more detailed molecular mechanisms of SR-BI-mediated endo-
thelial signalling pathways have been delineated involving sequential ac-
tivation of Src Tyrosine kinase, PI-3K, Akt kinase, and Erk1/2 MAPK
leading to activation of eNOS by phosphorylation of the enzyme at
Ser-117765 (Figure 2).

SR-BI interaction with the N-terminal PDZ domain of PDZK1 is
required in order to mediate activation of eNOS by HDL.66 Studies
using SR-BI and its homologue CD36 fusion proteins identified the
SR-BI domain as responsible for HDL-mediated eNOS activation
located at the second transmembrane (TM) domain and its
C-terminus.67 Although deletion of this domain did not impair choles-
terol efflux to HDL, the efflux seems to be required since cholesterol-
free cyclodextrin was replicating the eNOS activation effect while
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cholesterol-loaded cyclodextrin did not.67 Finally, recent studies defined
the function of the second TM domain of SR-BI as a cholesterol sensor.
Asinglemutation (Q445A)onthisTMdomain reduced itsbinding tochol-
esterol by 71% and this resulted in an impaired HDL-induced signalling
without altering cholesterol efflux to HDL.68 This transmembrane
domain lacks homology with known cholesterol-binding domains such
as 3-hydroxy-3-methylglutaryl-CoA reductase, liver X receptors, sterol
regulatory element-binding protein, or Niemann-Pieck C1 and C2,69

being the first sterol-sensing protein to regulate kinase signalling.68 The
mechanism transferring the signal from SR-BI cholesterol sensor to the
Src kinase is still not defined.

Another important mechanism regulating eNOS activation involves
HDL-associated sphingosine 1 Phosphate (S1P).70–72 Both S1P1 and

S1P3 receptors have been related to HDL-mediated NO release via
intracellular Ca2+ mobilization and PI-3K/Akt pathway activation72,73

(Figure 2). Ca2+/calmodulin activation seems to disrupt the inhibitory
interaction of eNOS with caveolin promoting NO production.71,74– 76

Activation of G-proteins by the receptors induces PI3K and Akt path-
ways resulting in phosphorylation of eNOS Ser 1177 and activation.77,78

HDL is the main carrier of plasma S1P and apolipoprotein M (ApoM) is
considered as the S1P binding protein on HDL. Liver-specific ApoM
transgenic animals showed S1P associated to a subset of large HDL par-
ticles and lack of ApoM on ApoM KO leads to dysfunctional endothelial
barrier function in the lung, presumably related to a loss of S1P on HDL
although other cellular specific mechanisms cannot be excluded.79– 83

These studies suggest a preferential role of ApoM on the S1P

Figure 1 HDL particle complexity and heterogeneity. Normal HDL metabolism (central panel) involves modulation of the composition and structure of
the lipoprotein: apolipoprotein secretion mainly by the liver and intestine; assembly of discoidal HDL by PL and FC lipidation; further lipid enrichment in CE
andPLbyLCATandPLTPaction, respectively, raising small sphericalHDL; exchangeof CEwith TGwith VLDL/LDLmediatedbyCETP increasing the size of
HDL particles; and delivery of CE, TG and PL to the liver by action of HL and SR-BI. Additional properties increase the complexity of HDL by generation of a
large set of particles: (A) The availability of several exchangeable apolipoproteins (ApoA-I, ApoA-II, ApoE, and to a lesser extension ApoA-IV) present in
HDL particles as different combinations may entail different functionalities. (B) Each of these exchangeable apolipoproteins is highly dynamic leading to
changes of its tertiary structure upon changes of HDL particle composition. These structural modifications can expose or hide different regions/
domains of the protein that could be potentially important for interaction with other proteins. (C) More than 80 proteins have been identified to be asso-
ciated with HDL, including: ApoM (�5% of all HDL particles), PON-1 (10–12% of all HDL particles), ApoL-I, SAA, or Clusterin (ApoJ). Each of these pro-
teins accomplishes specific functions that have been associated with HDL functions, for example, the antioxidative properties of PON-1 or the immune
functions of ApoL-I in fighting Trypanosoma infection. (D) Further heterogeneity derives from different lipid compositions of HDL particles. Lipids carried
by HDL are not only a mere cargo but can play important roles for HDL function. A well-characterized example is sphingolipid S1P, a crucial player for
HDL-mediated signal transduction to numerous cell types. Interestingly, ApoM is required for HDL being a carrier of S1P, and this protein is only
present in about 5% of HDL particles. LpA-I: lipoprotein A-I; PL: phospholipids; FC: free cholesterol; LCAT: lecithin cholesterol acetyltransferase; CE: chol-
esterol ester; PLTP: phospholipid transfer protein; TG: triglycerode; HL: hormone sensitive lipase; PON-1: Paraoxonase 1; ApoJ: Clusterin; SAA: serum
amyloid A; S1P: sphingosine 1 phosphate.
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metabolism but further studies will have to address their relevance in
human physiology.

