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S U M M A R Y
The resolution and reliability of tomographic velocity models strongly depends on quality and
consistency of available traveltime data. Arrival times routinely picked by network analysts on
a day-to-day basis often yield a high level of noise due to mispicks and other inconsistencies,
particularly in error assessment. Furthermore, tomographic studies at regional scales require
merging of phase picks from several networks. Since a common quality assessment is not
usually available for phase data provided by different networks, additional inconsistencies are
introduced by the merging process. Considerable improvement in the quality of phase data
can only be achieved through complete repicking of seismograms. Considering the amount
of data necessary for regional high-resolution tomography, algorithms combining accurate
picking with an automated error assessment represent the best tool to derive large suitable
data sets. In this work, we present procedures for consistent automated and routine picking of
P-wave arrival times at local to regional scales including consistent picking error assessment.
Quality-attributed automatic picks are derived from the MPX picking system. The application
to earthquakes in the greater Alpine region demonstrates the potential of such a repicking
approach. The final data set consists of more than 13 000 high-quality first-arrivals and it is
used to derive regional 1-D and preliminary 3-D P-wave models of the greater Alpine region.
The comparison with a tomographic model based on routine phase data extracted from the
ISC Bulletin illustrates effects on tomographic results due to consistency and reliability of our
high-quality data set.
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1 I N T RO D U C T I O N

Due to increasing computational power and major improvements in
forward and inverse algorithms over the past two decades, seismic
tomography is by now able to provide 3-D velocity images with
spatial resolution of up to a few kilometres at local to regional
scales. The development of sophisticated forward solution methods
(e.g. ray tracing) for complex 3-D media (e.g. Um & Thurber 1987;
Virieux et al. 1988; Podvin & Lecomte 1991) and their implementa-
tion in local earthquake tomography algorithms (e.g. Thurber 1983;
Haslinger & Kissling 2001; Husen & Kissling 2001) have led to a
significant increase in the computational accuracy of inversion tech-
niques. The enlarged memory capacity of modern computer systems
allows a fine grid for the model parametrization as described, for
example, in Kissling et al. (2001).

The minimum resolvable velocity perturbation in tomographic
models, however, depends directly on the model parametrization,
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the background velocity, and the timing accuracy of forward solvers
and data. To resolve a velocity perturbation of �v = 5 per cent in
the mid-crust (v P ≈ 6.0 km s−1) along a ray segment of �x =
15 km requires a timing error ε t not greater than 0.12 s. The same
perturbation amplitude along the same ray segment in the uppermost
mantle (v P ≈ 8.0 km s−1) requires an even higher timing accuracy
of ε t < 0.09 s.

Although modern forward solvers for complex 3-D structure are
able to achieve such precision, the limiting factor of most present day
tomographic studies is represented by the accuracy and consistency
of the available phase data (i.e. phase picks). In this context, a
‘phase pick’ is defined as the arrival time of a seismic phase as
determined from picking the onset of a wave at a particular station.
Furthermore, we define ‘routine pick’ as the arrival time estimated
by network analysts on a day-to-day basis for the purpose of locating
earthquakes in near real-time. Differences in the picking behaviour
of the various analysts of a network leads to inconsistencies in
routine phase picks in terms of absolute timing (e.g. Leonard 2000),
timing uncertainties and phase interpretations.

Additional inconsistencies across networks have to be considered
for tomographic studies at regional scales. A uniform resolution of
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Figure 1. Example of phase misidentification in routine phase data. (a)
Difference between (revised) reference hand picks and routine picks pro-
vided by SED (Switzerland), RENASS (France), and RSNI (Italy). Grey
dots indicate probable phase misidentifications in routine phase data. (b)
Locations of the same earthquake, as reported in different national and re-
gional bulletins. ‘Ref-Pick’ denotes location resulting from reference picks
and regional minimum 1-D model. (c) Waveform and corresponding routine
and reference picks for an obvious phase misidentification. The routine pick
is located at the secondary Pg phase.

the entire Alpine orogen requires data of more than 10 national and
regional permanent networks (e.g. Solarino et al. 1997; Lippitsch
et al. 2003). Merging such a heterogeneous data set presents several
difficulties, since no common error assessment for timing and phase
interpretation is available. Furthermore, identification of common
events can be difficult because of significantly different hypocenter
locations (Solarino et al. 1997). Fig. 1 denotes examples of in-
consistencies and obvious phase misidentifications in routine phase
data of several networks in the Alpine region, which may result in
errors up to several seconds. To benefit from recent improvements
in the quantity and quality of seismic stations (digital transmission,
high sampling rates, accurate timing with GPS-systems, increasing
number of broadband sensors, etc.), the existing inconsistencies in
seismic phase data must be significantly reduced.

Due to the steadily increasing amount of available digital wave-
form data, automatic picking algorithms are required to measure
phase arrival times with a high level of consistency for large data
sets. Several automatic approaches have been developed over the
past decades. Traditionally, characteristic functions from STA/LTA
ratios of energy, envelopes, frequency, and particle motion are used
to detect and pick the onset of a seismic phase (e.g. Allen 1978,
1982; Baer & Kradolfer 1987; Earle & Shearer 1994; Withers et al.
1998). More recently, autoregressive (AR) pickers based on the
Akaike information criterion (AIC, Akaike 1973) were developed as
described, for example, in Takanami & Kitagawa (1988) or Leonard
& Kennett (1999). Usually, implementations of AR–AIC pickers
have to be combined with phase detectors from STA/LTA ratios
(e.g. Sleeman & van Eck 1999; Leonard 2000) or other techniques
such as wavelet analysis (Zhang et al. 2003).

