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SUMMARY

In certain multivariate problems the full probability density has an awkward normalizing constant, but
the conditional and/or marginal distributions may be much more tractable. In this paper we investigate the
use of composite likelihoods instead of the full likelihood. For closed exponential families, both are shown
to be maximized by the same parameter values for any number of observations. Examples include log-linear
models and multivariate normal models. In other cases the parameter estimate obtained by maximizing
a composite likelihood can be viewed as an approximation to the full maximum likelihood estimate. An
application is given to an example in directional data based on a bivariate von Mises distribution.

Some key words: Bivariate von Mises distribution; Closed exponential family; Fisher information; Log-linear model;
Maximum likelihood; Multivariate normal distribution; Pseudolikelihood.

1. INTRODUCTION

Consider a statistical model f (x ; θ ), which can be viewed as a density in x for fixed θ or a likelihood in
θ for fixed x . The usual maximum likelihood estimate θ̂FL is obtained by maximizing the full likelihood
f (x ; θ ) over θ . In this paper we look at an alternative to the full likelihood called a composite likelihood.

If x can be partitioned into three pieces xA, xB, xC , say, where B or C may be empty, then the conditional
density f (xA | xB ; θ ), or marginal density if B = ∅, continues to depend on at least part of θ . Given a
collection of such partitions, the conditional densities can be multiplied together to yield a composite
likelihood, whose maximum over θ can be denoted θ̂CL.

The purpose of this paper is two-fold: to identify statistical models and types of composite likelihood
for which the composite likelihood estimator is identical to the maximum likelihood estimator, and to
investigate the use of the θ̂CL as a tractable approximation to θ̂FL when the full likelihood involves a
difficult normalization constant.

The history of composite likelihoods, also called pseudolikelihoods, goes back at least to Besag (1974)
who, in the terminology developed below, used a full conditional composite likelihood based on one
observation from a binary spatial process. Further details for Gaussian processes were given there and in
Besag (1975, 1977).
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Later work has often focused on the case of n independent identically distributed observations from a
multivariate distribution, especially issues of consistency and asymptotic normality. Lindsay (1988) and
Arnold & Strauss (1991a) discuss the general class of composite likelihoods considered here and give
many examples. Arnold & Strauss (1991b) and Arnold et al. (2001) investigated the construction of joint
distributions given the conditionals and discussed various properties of such distributions. Cox & Reid
(2004) focused on the special case of marginal composite likelihoods. Varin (2008) is a recent review
paper with a wealth of examples. The main emphasis in the present paper is on n independent identically
distributed multivariate observations.

2. CLOSED EXPONENTIAL FAMILIES

Let x be a multivariate quantity that can be split into p pieces, x = (x1, . . . , x p), and consider a product
base measure μ(dx) = μ(dx1) · · ·μ(dx p). Typically, the j th component of x will contain n observations
on variable j . Write P = {1, . . . , p} for the full set of indices. Also, let t = t(x) be a q-dimensional
sufficient statistic as a function of x and consider the canonical exponential family

f (x ; θ ) = exp{θ Tt − c(θ )} (1)

with respect to this base measure. Here θ is a q-dimensional parameter vector and c(θ ) determines the
normalizing constant.

In certain cases an exponential family is closed under marginalization in the following sense.

DEFINITION 1. A canonical exponential family for x, with sufficient statistic t is said to be closed if, for
all subsets B ⊂ P, the marginal distribution of xB follows a canonical exponential family with sufficient
statistic tB , where tB is the subset of components of t that depend just on xB.

To understand the closure property in more detail, let (A, B) be a partition of P , so A ∩ B = ∅, A ∪ B =
P . Let tA;B denote those components of t depending on xA including those which also depend on xB , and
let tB denote those components of t depending just on xB . Then t and θ can be partitioned as t = (tT

A;B, tT
B)T

and θ = (θ T
A;B, θ T

B)T. The joint distribution of x can always be split into a product of a conditional and a
marginal distribution,

f (x ; θ ) = f (xA | xB ; θ ) fB(xB ; θ ). (2)

Since f is a canonical exponential family, the first factor depends on θ only through θA;B . Further, under
the closure assumption, the marginal density of xB takes the form

fB(xB ; θ ) = exp
{
θ∗T

B tB − cB(θ∗
B)

}
,

where θ∗
B = φB(θ ) depends on the full parameter θ through some function φB(·). In the language of

Barndorff-Nielsen & Cox (1994, p. 38), tB is said to be a cut; it is S-ancillary for θA;B and S-sufficient for
θ∗

B .
The conditional density can be written as

f (xA | xB ; θ ) = exp
{
θ T

A;BtA;B − dA;B(xB, θA;B)
}

. (3)

By writing f (xA | xB ; θ ) = f (x ; θ )/ fB(xB ; θ ), the normalizing constant can be expressed as

d(xB, θA;B) = {φB(θ ) − θB}TtB + c(θ ) − cB{φB(θ )};
from (3), it depends on θ only through θA;B .