3.1.2 Mechanisms whereby HDL may prevent reduction
of endothelial NO availability
Oxidized LDL (oxLDL) treatment induces displacement of eNOS from
its functional subcellular location, caveolae, and inhibits NO produc-
tion.84 HDL has been shown to counteract the oxLDL effect by preserv-
ing eNOS location and activity.85 More recently, it was shown that HDL
prevents endothelial dysfunction via endothelial ABCG1-mediated
efflux of cholesterol and 7-oxysterols,86 in part by decreasing the inter-
action of caveolin-1 and endothelial NO synthase.87

In addition, HDL has also been shown to modulate NO production by
increasing eNOS stability via a mechanism involving MAPK and PI3K/Akt
pathways.88

3.2 HDL: role for maintenance
of endothelial integrity
HDL may protect endothelial integrity by promotion of endothelial
repair responses after vascular injury and by reducing endothelial cell
apoptosis.23,24 Endothelial cell apoptosis can be induced by oxLDL,
TNFa, and other factors, which may also lead to disruption of endothe-
lial monolayer integrity.89– 91 HDL has been proposed to protect vascu-
lar integrity by different mechanisms.90,92,93

S1P bound to HDL has been implicated in endothelial barrier homeo-
stasis by increasing lipid raft number as well as Akt-mediated eNOS
activation in an enhanced way in comparison to albumin-bound S1P.94

Small HDL3 particles are enriched on S1P, have increased S1P/SM
molar ratio and potently attenuated apoptosis in endothelial cells, and
delayedLDL oxidation, the S1P/SM molar ratiowas positively correlated
with the anti-apoptotic and antioxidative activities of HDL.95

Figure 2 Signal transduction pathways regulating HDL homeostatic physiology in endothelial cells. (1) HDL-mediated signalling by SR-BI requires efflux
of cholesterol towards the ApoA-I-bound HDL, which in turn modulates cholesterol sensor activity located at SR-BI 2nd TM domain. The signal is trans-
duced to activate SrcTyr kinase and a downstream cascade involving PI3K and MAPK signalling that results in phosphorylation of eNOS Ser1177 inducing its
activation. SR-BI C-terminal interaction with PDZK1 is required for signal transduction. Besides eNOS activation, this pathway initiates other potential
anti-atherogenic endothelial functions (see panels). (2) HDL/ApoM-bound S1P signals through S1P1/P3 receptors, located within the caveolae, while
EL may be mediating S1P release from HDL facilitating the binding to the receptor(s). S1P1/P3 initiates signalling through G-protein coupled receptors,
followed by downstream activation of PI3K, AKT, and MAPK pathways and activating phosphorylation of eNOS. S1P receptors also induce an increase
of intracellular Ca++ levels with calmodulin activation that is able to displace caveolin-1 from its inhibitory complex with eNOS. (3) HDL induces endo-
thelial ABCG1-mediated efflux of oxysterols (like 7-ketocholesterol, 7-KC) and can thereby prevent inhibition of eNOS. SR-BI, scavenger receptor BI; Src:
PI3K: phosphoinositide-3-kinase; ERK, (mitogen-activated protein kinase) extracellular-signal-regulated kinases; eNOS, endothelial nitric oxide synthase;
EL, endothelial lipase; S1P, sphingosine 1 phosphate; ApoM, apolipoprotein M; Ca, calcium; S1P1 and S1P3, sphingosine 1 and sphingosine 3 receptor;
ABCG1, ATP-binding cassette transporter G1; 7-KC, 7-ketocholesterol; NO, nitric oxide; PDZK1, PDZ domain containing 1.
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S1P also plays a role in migration and proliferation and accordingly in
wound healing through S1P1 and S1P3 receptors and downstream acti-
vation of the ERK pathway, possibly ligated to eNOS activation.96,97