To enhance the consistency of phase picks of similar or repeating
events (e.g. swarms) waveform-correlation can be used as described,
for example, by Aster & Rowe (2000) and Rowe et al. (2002).
Primarily, waveform-correlation provides only relative arrival times.
Absolute arrival times can be obtained from applying an AR–AIC
picker to a stack of aligned waveforms of a specific cluster as shown
by Rowe et al. (2004). Such refined and adjusted phase picks provide
an excellent base for high-resolution relocation of seismic sources
(e.g. Rowe et al. 2004) and tomography studies (e.g. Satriano et al.

2008). Since correlations-pickers assume waveform similarity, their
application is mainly limited to repeating seismicity at local scales.

Although accuracy of automatic picks is comparable to manual
picks as demonstrated, for example, by Sleeman & van Eck (1999),
Leonard (2000) or Zhang et al. (2003), most of the existing algo-
rithms do not provide an assessment on the absolute uncertainty of
the automatic pick. Since consistent data quality weighting is cru-
cial for most traveltime inversions, the automatic error assessment
represents an essential component of the phase picking procedure.
Among the existing methods, the ‘MannekenPix’ (MPX) picking
software (Aldersons 2004) is one of only a few algorithms that
include an automatic quality weighting. Di Stefano et al. (2006) ap-
plied the MPX picking system successfully to the data of the Italian
national seismic network.

To achieve an appropriate aperture to resolve the deep crustal
structure of the Alps at a regional scale, a data set derived from
several seismic networks has to be compiled. Furthermore, the low
seismicity of this region requires data from a long recording pe-
riod. Consequently, this results in a rather heterogeneous data set
in terms of waveform characteristics and hypocentral information.
The lower seismicity also demands more of the automatic pick-
ing and classification procedure, since a simple discrimination of
very good from bad picks, as is typically done when automatic
picking is used, would not be sufficient to provide enough phase
picks.

In this work, we first present a consistent picking and error assess-
ment for local and regional P-phases and identify common problems
and inconsistencies in routine hand picking. Subsequently, we will
give a brief introduction to the general concept of MPX and present
calibration procedures suitable for local to regional scales. These
procedures are applied to the greater Alpine region and the result-
ing high-quality automatic phase picks are inverted for 3-D velocity
structure. The comparison with regional tomography models based
on routine phase data extracted from the ISC Bulletin demonstrates
the potential improvement of our re-picking approach.

2 RO U T I N E H A N D P H A S E P I C K I N G

Although traveltime based earth models and hypocentral solutions
strongly depend on the accuracy of phase data, the description of
consistent phase picking has received little attention in the literature.
Simon (1981), Kulhánek (1990) and Kulhánek (2002) provide a gen-
eral overview about seismogram interpretation from local to tele-
seismic scales. They focus mainly on basic descriptions of phases
observable in common seismograms. The assessment of timing un-
certainty and phase interpretation, however, is barely discussed.
The fundamentals of digital signal processing and their influence
on onset properties are described, for example, in Seidl & Stammler
(1984), Scherbaum (2001) and Scherbaum (2002). Among the few
recent guidelines, the ‘New Manual of Seismological Observatory
Practice’ (NMSOP) of Bormann et al. (2002) provides an introduc-
tion to basic picking principles for local, regional and teleseismic
seismograms. Although they propose to quantify the onset-time re-
liability, a detailed description for consistent quality assessment is
missing.

In the following section, we present a hand picking procedure,
which includes a consistent quality assessment for timing uncer-
tainty and phase interpretation. It is focused on crustal phases of
local to regional distances, but its principles apply likewise to tele-
seismic observations.
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2.1 Phase timing and the assessment of its uncertainty

The basic quantities associated with a picked phase are usually the
absolute arrival time and the corresponding observation uncertainty.
Common qualification of timing uncertainties differentiate signals
into ‘impulsive’ and ‘emergent’ phase onsets as, for example, used
by the International Seismological Center (ISC). Such qualitative
error assessment, however, no longer satisfy the resolution capabil-
ity of modern digital waveform data. In addition, it is difficult or
even impossible to give a general predictive definition of a seismic
onset time, which could be used for the actual measurement of first
arrival time from a sampled band-limited signal in the presence of
noise (Seidl & Stammler 1984).