In passing, note that we have proved the integral representation∫
exp

(
θ T

A;BtA;B

)
μ(dxA) = exp{ψB(θA;B)TtB − gA;B(θA;B)},

where the functions ψB(·) and gA;B(·) are related to φB(·) and cB(·) by

θ∗
B = φB(θ ) = θB + ψB(θA;B), cB(θ∗

B) = c(θ ) + gA;B(θA;B).

Note that cB(θ∗
B) depends on θ only through θ∗

B = φB(θ ).
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As a simple example let x be an n × 2 matrix representing n observations from a bivariate normal
distribution, N2(0, �), and let j index the j th variable, j = 1, 2. Also, denote the 2 × 2 sample sum of
squares and products matrix about the origin by S. The distinct elements of −S/2 form the sufficient
statistic in this case. With the partition A = {1} and B = {2}, the sufficient statistic t is partitioned as

tA;B = −1

2
(s11, 2s12)T, tB = −1

2
s22,

with canonical parameters θA;B = (σ 11, σ 12), θB = σ 22, in terms of the elements of the inverse covariance
matrix �−1 = (σ i j ). In this case θ∗

B = σ−1
22 = {σ 22 − (σ 12)2/σ 11}.

The joint likelihood (1) can be maximized by maximizing separately the two terms on the right-hand
side of (2). More specifically, if θ̂ = (θ̂ T

A;B, θ̂ T
B)T maximizes the left-hand side, then θ̂A;B maximizes the

first term on the right-hand side and θ̂∗
B = θ̂B + ψB(θ̂A;B) maximizes the second term.

Further, because the joint density, the conditional density and the marginal density are all exponential
families, these maximum likelihood estimators uniquely match population and sample moments. That is,
writing T as a random sufficient statistic with realized value t in the dataset,

Eθ̂ (T ) = t, (4)

Eθ̂A;B ,xB
(TA;B) = tA;B, (5)

Eθ̂∗
B
(TB) = tB, (6)

where the three expectations are taken over the joint density, depending on θ , the conditional density of xA

given xB , depending on θ only through θA;B , and the marginal density of xB , depending on θ only through
θ∗

B = φB(θ ), respectively.
Another property of a closed exponential family is that the closure property is preserved under marginal-

ization. That is, if D ⊂ P is a subset of indices, then the marginal distribution of xD is also closed. To
prove this claim, let B ⊂ D. From the definition of closure, the marginal distribution of xB is a canonical
exponential family with sufficient statistic tB , which is a subset of t , the sufficient statistic for x . Since
the components of xB are a subset of those of xD , the components of tB also comprise the subset of
the components of tD , which depend just on xB . Hence the marginals from xD satisfy the condition of
Definition 1.

This section focused on partitions (A, B). However, many of the results continue to hold when A ∪ B
is a proper subset of P , in particular, the representation (3) for the conditional density f (xA | xB ; θ ) and
the moment results (5) and (6).

3. COMPOSITE LIKELIHOODS

Consider now a collection of partitions {A(�), B(�), C(�)} (� = 1, . . . , m), where B(�) or C(�) may be
empty. When C(�) = ∅, {A(�), B(�)} is a partition; when B(�) = ∅, f (xA(�) | xB(�); θ ) becomes a marginal
density. Define the composite loglikelihood by

lCL(θ ) =
m∑

�=1

log f
(
xA(�) | xB(�), θ

)
. (7)

Here are several common composite likelihoods.

Full likelihood. For completeness we include the usual full likelihood in this list, with m = 1, A(1) =
P, B(1) = ∅, C(1) = ∅.

Full conditional composite likelihood. The simplest partitions to use are the full conditionals, with

A(�) = {�}, B(�) = {1, . . . , p}\{�} (� = 1, . . . , p),

so that each variable is conditioned on the rest in turn.
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Pairwise conditional composite likelihood. This composite likelihood takes the form

PCCL(θ ) =
∏
i � j

f (xi | x j ; θ ),

where the product contains p(p − 1) factors.