Moreover, we have recently observed that HDL-associated clusterin
may contribute to endothelial anti-apoptotic effects of HDL.24

HDL also has been shown to stimulate endothelial cellmigration and an
anti-apoptotic effect through binding to SR-BI that was at least partially in-
dependent of eNOS as demonstrated by eNOS knockdown studies.24,98

The anti-apoptotic effect of HDL has been observed in all of its differ-
ent subfractions upon treatment of microvascular endothelial cells with
oxLDL, but the lipid-poor apoA-I fraction showed a more-pronounced
effect.99

3.3 HDL and endothelial
anti-inflammatory effects
HDL has been shown to reduce endothelial cell adhesion molecule
expression and monocyte adhesion. Down-regulation of VCAM-1,
ICAM-1, and E-selectin by HDL is mediated by the SR-BI and S1P recep-
tors transduction signal pathways that has been described earlier.100–102

The anti-inflammatory capacity of HDL has been assigned to its phospho-
lipid content in addition to apoA-I.103

Another mechanism in small, lipid-poor HDL (HDL3 or nascent
HDL) and apoA-I seems to be mediated in most cells, including endothe-
lial cells, immune cells (macrophages, monocytes, and T cells etc.) via
cholesterol depletion of lipid rafts.29

Moreover, the ATP-binding cassette (ABC) cholesterol efflux trans-
porters, such asABCA1andABCG-1, havebeensuggested toexert anti-
inflammatory functions.104,105 Furthermore, down-regulation of the
infiltration of neutrophils/monocytes into the media/intima of the arter-
ial wall by HDL has been related to decreasing of the surface expression
of integrin CD11b.101,106 This has been partly implied to be mediated by
apoE, which is also responsible for diminishing the lipid load within
monocytes.107

Additionally, it has been shown that lipid-free apoA-I decreases vascu-
lar endothelial inflammatory activation through up-regulation of
24-dehydrocholesterol reductase (DHCR24)108 and the well-known
anti-inflammatory protein heme oxygenase I (HO-1), which is mediated
through PI3K/AKT pathway being one of the pathways that are activated
via HDL in an SR-B1-dependent manner. This mechanism has been
observed to act independent of the down-regulation of TNFa-mediated
increase of ICAM-1 and VCAM-1 by inhibiting the NF-kB pathway.109

HDL can protect LDL from oxidation and thereby reduce its impact
on endothelial cell inflammatory activation. The lipoprotein oxidation
is in part mediated via oxidants such as hypochlorous acid (HOCl)
produced by myeloperoxidase (MPO). The antioxidant effect of HDL
is partially mediated by the paraoxonase and arylesterase activity of HDL-
associated enzyme paraoxonase-1 (PON1).110 Oxidation of LDL has
been inhibited by PON1111 and the same has been observed with
respect to oxidation of HDL.110 Most profound antioxidant capacities
have been associated with the dense HDL subpopulations (HDL3) with
a high capacity to attenuate LDL oxidation. Proteomics analysis identified,
in this subpopulation, other putative antioxidant proteins associated to
HDL as platelet-activated factor acetyl-hydrolase (PAF-AH), apoL-1 (a
neutralizer of Trypanosoma brucei112), apoF, PLTP, apoJ/Clusterin, and
PON3.51 Otherproteomic studiesunderline theroleofHDL in regulation
of the complement system as well as inhibiting protease action and thus
underlining its anti-inflammatory role.52 Recently, our group has also

shown that PON-1 is an important determinant for the capacity of
HDL to stimulate endothelial NO production.23 HDL added to a
co-culture of LDL and monocytes was able to prevent the oxidation of
theLDLmediated through the inhibitionofMCP-1onhumanaorticendo-
thelial cells (HAEC).113