Consequently, a physical consistent formulation can only be
achieved by a probabilistic point of view as suggested, for example,
in Bormann et al. (2002). Such an approach directly relates the mea-
sured arrival time with the corresponding observation uncertainty.
Considering the onset of a seismic phase as a probabilistic function
P a(t), the arrival time is expressed as the ‘most likely’ time t A, with
P a(t A) = Max (P a). On the other hand, the ‘earliest’ possible time
for the phase onset is defined as t E , where the likelihood for onset is
approaching zero. Thus P a(t E ) ≥ 0. Similarly, the ‘latest’ possible
time for the phase onset t L , is defined as P a(t L ) ≥ 0. Fig. 2 illus-
trates the proposed concept in further detail. Although the onset of
the phase (mainly characterized by a change in amplitude) is rather
impulsive and exhibits an almost ideal signal-to-noise (SN) ratio,
it is difficult to determine an arrival time consistent with picks of
waveforms from the same seismic source recorded at other stations.
The thick grey band between position ‘1’ and ‘2’ defines the time
window that definitely includes the onset of the wavelet, while po-
sition ‘1’ is certainly too early to be picked as t E and ‘2’ is too late
as t L . The band outlined by two broken lines denotes the possible
threshold of the noise amplitude (arbitrarily defined as 1.5 times
pre-signal amplitude).

In practice, we first determine the position of t L and t E . For a
consistent determination of t L and t E , we have to setup a common
procedure. Since the amplitude exceeds the threshold several times
at position ‘2’, the end of the grey band is certainly too late to
be picked as t L . Therefore, we define the intercept between sig-
nal amplitude and the a priori noise threshold as t L . Usually, the
consistent determination of t E is more difficult. In Fig. 2 we fit a
tangent (dashed line ‘a’) to the slope of the onset. If we shift the
tangent from t L towards earlier times, the slope decreases. The ear-

Figure 2. Probabilistic phase picking approach: the ‘earliest’ possible pick
corresponds to t E , the ‘latest’ possible pick corresponds to t L . The most
likely arrival time t A is located within this interval. Primarily amplitude is
used for the determination of t E and t L . See text for further details.

liest possible time t E corresponds to the first zero slope from t L

towards earlier time. Therefore, the start of the grey band (position
‘1’) is certainly too early, whereas t A would be too late to be picked
as t E . To ensure t E includes the zero slope time in the presence of
higher background noise, we could shift it earlier by approximately
half the dominant noise period. Subsequently, we pick the arrival of
the phase at the most likely position t A, within the error interval of
t E and t L (e.g. on the seismogram‘s leading edge). For the special
case of a delta-pulse, t E and t L would coincide with t A. In addi-
tion, a quantitative weighting scheme has to be defined where the
assigned discrete weighting classes depend only on measured time
error intervals (t L – t E ). This procedure allows the adjustment of
the weighting class definitions even after the picking process, whilst
remaining consistent.

2.2 Phase identification and the assessment of its
uncertainty

Although phase misinterpretation can result in significantly large
errors (as demonstrated in Fig. 1), phase identification is typically
not supplied with any observation error or uncertainty attribute
at all (unlike the arrival time of a phase). Particularly for local
earthquake studies in orogenic areas with significant lateral crustal
structure variations, phase identification can become ambiguous.
As an example, Fig. 3 presents a velocity reduced record section of
a local earthquake near Walenstadt, Switzerland, with a focal depth
of 13 km. Based on waveform characteristics alone, phase inter-
pretation appears rather difficult for some stations in the distance
range of phase triplication (e.g. SPAK and SIERE). In addition,
the amplitude ratio between Pg and Pn exhibits strong variations
between some stations (e.g. EMV and HEI) probably due to 3-D
Moho topography. In these cases, Pn is likely to be missed and Pg
will be picked as first-arrival phase.

Since most applications like hypocentral localization and trav-
eltime tomography are still based on first-arrivals only, we have
to setup an error assessment for phase identification to avoid such
gross inconsistencies. For use in routine first-arrival studies and
subsequent special studies, we define an error assessment for phase
identification as shown in Table 1. In addition, synthetic travel-
time curves for main crustal phases (as demonstrated in Fig. 3)
can be used to identify phases or cross-check phase interpretations.
Inconsistent picking of arrival times and phase identification can
also bias the determination of first motion polarities and therefore
directly affects the quality of fault plane solutions.

2.3 Sources of inconsistencies in routine picks

Besides insufficient error assessment of timing and phase identifi-
cation, the picking procedure itself can induce a significant amount
of inconsistency, which can result in errors up to several hundred
milliseconds. A prominent example is the random choice of window
size and amplitude scaling in phase picking (Douglas et al. 1997).
Another common problem is the inconsistent usage of filters and
misinterpretation of artefacts caused by digital filters. The appli-
cation of acausal anti-aliasing filters in modern recording systems
as described in Scherbaum (2001) can lead to oscillations prior to
impulsive onsets often interpreted as precursory phases.

Such inconsistencies can be reduced by using pre-defined win-
dow lengths for picking, uniform amplification of amplitudes, and
consistent application of filters. For reference picking of P-phases
we used a 1 Hz 2nd order high-pass (HP) filter for broad-band
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Figure 3. (a) Velocity reduced record section of a local earthquake near
Walenstadt, Switzerland. Amplitudes are normalized to maximum ampli-
tude of each trace. Synthetic traveltime curves for Pg, Pn and PmP are
indicated by solid and dashed lines. Discrimination of phase type purely
from waveform characteristics might be difficult for stations in triplication
range (e.g. SPAK and SIERE). Denote differences in amplitude ratio be-
tween Pg and Pn for station EMV and HEI. Deviations between expected
and observed Pn arrival are related to 3-D Moho topography. (b) Velocity re-
duced phase picks, crosschecked against synthetic traveltime curves derived
from a simplified crustal model.