Pairwise marginal composite likelihood. This composite likelihood takes the form

PMCL(θ ) =
∏
i< j

f {(xi , x j ); θ},

where the product contains p(p − 1)/2 factors.

The pairwise composite likelihoods are of most interest for exponential families with only first-order
interactions, i.e. each component of t depends on at most two components of x .

Denote the parameter value maximizing the composite loglikelihood (7) by θ̂CL, which may or may not
be unique. The following results give conditions to ensure that θ̂CL is unique and satisfies θ̂CL = θ̂FL.

THEOREM 1. Consider data x from a closed exponential family model. If C(�) = ∅ for all � in (7) and if
each component of t is contained in tA(�);B(�) for at least one �, then θ̂CL is unique and satisfies θ̂CL = θ̂FL.

Proof . From the decomposition in (2), the �th term of the log composite likelihood is maximized by
θ̂FL. Hence the log composite likelihood is maximized by θ̂FL. All we need to confirm is that θ̂FL is unique.

The �th term of the composite loglikelihood depends on θ only through θA(�);B(�), and by (5) is maximized
if and only if (θ̂CL)A(�);B(�) = (θ̂FL)A(�);B(�). Combining these results over all � yields θ̂CL = θ̂FL. �

Theorem 1 covers the important case of the full conditional composite likelihood. However, more care
is needed for the pairwise composite likelihoods. First, since for p > 2 the subsets of indices C(�) are not
empty, these cases are not covered in Theorem 1. And second, it is necessary to make an assumption that
the sufficient statistic t involves only first-order interactions, i.e. each component of t depends on at most
two components of x . The following theorem covers the cases of pairwise composite likelihoods.

THEOREM 2. Consider data x from a closed exponential family model for which only first-order interac-
tions are present. For the pairwise conditional and pairwise marginal composite likelihoods, θ̂CL is unique
and satisfies θ̂CL = θ̂FL.

Proof . Fix two indices i � j , let B = {i, j} and consider the bivariate model f (xB ; θ ), which depends
on θ only through φB(θ ), in the notation of § 2. Using properties of the full likelihood estimator for
the pairwise marginal case, and calling on Theorem 1 for the pairwise conditional case, it follows that
φB(θ̂CL) = φB(θ̂FL). Hence from equation (6), it follows that Eθ̂CL

(TB) = tB .
Each component of t depends on at most two components of x , i and j , say. Letting i, j range through

all pairs of indices implies Eθ̂CL
(T ) = t , and hence from equation (4) that θ̂CL is unique and equals θ̂FL. �

It might be thought that the condition C(�) = ∅ for all � could be dropped in Theorem 1, but the theorem
is not true at this level of generality, as the following counterexample shows.

Let the p × 1 vector x denote a single observation from a multivariate normal distribution Np(μ,�),
where the unknown mean vector μ is the parameter to estimate, and the covariance matrix � is assumed
known. Let A(�) = {�} (� = 1, . . . , p), equal each coordinate in turn and let B(�) be a subset of the
remaining coordinates. Then the composite loglikelihood takes the form

−1

2

p∑
�=1

{
x� − μ� − βT

�

(
xB(�) − μB(�)

)}2/
σ 2

��·B(�) = −1

2

∑ {
γ T

� (x − μ)
}2

, say.

Here β� = �−1
B(�)B(�)�B(�)� denotes the regression coefficient of x� on xB(�), and σ 2

��·B(�) is the residual
variance. The coefficient vectors γ�, treated as row vectors, can be stacked together into a p × p matrix 
.
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Clearly, the composite loglikelihood is maximized by the usual maximum likelihood estimator μ̂FL = x .
Further, it is easy to see that μ = x uniquely maximizes the composite loglikelihood if and only if 
 is
nonsingular. More specifically, if 
 is singular, then the composite loglikelihood is constant when x − μ

lies in any direction perpendicular to the rows of 
.
To develop a counterexample, let p = 3, σ11 = σ22 = σ33 = 1, σ12 = σ13 = 3/4, σ23 = 2/9 and

B1 = {3}, B2 = ∅, B3 = {1, 2}. It turns out that det(
) = 0.

4. BEHAVIOUR OF NONCLOSED MODELS

If a statistical model is not closed, it is of interest to ask how close θ̂CL is to θ̂FL. This question can
be addressed most simply in the asymptotic setting as n → ∞ for n independent identically distributed
observations from a model with p variables and q parameters.