3.4 HDL regulation of endothelial
thrombotic activation
An anti-thrombotic effect of HDL in humans was suggested by a study in
healthy subjects where infusion of reconstituted HDL limited their pro-
coagulant state after endotoxin exposure.114 Furthermore, a potential
anti-thrombotic capacity of HDL was observed in an acute arterial
thrombosis rat model after infusion of apoA-I Milano, which showed
an extended time of thrombus formation.115 Several molecular mechan-
isms have been proposed involving processes independent or dependent
of NO production.116 Prostacyclin (PGI2) is a vasoactive prostaglandin
that acts synergistically with NO in vasomotor control, inhibition of
platelet activation, and attenuation of smooth muscle cell proliferation.
Prostacyclin expression is induced by native HDL in endothelial
cells,117,118 and to a lesser extent using delipidated HDL.119 HDL-induced
expression of prostacyclin is mediated through provision of arachido-
nate117,120 or in part by induced Cox-2 expression.121,122 As discussed
earlier, HDL transports several types of sphingolipids121 such as glucosyl-
ceramide that was reported to be low in plasma of venous thrombosis
patients.123 LDL and VLDL have more than five-fold higher content of
ceramide than HDL.124 Sphingosine inhibits prothrombin activation125

and most of its effects are mediated via its G-protein coupled recep-
tors.126 As it has been shown that apoptosis of endothelial cells pro-
motes thrombosis,127 one may speculate that there is an implication
that the anti-apoptotic effects of HDL described earlier may contribute
to reduced thrombosis.128

4. Gender differences of HDL
In the pre-menopausal state, womenhave lowerLDL-C levels andhigher
HDL-C levels when compared with men,129 which has been reported to
change after menopause.130 This has been mainly related to sex hor-
mones, such as estrogens, that behave as LDL-R up-regulating agents.131

In addition to the expected sex differences in concentrations of triglycer-
ides, LDL-cholesterol, and HDL-cholesterol, women also had a different
subclass profile consisting of larger LDL and HDL particles. The gender
difference was most pronounced for HDL, with women having a
two-fold higher (8 vs. 4 mmol/L) concentration of large HDL particles
than men.132

HDL-associated estradiol has been suggested to stimulate endothelial
cell eNOS and thereby endothelium-dependent vasodilation. This could
be seen in pre-menopausal women, but also in post-menopausal women
receiving hormone replacement therapy,133 supporting the possibility
that sex hormones may impact on vascular effects of HDL, including
direct association with the particle. Most studies have not examined
gender differences of HDL function and composition, so that this im-
portant topic has to be studied in more detail in the future.

Another interesting aspect with respect to gender differences and
their potential impact on HDL-mediated effects on endothelial cells is
the identification of the X-linked inhibitor of apoptosis proteins
(XIAP).134 Such genes could potentially play a role in different vascular
effects of lipoproteins between men and women.

A. Kratzer et al.354



5. Alterations of endothelial effects
of HDL from patients with coronary
artery disease
Accumulating evidence has indicated that composition and vascular
effects of HDL are markedly altered as part of the acute-phase
immune response. HDL during the acute-phase response to inflamma-
tion gets enriched in acute-phase proteins, such as SAA, and becomes
pro-inflammatory, i.e. stimulates monocyte chemotactic protein 1
(MCP1) expression.135 HDL has therefore by some investigators been
considered of having a function to modulate the inflammatory acute-
phase response to inflammation in vivo.