Table 1. Glossary used for phase identification of P and S waves at local to
regional distances. The glossary implies a first order uncertainty assessment
for phase identification.

Phase Phase is . . . Phase used for routine
label 1st arrival studies

Pg, Sg Direct (crustal) Yes (if first arrival)
Pn, Sn Moho-refracted Yes (if first arrival)
PmP, SmS Moho-reflected No
P1, S1 Unknown type, but certainly Yes

first arrival
P2, S2 Unknown type, second arrival No
P3, S3 Unknown type, third arrival No
P, S Unknown type, uncertain if No

first arrival

data in order to simulate a short period transfer function. Short
period data is only HP filtered if obvious low frequency noise is
present. Low-pass (LP) filters are only applied if significant high-
frequency noise is observed. LP filters can also be used to somewhat
attenuate precursory oscillations caused by acausal anti-aliasing
filters.

3 AU T O M AT E D R E - P I C K I N G O F
P - P H A S E DATA : A P P L I C AT I O N T O T H E
G R E AT E R A L P I N E R E G I O N

3.1 Local earthquake data set of the Alpine region

Waveform and bulletin data from about 1500 events with M l ≥ 2.5
recorded between 1996 and 2007 were compiled from 13 national
and regional networks in the Alpine region. Waveforms provided by
the different networks were all converted to common GSE2-format
(Group of Scientific Experts, Geneva, 1990). Obvious timing and
polarity problems present in some data were checked for and—
where possible—corrected or the data were removed. To avoid
inconsistencies in terms of station codes and station coordinates,
information provided by the networks were compiled to a master
station list similar to the procedure described by Solarino et al.
(1997). The resulting data set comprises of more than 70 000 seis-
mograms recorded at about 400 stations shown as triangles and
circles in Fig. 4. This data set represents a unique compilation of
digital waveforms from local earthquakes within the Alpine region.
From this data set we select a reference data set consisting of a sub-
set of 39 events, representative of the different tectonic regions and
the range of magnitudes and focal depths. These reference events
(locations indicated by white stars in Fig. 4) were consistently and
accurately hand picked with the above described routine picking
procedure. Table 2 shows the weighting scheme used for reference
P-phase picking and the number of P-picks in each class. Epicentral
distances for reference picks vary between 1 km and about 700 km.

Figure 4. Networks and stations in greater Alpine region used in this study.
Triangles denote three component stations, circles denote one component
(vertical) instruments. Colours indicate the corresponding network affilia-
tion. Not all of the stations operated at the same time. Additional white stars
indicate location of reference events used for calibration of MPX.
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Table 2. Error assessment used for reference P-phase picking and number
of P-picks for each quality class derived from 39 reference events.

P-Quality class qP Error εqP (s) Weight (per cent) # Observations

0 ± 0.050 100 755
1 ± 0.100 50 905
2 ± 0.200 25 876
3 ± 0.400 12.5 481
4 > 0.400 0.0 (rejected) 769

We used this reference data set for MPX calibration and test of the
calibration scheme.

3.2 The MPX picking system

The concept of MPX is described in detail by Aldersons (2004)
and Di Stefano et al. (2006). Here, we summarize only the basic
principles of the algorithm. Although more recent versions of MPX
are not limited to repicking, the version we used was designed only
for repicking. As such, it requires an initial pick to guide the picking
engine to an approximate phase onset time. The initial pick can be
provided by an existing routine pick or a predicted time from a
theoretical traveltime curve. The latter assumes the existence of
an appropriate regional velocity model (preferably a minimum 1-D
model, e.g. Kissling et al. 1994) and an approximate hypocentral
location. If routine picks are used as initial picks, we have to ensure
that the number of gross misidentifications like the example in Fig. 1
is small.

The MPX picking algorithm represents an extended version of
the robust Baer–Kradolfer picker (Baer & Kradolfer 1987). The
threshold for the picker is derived in an adaptive way by comparing
apparent noise and signal characteristics. A noise window and a
signal window are centred around the initial pick and are separated
by safety gaps g N and g S as demonstrated in Fig. 5. The length of the
safety gaps mainly depends on the expected maximum difference
between initial pick and actual phase onset. Large safety gaps allow
picking even from imprecise initial picks. However, mispicks and
misinterpretation of later phases as first-arrivals become more likely.

A pattern recognition scheme weights different waveform at-
tributes (predictors) obtained in the time window around the auto-
matic pick and classifies the pick in discrete quality classes. The cor-
responding weighting factors are called ‘Fisher coefficients’ (Fisher
1936, 1938), which have to be calibrated with a set of reference hand
picks (reference data). A multiple discriminant analysis (MDA) is
used to derive appropriate Fisher coefficients from the reference
picks.

Figure 5. MPX search window configuration: The noise window NW and
the signal+noise window SNW are centered around the initial pick (here
predicted t pred) and are separated by safety gaps g N and g S .