The standard theory of consistency and asymptotic normality for estimating equations can be applied
here. Subject to mild regularity conditions and the identifiability of the parameters, the composite likelihood
estimate will be consistent with asymptotic normal distribution n1/2(θ̂CL − θ ) ∼ Nq (0, I −1

CL ), where the
information matrix takes the sandwich form ICL = H−1 J H−1 in terms of matrices J = E(UU T) and
H = −E(∂U/∂θ T). Here UCL(x ; θ ) = ∂ log lCL(x ; θ )/∂θ denotes the score vector. For the full likelihood,
H = J = I , say, reduces to the usual Fisher information matrix. See, e.g. Godambe (1960), Kent (1982),
Lindsay (1988) and Varin & Vidoni (2005).

Thus the key question is identifiability, and in general this property does not hold unless the composite
likelihood is rich enough to include all the information about θ . For example, for the full conditional
composite likelihood, identifiability always holds by the Brook (1964) expansion, which demonstrates that
the full conditionals always determine the joint distribution, subject to a mild positivity regularity condition.
On the other hand, for the partial conditional and partial marginal composite likelihoods, identifiability
only holds for models involving at most first-order interactions. Such models include the multivariate
normal distribution, but not a log-linear model for a three-way contingency table, where all the parameters
are unknown. This log-linear model allows arbitrary bivariate distributions for the two-way margins, but
it also includes second-order interactions, which cannot be identified from the pairwise marginals.

The efficiency of a maximum composite likelihood estimator relative to the maximum full likelihood
estimator can be summarized by

(|ICL| / |I |)1/q ; (8)

see, for example, Davison (2003, p. 113).

5. EXAMPLES

5·1. Contingency tables

Consider an m1 × m2 contingency table for two random variables X and Y with joint probability
distribution

P(X = i, Y = j) = pi j = exp

{
m1∑

k=1

m2∑
l=1

θkl I (k = i, l = j) − c(θ )

}

(i = 1, . . . , m1; j = 1, . . . , m2),

where θi j = log pi j and c(θ ) = log{∑ ∑
exp(θi j )}. Here the model is overparameterized since adding a

constant to all the θi j does not change the model. The usual solution is to set one parameter equal to zero,
e.g. θ11 = 0, with the other parameters unconstrained. The marginal probabilities for Y can be written in
the form

P(Y = j0) = p∗
j0 =

m1∑
i=1

pi j0 = exp

⎧⎨
⎩

∑
j

θ∗
j I ( j = j0) − c∗

B(θ∗)

⎫⎬
⎭ ,
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say, and hence this canonical exponential family model is closed. A similar argument works for multi-way
tables.

5·2. Unrestricted normal models

Let the n × p matrix x denote n observations from a p-dimensional normal model, Np(0, �) or
Np(μ,�), i.e. with or without a mean parameter, where the covariance matrix is unconstrained. This
model is closed since all the marginals are also normal. Further, since the normal model involves only
first-order interactions, all the maximum composite likelihood estimators suggested above are identical to
the maximum full likelihood estimator.

5·3. Unrestricted equicovariance normal model

In the above model, with zero mean for simplicity, suppose � = �e = σ 2(I + ρL) is an equicovariance
matrix, where I is the p × p identity matrix and L is a p × p matrix whose diagonal entries are all 0 and
off-diagonal elements are all 1, with −1/(p − 1) < ρ < 1. This example does not fall within the setting
of Theorem 1 because the sufficient statistics, proportional to

sd = 1

p

p∑
j=1

s j j , so = 1

p(p − 1)

∑
i � j

si j ,

where S = xTx denotes the p × p sample sum of squares and products matrix, do not depend on just one
or two components of x , but depend on all p components of x . However, it is still the case that all the
composite likelihood estimators suggested above are identical to the full likelihood estimator.

To verify this claim, let equi(S) denote the matrix whose diagonal elements all equal sd and whose
off-diagonal elements equal so. It is easily checked that each of the composite loglikelihoods, including
the full loglikelihood, depend on S only through sd and so. In particular, for any of the loglikelihoods under
consideration, l(�e; S) = l{�e; equi(S)}, where �e denotes a covariance matrix with the equicovariance
property and the dependence of the likelihood on the data is made explicit. Since the normal family is
closed, for each of the composite likelihoods under consideration, the right-hand side is maximized over all
unrestricted covariance matrices by �̂ = equi(S)/n. Since this matrix has the equicovariance property, it
is also the maximum over restricted covariance matrices �e. Hence all the likelihoods under consideration
are maximized by �̂e = equi(S)/n.