Importantly, HDL isolated from patients with coronary disease (in
contrast to HDL from healthy subjects) exhibited a pro-inflammatory
rather than an anti-inflammatory phenotype when exposed to endothe-
lial cells.22 Moreover, HDL from patients with stable CAD (sCAD) or an
acute coronary syndrome (ACS), in contrast to HDL from healthy sub-
jects, failed to stimulate endothelial cell NO production, and subse-
quently loss of the capacity to promote endothelial repair, further
demonstrating that the quality of HDL with respect to its endothelial
effects is markedly altered in patients with sCAD (Table 1).23

In these studies, healthy subjects were defined as individuals without
established cardiovascular disease and without cardiovascular risk
factors. Stable CAD (sCAD) was defined as patients with at least one
.50% coronary stenosis and patients with acute coronary syndrome
(ACS) that were hospitalized for an acute myocardial infarction. The
above observations raised the question of underlying mechanisms leading
to these profound alterations of endothelial effects of HDL in patients
with coronary disease. Of note, HDL-associated paraoxonase-1 activity
is markedly reduced in patients with sCAD, likely allowing a more rapid
lipid oxidation of the lipoprotein as indicated by increased MDA-content
of HDL in these patients.23 Notably, HDL from patients with sCAD had
an increased binding affinity to the lectin-like oxidized LDL receptor 1
(LOX-1) which signals via PKCbII pathway to reduce eNOS activity23 by
promoting the inhibitory eNOS phosphorylation at thr-495 (Figure 3).

Interestingly, HDL serves as a scaffold upon which MPO and PON1
interact during inflammation, generating a ternary complex during
acute inflammation that shows reciprocal regulation of enzymatic

activities where PON1 partially inhibits MPO oxidative activity while
MPO can inactivate PON1.136 MPO oxidizes Tyr71 of PON1, a critical
residue for its HDL binding and activity displacing the balance to a
more oxidative state (Figure 3).

Myeloperoxidase (MPO) is a heme peroxidase expressed by neutro-
phils, monocytes, and activated macrophages in atherosclerotic
plaques.137 – 139 MPO enzymatic production of various reactive oxidants
and radical species contributes to the elimination of invading parasites
and pathogens.140 However, in a number of chronic inflammatory
diseases, including atherosclerosis, the extended oxidative activity of
MPO promotes lipid peroxidation and protein modifications leading
to host tissue injury.141,142 MPO enzymatic activity is very complex with
multitude of substrates that generates multiple reactive species and
a variety of post-translational modifications: oxidation, chlorination
(hypochlorous acid –HOCl- via MPO/H2O2/Cl2 system), nitration
(peroxynitrite –ONOO– via MPO/H2O2/NO), and carbamylation
(via MPO/H2O2/thiocyanate –SCN2).143,144

Direct interactions between MPO and apoA-I have been reported
suggesting that apoA-I is a main target of MPO-derived reactive
species due to their short lifespan and high reactivity with the first avail-
able residue.145 Indeed, analysis of human arterial atheroma plaques has
identifiednumerous modifications in apoA-I associated with impairment
on potential athero-protective properties of the HDL particle.145 – 147

In vitro chlorination or nitration of HDL and lipid-free apoA-I inhibited
ABCA1-dependent cholesterol efflux from macrophages.145 In a
similar approach, chlorination of HDL from healthy donors induced a
reduced wound healing capacity of endothelial cells.148 HDL carbamyla-
tion impaired activation of LCAT, PON1 functionality, and antioxidant
HDL capacity.149 A specific antibody identified oxTrp72 residue of
apoA-I as an abundant post-translational modification (20% of total
apoA-I) inhumanatheroma,but surprisingly, virtuallyall theoxTrp72-apoA-I
molecules recovered were in a lipid-poor form and not associated with
HDL particles.150 Moreover, apoA-I harbouring oxTrp72 modification
showed no detectable ABCA1-dependent cholesterol efflux activity,
impaired HDL biogenesis capacity, and a pro-inflammatory effect
on endothelial cells inducing expression of VCAM-1 and increased
activation of NF-kB.150

Moreover, in recent proteomics studies we and others have observed
marked alterations of the HDL proteome in patients with CAD.24,52

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 HDL function (with a focus on endothelial effects) in patients with CAD, CKD, and healthy subjects