Figure 6. Example for misinterpretation of an impulsive later phase as first
arriving P-phase by the automatic picker. Although automatic classification
W MPX corresponds to the reference weight W Ref , the error εPick between
automatic and reference pick is several times larger than the error εMPX

associated with quality class W MPX.

3.3 Calibration of the automatic weighting procedure

The data set of 39 reference events was used to derive appropriate
Fisher coefficients for automatic quality classification. The MDA
compares the predictor values around the automatic pick with the
associated reference quality class. The Fisher coefficients represent
the optimum weighting of each predictor to estimate the correspond-
ing quality class membership. This relationship between predictors
and reference quality class is based on the assumption that auto-
matic and reference picks are located at the same phase. However,
the autopicker often misses the first-arrival and picks a later more
impulsive phase as shown in the example of Fig. 6. To account indi-
rectly for phase misinterpretation, we associate the predictors with a
‘target’ class instead of the reference class in the MDA. The ‘target’
class coincides with the reference class if the error εPick between
automatic and reference pick is within the error interval of the ref-
erence class. If it is larger, the ‘target’ class corresponds to the next
lower class, where the error interval includes εPick analogous to the
procedure described by Di Stefano et al. (2006). However, this will
result in a larger number of actual high-quality picks downgraded
to lower classes by MPX.

In addition, the choice of reference picks used for the MDA
can have a significant influence on the Fisher coefficients and the
stability of the resulting automatic classification. Subsets dominated
by higher quality picks result in a conservative but robust error
assessment in our tests. Fisher coefficients derived from a subset of
reference events with M l ≥ 4.0 are given in Table A1 of Appendix A.
This magnitude threshold leads to an average quality that is biased
towards higher SN ratios, since first arriving Pn and Pg phases at
distances ≥100 km have SN ratios comparable to first arriving Pg
phases at distances <100 km.

Fig. 7 illustrates the performance of the corresponding weight-
ing scheme in terms of accuracy and classification when applied to
all reference events. N i j denotes the number of picks of reference
class i classified by the pattern recognition scheme as automatic
class j. The σ i j represent the standard deviation for differences be-
tween reference picks of class i and corresponding automatic picks
of class j. A satisfactory automatic picking and quality assess-
ment is achieved if the deviation between automatic and reference
picks is within the error interval of automatic quality classification
(σ i j ≤ ε j ) and if only few low quality reference picks are mod-
erately upgraded to higher quality classes by MPX. However, up-
grades from worst to top quality classes lead to a serious distortion
of the data error estimate for seismic tomography and may generate
artefacts in tomographic images. Both requirements are satisfied
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Figure 7. Performance of MPX for a weighting scheme derived from refer-
ence events with M l ≥ 4.0. The N i j denote the number of picks of reference
class i classified by MPX as automatic class j. The σ i j represent the standard
deviation for differences between reference picks of class i and correspond-
ing automatic picks of class j. White bars indicate correct classification,
gray bars indicates downgrading, and black bars identify upgrading of picks
by MPX. The automatic weighting classifies more than 55 per cent of the
class ‘0’ picks correctly. For classes ≥1 MPX downgrades a large number
of picks to lower or lowest classes.

for automatic class j = 0 and 1 for the weighting scheme in Fig. 7.
All σ i j are less than or close to ε j and none of the reference class
‘4’ picks (rejected class) are upgraded to high-quality class ‘0’ or
‘1’. For this weighting scheme, automatic picks of class ‘0’ and ‘1’
satisfy the requirements for use in tomographic inversion.

The weighting scheme derived from using ‘target’ classes and
reference picks of stronger events results in a robust but rather
conservative classification. This procedure is necessary to mini-
mize the number of misidentifications present especially at larger
regional distances where weak emergent Pn phases are followed by
impulsive Pg or PmP phases. In addition, the generally lower SN
ratio increases the likelihood of mispicks at these distances.

For short distances dominated by first arriving Pg phases we
expect less complex waveforms and larger SN ratios. Fisher’s coef-
ficients given in Table A2 of Appendix A are derived from reference
picks at epicentral distances � < 100 km (dominated by first ar-
riving Pg phases). The corresponding classification performance of
MPX for distances < 100 km is shown in Fig. 8. The performance
of the automatic classification is much higher for this distance range
as indicated by the larger number of correctly predicted qualities
(white bars). The σ i j are less-equal or close to ε j for all usable
automatic classes (0–2) and none of the rejected picks of class ‘4’
are upgraded to high-quality classes. Although most of the actual
class ‘3’ reference observations are rejected by MPX, we recover

Figure 8. Performance of MPX for epicentral distances < 100 km (predom-
inantly Pg phases) similar to Fig. 7. The used weighting scheme is derived
from reference picks with � < 100 km.

downgraded picks of class ‘0’, ‘1’ and ‘2’ in the automatic class
‘3’. Since none of the quality class ‘4’ picks are upgraded and all
σ i3 ≤ ε3, automatic picks of class ‘0’–‘3’ can be used in this dis-
tance range. The higher recovery rate within this distance range can
provide essential picks to reduce azimuthal gaps or to increase the
number of observations per event and may allow the retention of
otherwise rejected events.