5·4. The restricted equicovariance normal model

As an example where the different composite likelihoods are not equivalent, consider the p-dimensional
normal distribution with mean 0 and an equicovariance matrix with common known variances σ 2 = 1.
Hence there is one parameter ρ to estimate. The fact that one of the parameters is known means that this
model is no longer a canonical exponential family. In this setting it turns out that there are three distinct
estimators: the full likelihood estimator; the pairwise marginal estimator, which is identical to the pairwise
conditional estimator; and the full conditional estimator, which is different from the pairwise estimator.

Cox & Reid (2004) studied the pairwise estimator in this context and investigated its asymptotic ef-
ficiency. Further theoretical and numerical investigation is given in an unpublished University of Leeds
research report by Mardia, Taylor and Hughes. In summary the pairwise and full conditional composite
estimators differ for p � 3, but neither estimator dominates the other for all values of ρ and p.

6. THE BIVARIATE VON MISES DISTRIBUTION

The bivariate von Mises distribution on the torus (Singh et al., 2002) is an interesting example of a
nonclosed exponential family model which can be regarded as approximately closed. For angular variables
X, Y ∈ [−π, π ), the joint probability density function is given by

f (x, y) ∝ exp{κ1 cos(x − μ1) + κ2 cos(y − μ2) + λ sin(x − μ1) sin(y − μ2)}. (9)
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Fig. 1. Bivariate von Mises example. (a) Efficiency of composite likeli-
hood with κ lying between 0 and 8, and ρ = λ/κ = 0·2, 0·4, 0·6, 0·8, 1·0.
(b) Comparison of exact, solid line, and approximate, dashed line, marginal

densities for x with parameters κ = 2, ρ = 0·8.

Under high concentration, the distribution of (X − μ1, Y − μ2) is asymptotically bivariate normal with
mean 0 and inverse covariance matrix

�−1 =
(

κ1 −λ

−λ κ2

)
, (10)

where in general (9) defines a unimodal density on the torus provided (10) is positive definite.
There are five parameters in this exponential family distribution. It is not canonical due to the presence

of μ1 and μ2 in the interaction term in the exponent, but if μ1 and μ2 are known, it becomes a 3-parameter
canonical exponential family. The conditional distributions lie in the von Mises family with

f (y | x) = {2π I0(�)}−1 exp{κ2 cos(y − μ2) + λ sin(x − μ1) sin(y − μ2)},
where I0(·) is a modified Bessel function and � = �(x ; κ2, λ, μ1) = {κ2

2 + λ2 sin2(x − μ1)}1/2. However,
for λ � 0, the marginal distribution of X is not in the von Mises family, as would be required if the bivariate
von Mises family were closed. Instead it has a Bessel density

f (x) ∝ I0(�) exp{κ1 cos(x − μ1)}.
Hence even if μ1 and μ2 are known, this exponential family model is not closed.

The normalizing constant for the bivariate model (9) can be awkward to compute for large parameters,
but the Bessel function arising in the conditional von Mises distribution is straightforward to compute
quickly in all cases. Hence we investigate the use of the composite likelihood as a substitute for the usual
full likelihood.

For illustrative purposes, we limit attention to the case μ1 = μ2 = 0 and κ1 = κ2 = κ , say. Thus there are
two parameters, κ and λ. Efficiency is measured using (8) and is summarized in Fig. 1(a). These results are
based on extensive algebraic computations, which are set out in the aforementioned unpublished University
of Leeds research report. The efficiency is plotted against κ for various values of ρ = λ/κ , interpreting
λ = 0 whenever κ = 0. For λ = 0 the efficiency is always 1, since in this case f (x, y) = f (x | y) f (y | x).
Also, the efficiency tends to 1 in the limiting normal case κ → ∞, provided ρ < 1.

Note the high efficiency in all cases, except to some extent in the limiting case for a unimodal density,
ρ = 1. The reason for the high efficiency seems to be that this bivariate exponential family model is
approximately closed. For example, Fig. 1(b) shows a plot of the marginal density of X for x ∈ [−π, π ],
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with parameter values, κ = 2, ρ = 0·8, together with a von Mises density matched to have the same first
cosine moment. It can be seen that the two densities are very close, though further work is needed.

The bivariate von Mises model can be easily extended to a higher-dimensional torus (Mardia et al.,
2008). The computational advantages of the full conditional composite likelihood become even more
pronounced in this case. Such models have become important in bioinformatics for the modelling of
correlated conformational angles in protein structure prediction (Mardia et al., 2007; Boomsma et al.,
2008).

The bivariate von Mises example highlights two open issues left for further research. These are to find
further examples of closed exponential family models and to formalize the notion of approximately closed.
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