Effect of HDL on Healthy CAD CKD Proposed mechanism
of HDL dysfunction

Endothelial cell
NO production

Induced Not changed Inhibited Oxidation of ApoA-I protein
LOX-1-mediated
TLR2/NADPH oxidase-mediated

Endothelial cell inflammatory activation Anti-inflammatory Loss of anti-inflammatory
effects

Pro-inflammatory SAA displacement of ApoA-I,
SDMA accumulation in HDL

Endothelial cell antioxidant capacity Induced/Functional Impaired Impaired Reduced PON1 activity
(MPO oxidative modification)

Endothelial cell apoptosis Anti-apoptotic Pro-apoptotic ND

Capacity to promote endothelial cell
migration and endothelial repair

Induced Impaired Impaired Oxidation of ApoA-I protein

Regulation of endothelial cell thrombotic
activation

Anti-thrombotic Potentially
Pro-thrombotic

ND Lipid-oxidized species
(lipid peroxides)

ND, not determined.
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In particular, HDL in patients with CAD had higher amounts of apoCIII,
whereas theHDL-boundclusterin amountswerereduced.Thesealtera-
tions in the HDL proteome were found to impact on the effects of HDL
on endothelial cell apoptosis, i.e. HDL from healthy subjects exerted
endothelial cell anti-apoptotic effects in vitro and in vivo, whereas HDL
from patients with CAD had markedly attenuated anti-apoptotic
properties.24

Further studies have suggested that in particular a specific subset of
STEMI patients with significant acute-phase inflammatory response
showed a most defective HDL stimulation of endothelial NO
production.151

Additionally, HDL from patients with chronic kidney disease, that
have a markedly elevated cardiovascular risk, promoted (in contrast to

HDL from healthy subjects) endothelial superoxide production
leading to reduction of endothelial nitric oxide (NO) bioavailability, an
effect mediated via toll-like receptor-2 (TLR-2), providing a link of
altered HDL function to activation of pathways of innate immunity on
endothelial cells.152

Activation of TLR-2 by HDL from patients with CKD was at least in
part mediated by HDL-bound SDMA, i.e. a small molecule (Figure 3).
HDL from patients with CKD have also shown reduced antioxidant
and anti-inflammatory activities and impaired endothelial repair capaci-
ties compared with HDL from healthy subjects.152,153

In contrast, HDL from healthy subjects has been observed to limit
TLR-dependent inflammatory activation of macrophages and the mo-
lecular mechanism involves induction of the transcriptional regulator

Figure 3 Mechanisms of altered endothelial effects of HDL from patients with coronary disease or increased cardiovascular risk. (1) Monocytes/Macro-
phages (Mw) can release MPO, an oxidative enzyme leading to modification of HDLs lipid and protein components such as PON-1 or apoA-I altering their
function. MPO uses substrates such as NO or H2O2 produced by activated monocytes/macrophages or exogenous chemicals (as SCN2 derived from
cigarette smoke) to generate reactive species. Nitrosylation, chlorination, or methylation are some of the modifications of apoA-I leading to dysfunctional
SR-BI and S1P receptors signal transduction mediated by HDL. Malondialdehyde (MDA) is one of the oxidized products that accumulate on HDL when
PON-1 antioxidant enzyme is not functional. MDA-bound HDL can activate endothelial LOX-1 and induce PKCbII activation, leading to inhibitory phos-
phorylation at Thr495 of eNOS. (2) During acute-phase SAA protein plasma levels increase drastically and can displace ApoA-I from HDL particles.
Although SAA accomplishes an important role in innate immune defense, chronic inflammation leads to a dysfunctional HDL unable to perform homeo-
static functions. (3) HDL-bound SDMA activates TLR2 (independent of TLR1 or TLR6) and induces ROS production via NADPH oxidase, which impairs
eNOS activation in parallel to AKT inactivation. MPO-Mieloperoxidase, PON-1-Paraxonase-1; ApoA-I, Apolipoprotein AI; SAA, serum amyloid A; sPLA2,
secretory phospholipase A2; TLR2, toll-like receptor 2; SDMA, symmetric dimethylarginine; eNOS, endothelial nitric oxide synthase; RCT, reverse chol-
esterol transport.