Since a priori information about hypocenters exists, we calculate
an approximate epicentral distance for each waveform. To achieve
the maximum performance of MPX in the so-called ‘production
stage’ (application of calibrated MPX to the complete data set) we
split the data set into two parts: Fisher coefficients of Table A2 are
used for � < 100 km, whilst the robust coefficients of Table A1
are used for waveforms with � ≥ 100 km. With such a distance-
dependant calibration scheme we achieve a first order discrimination
between Pg and Pn phases. Accordingly, automatic picks of class 0-
3 from the first part can be used for tomographic inversion, whereas,
from the second part only class 0–1 have sufficient quality.

Fig. 9 summarizes the performance of MPX for three different
calibration schemes using the matrix representation introduced by
Di Stefano et al. (2006). Automatic picks are compared to reference
picks similar to Figs 7 and 8. The number of reference picks of qual-
ity class i classified by the pattern recognition scheme as automatic
class j is represented by N i j . The total number of automatic picks
classified as class j is described by N j and the standard deviation for
differences between automatic picks of class j and corresponding
reference picks is indicated by σ j . By using all reference picks for
the MDA similar to the procedure suggested by Di Stefano et al.
(2006), only automatic picks of class 0 satisfy the requirements
for application in tomography (Fig. 9a). Automatic picks of class
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Figure 9. Performance of MPX for three different calibration schemes using a matrix representation. (a) Similar to Di Stefano et al. (2006), all reference picks
are used for the MDA. For our data set, only automatic picks of class 0 satisfy the requirements for use in tomography (see text). (b) Only waveforms of events
with M l ≥ 4.0 are used for the MDA. Automatic picks of class 0 and 1 can be used for tomography. (c) Distance-depending calibration as used in this work.
Automatic picks of class 0–2 and, in this case, also class 3 (see text) can be used for tomography.

1 exhibit a standard deviation σ 1 significantly greater than |ε1| =
0.1 s and in addition, they contain three picks upgraded from the
lowest quality class 4.

In Fig. 9(b) only waveforms of events with M l ≥ 4.0 are used
for the MDA. Automatic classes 0 and 1 can be used for tomogra-
phy, which leads to a significantly increased number of picks. An
even higher number of usable picks is obtained with the distance-
dependant calibration scheme shown in Fig. 9(c).

3.4 Predicted arrivals for production mode

Since we do not have reliable routine picks for most of the waveform
data, we can only rely on predicted arrival times as initial picks. This
represents the standard case for most regional data sets. In a first
run, we used the minimum 1-D model of Solarino et al. (1997) and
catalog locations to calculate predict P-arrivals. Fig. 10(a) shows the
differences between calculated predicted arrivals and corresponding
reference picks (t P pred − t P Ref ) for reference picks identified as
first-arrivals (Pg, Pn, P1) and usable quality class. The differences
show a broad scatter and the mean indicates a systematic bias of
predicted arrival times. Since the model of Solarino et al. (1997)
denotes a minimum for a similar area but a largely different data
set of local earthquakes, the model predicts systematically biased
arrival times indicated by the negative mean. The broad scatter in
predicted arrivals requires the use of wide safety gaps, to ensure that
the actual phase can be reached by the signal window SNW . Safety
gaps of, for example, ±4.0 s result in a large number of mispicks,
especially in the range of the crossover distance between Pn and Pg.
To overcome this problem, the accuracy of predicted arrival times
had to be improved.

In our approach, we first inverted the reference data set to derive
a coarse regional minimum 1-D model as described by Kissling
(1988). The model of Solarino et al. (1997) was used as initial
model for the inversion. To improve and stabilize the station cor-
rections of the minimum 1-D model, we extended the reference
data set by using unweighted automatic picks. The low quality au-
tomatic picks were derived from the pure Baer–Kradolfer picker
applied without any quality weighting to the complete data set
of 1533 events. Hypocentres were relocated in the coarse mini-
mum 1-D model and obvious mispicks were identified by residuals
|δt | > 2.0 s. High quality events (azimuthal gap < 100◦, minimum

number of observations = 20, rms ≤ 0.8 s) from this data set were
combined with the reference data. In this combined data set, we
kept the original weights for the reference picks and weighted all
automatic picks by only 25 per cent to account for the lower quality.
The combined phase data were used to derive the updated regional
minimum 1-D model s07b and the corresponding station correc-
tions by simultaneous inversion. The unweighted automatic picks
were used to relocate all events within s07b (station corrections
applied). Again, we removed all picks associated with residuals
|δt | > 2.0 s and rejected low quality events with azimuthal gap
>180◦, minimum number of observations <6, and rms >1.0 s. The
remaining 930 events were selected for re-picking with the cali-
brated MPX in production stage. Fig. 10(b) shows the differences
between predicted arrivals from model s07b (applied station cor-
rections and relocated hypocenters based on unweighted automatic
picks) and reference picks. The standard deviation is reduced by a
factor of two and the significantly higher accuracy of the minimum
1-D model allows the use of narrower safety gaps.

3.5 Results of MPX production mode

As previously mentioned, we split the data set into two distance
ranges and apply different sets of corresponding Fisher coefficients
to each subset. Waveforms associated with distances � ≤ 20 km are
LP filtered (15 Hz, 2nd order) to remove possible high-frequency
precursors generated by acausal anti-alias filters. For 20 < � <

100 km we apply a HP filtered (1 Hz, 2nd order) to remove possible
low-frequency noise. The same configuration of filters was used for
the calibration of the weighting scheme shown in Fig. 8.

Non-seismic signals like spikes and step-functions (caused,
e.g. by problems in transmission) are commonly present in large
heterogeneous data sets. The identification of such signals is cru-
cial for reliable automatic picking, since they are often misinter-
preted as high-quality arrivals by the picking algorithms. To avoid
mispicks due to quality problems present in the data set, we per-
form an automatic quality check around the predicted arrival time
in a pre-picking stage and reject obvious low-quality seismograms.
A de-spiking routine was used to to detect and remove possible
spikes. Steps in the seismograms caused by data gaps filled with
zeros are identified by an running average detector applied around
the predicted arrival time.
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Figure 10. Difference between predicted and corresponding reference hand
picks (t P pred − t P Ref ). (a) Predicted arrival times calculated from the
minimum 1-D model of Solarino et al. (1997) (obtained from a different
data set) and catalog locations. (b) Predicted arrival times calculated with a
true minimum 1-D model (specifically calculated for our data set) and usage
of corresponding station corrections. Localizations used to derive predicted
arrival times are based on unweighted automatic picks and are relocated in
the same minimum 1-D model. Usage of a minimum 1-D model with station
corrections and relocated hypocenters significantly improves the accuracy
of predicted arrival times.

The final result of the production mode is summarized in Table 3.
The upper part shows the number of automatic picks for each class
after merging picks from all 930 events at both distance ranges.
These picks were used to relocate all events in the minimum 1-D
model s07b. After rejecting low-quality events with an azimuthal
gap > 180◦ or less than 8 observations, 551 events were left. The
middle part of Table 3 summarizes the number of automatic picks
corresponding to the 551 events. The lower part of Table 3 shows
the results if only one set of robust Fisher coefficients (1F) for the
entire distance range is used. In this production mode we used the
Fisher coefficients listed in Table A2. By splitting the data set into
two distance ranges, we gain about 200 events and 4000 additional
phases.

Table 3. Results of MPX production mode. Upper part:
Number of automatic picks derived from all 930 events
used for production mode with two distance-dependent
sets of Fisher coefficients (2F). Middle part: Correspond-
ing automatic picks left after removal of low-quality
events (gap > 180◦ and N obs < 8). Lower part: Au-
tomatic picks of locatable events using only one set of
robust Fisher coefficients for the entire distance range
(1F).

2F All events (930)
Class # Autopicks

0 5793
1 5242
2 1191
3 1131
� 13 357

2F Locat. events (551)
0 5046
1 4340
2 906
3 862
� 11 154

1F Locat. events (356)
0 4746
1 2513
2 –
3 –
� 7259

Table 4. Final high-quality P-phase data set for the
Alpine region consisting of MPX automatic picks and
reference hand picks of 552 events.

Quality class qP Error εqP (s) # MPX+REF Picks

0 ±0.050 5387
1 ±0.100 4875
2 ±0.200 1822
3 ±0.400 1225

� 13 309

Finally, we merged the automatic picks with the extended refer-
ence data set (hand picks of 49 events). If an automatic and reference
pick is available for the same observation, we replace the automatic
by the reference pick, since its weighting is expected to be less
conservative. The combined data set is then relocated in minimum
1-D model s07b one more time. To identify gross mispicks, travel-
time residuals of |δ t | > 0.8 s (twice the error of lowest usable class)
were visually cross-checked against waveforms in a semi-automatic
procedure. From 1373 cross-checked picks, 103 are identified as
mispicks. After removing identified mispicks from the data set and
a last check of event quality (gap <180◦, N obs ≥ 8) 552 events
remain. Table 4 summarizes the final high-quality P-phase data set
for the Alpine region. The average picking error can be estimated
from the number of picks for each class and the error interval of
each class. For our final data set we obtain an average picking error
of ε t ≈ 0.12 s with maximum errors not exceeding 0.8 s. The cor-
responding ray-coverage for the final data set is shown in Fig. 11.
Reference events used for calibration of MPX are indicated by white
stars and gray stars denote additional reference events.
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Figure 11. Ray-coverage of the combined high-quality P-data set consist-
ing of 552 local earthquakes. Triangles denote stations, circles represent
hypocenters, white stars indicate locations of reference events used for cali-
bration of MPX (similar to Fig. 4), and gray stars denote additional reference
events. Hypocenters correspond to locations in minimum 1-D model s12c.

4 L O C A L S O U RC E T O M O G R A P H Y W I T H
H I G H LY C O N S I S T E N T DATA S E T

The combined arrival times of the 552 well located events are used
for local earthquake tomography. According to the procedure rec-
ommended by Kissling et al. (1994) we determine a regional min-
imum 1-D model, which will be used as initial model for the 3-D
inversion.

Figure 12. Different (minimum) 1-D Models for Alpine region. Dotted line
indicates the regional model of Solarino et al. (1997) derived from merged
phase data. Higher velocities within the upper and mid-crust reflect the
influence of the Ivrea body in the western Alps. Model s07b (dashed line)
is based on unweighted automatic picks mixed with reference hand picks.
Model s12c is derived from MPX quality-weighted automatic picks mixed
with reference hand picks.