A. Kratzer et al.356



ATF3 by HDL that down-regulates the expression of toll-like receptor
(TLR)-induced pro-inflammatory cytokines.154

In patients with type-2 diabetes, that are also at increased risk of
cardiovascular events, the capacity of HDL to reverse the inhibitory
effect of oxLDL on endothelium-dependent arterial relaxation was
impaired.155,156 In these patients, HDL also failed to stimulate endothelial
NO production.157

6. Summary and conclusions
HDL can exert numerous effects on endothelial cell functions, includ-
ing modulation of endothelial cell nitric oxide availability, endothelial
repair and endothelial cell apoptosis, endothelial adhesion molecule/
chemokine expression, and endothelial pro-thrombotic activation.
The underlying molecular mechanisms are now better understood,
and involve SR-BI receptor and S1P3-receptor-dependent endothelial
signalling as well as ABCG-1 dependent efflux of oxysterols. Importantly,
however, several studies over the past years have clearly demonstrated
that the endothelial effects of HDL are highly heterogeneous and
are altered in particular in patients with coronary disease or an increased
cardiovascular risk. The underlying mechanisms remain to be fully
explored, but involve post-translational modifications of apoA-I and
paraoxonase-1, important modulations of the HDL proteome and lipi-
dome. Whereas myeloperoxidase-dependent modification of HDL-
associated proteins likely plays an important role of post-translational
alterations, the acute-phase response clearly modulates the HDL prote-
ome that may contribute to altered properties of HDL in inflammatory
diseases.

This loss of HDL functionality to protect the endothelium may facili-
tate common cardiovascular risk factors (smoking, hypertension, hyper-
cholesterolaemia, type-2 diabetes, and ageing) to promote altered
arterial endothelial cell functions.

In this review, we underlined the differences of effects of HDL on the
endothelium in different clinical settings and their dependence on the
vast heterogeneity of the HDL particles under (patho)physiological
states. In fact, proteomics and lipidomics have brought novel insights
into the complexity of HDL changing our concept/perspective from
a simple model of a homogeneous HDL cholesterol carrier to a
dynamic array of particles with different components and functionalities.
However, many challenges have to be overcome including the develop-
ment of standardized methodology for HDL isolation and a systematic
nomenclature in order to facilitate comparisons between different
isolation methods and studies. Another challenge in the assessment
of HDL composition and functions is to identify and address potential
artefacts related to HDL isolation methods.48,158,159 One potential
step to reduce HDL changes during isolation is the use of heavy water
(D2O) in the ultracentrifugation fractionation that can minimize
oxidation artefacts.160,161

Moreover, new insights on the structural basis of ApoA-I and its highly
dynamic conformations can provide a better understanding of HDL
functions, however, the vast HDL particle heterogeneity imposes limita-
tions to higher resolution protein structures. Advances of lipoprotein
structure resolution combined with analysis of specific oxidized modifi-
cations will help to understand which proteins and functions are
impaired under the pro-oxidative conditions of the atherosclerotic
plaque.

HDL exposure to chronic or acute inflammation leads to profound
changes of HDL, turning HDL towards a pro-inflammatory particle. It
has been proposed that this acute-phase HDL plays a role in the innate

immune response to fight against pathogen infections. However, during
atherosclerosis or coronary disease, this ‘activated’ HDL phenotype
may be partially chronically maintained as a result of unresolved inflam-
mation impairing its homeostatic atheroprotective functions. A better
understanding on the resolution of acute response and the switch
between these different HDL phenotypes could provide a better under-
standing of HDL changes in chronic inflammatory diseases.

Recent pharmacological and genetic studies suggest that modula-
tion of HDL cholesterol levels alone is not a sufficient therapeutic
target to provide protection from cardiovascular events. However,
understanding the mechanisms leading to altered vascular effects of
HDL may lead to potential novel therapeutic measures for the preven-
tion of progression of coronary disease.
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