4.1 Consistent minimum 1-D model for the alpine region

The regional minimum 1-D model is derived in an iterative in-
version procedure as described by Kissling (1988). The initial
model for the inversion is the preliminary model s07b, which is
based on unweighted automatic picks and reference hand picks.
The model is indicated by the dashed line in Fig. 12. The final
high-quality regional minimum 1-D model s12c, based on quality-
weighted automatic and reference picks, agrees quite well with
s07b for the upper and mid crust. In the depth range of the lower
crust to upper mantle (35–50 km) s12c indicates higher veloc-
ities. The lower velocities of s07b might result from the large
number of delayed picks present in low-quality automatic picks.
In such a procedure, weak Pn phases are often missed and later
phases are therefore misinterpreted as first-arrivals, leading to lower
velocities.

Fig. 13 presents the station corrections of the minimum 1-
D model s12c. Station corrections express deviations from the
1-D model due to 3-D structure with respect to a reference sta-
tion (e.g. Kissling 1988). The correction of the reference station is
defined as zero. Negative corrections (circles) indicate higher veloc-
ities compared to reference station and positive corrections (crosses)
indicate lower velocities. Corrections in a large regional model usu-
ally represent a mixture of site effects close to the surface (e.g. sed-
iments) and Moho topography (especially for stations located at
the edge of the network). Therefore, the detailed interpretation can
become ambiguous whereas the general pattern of corrections is
an indication of consistency of the phase data. The corrections of
model s12c denote a very consistent and sensible distribution for the
entire region. Station BNALP in the central swiss Alps was chosen
as reference station. As expected, stations at the edge of the net-
work dominated by mantle phases from a limited range of backaz-
imuths denote negative corrections. This effect can add up to several
seconds in places like southern Germany, where the Moho is much
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Figure 13. Station corrections of minimum 1-D model s12c for stations
with at least five observations. Reference station BNALP is represented by a
gray star. Negative corrections (circles) indicate higher velocities compared
to reference station. Positive corrections (crosses) indicate lower velocities.
Symbol size corresponds to correction amplitude.
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shallower than the average value of 35 km indicated in model s12c.
In addition, negative delays are observed throughout the western
Alps, in the area of the Ivrea body, parts of the south-eastern Alps,
and for massifs like the Black Forest. Positive delays associated
with reduced velocities are mainly observed in the Provence area,
within the Apennine Mountains, and throughout the Po plain. Sta-
tion corrections in Switzerland and surrounding areas agree very
well with the results obtained by Husen et al. (2003).

4.2 Preliminary 3-D results and comparison with ISC
routine phase data

We inverted the high-quality data set of 552 events for 3-D structure
using the SIMULPS14 code (e.g. Thurber 1983; Eberhart-Phillips
& Michael 1993; Haslinger & Kissling 2001). Initial hypocenters
and P-wave velocities were taken from s12c. The horizontal spacing
of inversion nodes is 25 × 25 km and the vertical distance between
node planes is 15 km. In-between these nodes, velocities are in-
terpolated by the inversion code. The rather coarse parametrization
turned out to be the finest possible parametrization without showing
strongly heterogeneous ray coverage and results in a uniform resolu-

Figure 14. Comparison of tomographic images based on high-quality re-picked phase data (left-hand column, total of 13 300 P-phases with an average
estimated timing error of 0.12 s) and standard ISC phase data (right-hand column, total of 95 000 P-phases with an average estimated timing error of at least
0.3 s) at 0 and 30 km depth. The v P velocity structure is shown as percentage change relative to the 1-D initial reference model (same for repicked and ISC).
Bold black contours outline resolution diagonal element (RDE) of 0.15 and green-black dashed lines outline major tectonic units as indicated. Triangles denote
location of stations and crosses denote inversion grid nodes. Note how the tomographic image of 30 km depth obtained from repicked phase data is much more
reliable in the well-resolved region—showing much fewer single cell anomalies of checkerboard type—while for very shallow depth, the performance of the
two data sets is virtually the same with the larger ISC data set resolving a significantly larger region.

tion for major parts of the Alpine lithosphere. The left-hand column
of Fig. 14 shows horizontal cross sections through the preliminary
3-D model at two different depths.

The Bulletin of the ISC represents the largest compilation of
routine phase picks reported by seismological agencies around the
globe and therefore allows the direct comparison between routine
data and repicked data at regional scales. All events extracted from
the ISC Bulletin (about 10 000 between 1996 and 2007) were relo-
cated in the minimum 1-D model s12c prior to the 3-D inversion.
As demonstrated, for example, by Grand (1990), Spakman et al.
(1993) or Röhm et al. (2000), ISC phase data contain a consider-
able amount of random and systematic errors up to the order of
minutes. Therefore, P-phases indicating traveltime residuals |δ| >

5.0 s are considered as outliers and were removed from the data
set. Subsequently, all remaining phases were used to relocate the
events again. Finally we selected well-locatable events with at least
10 P-phase observations and an azimuthal gap <150◦. The remain-
ing data set consists of about 95 000 P-phases from 3400 events in
the Alpine region. Hence, the ISC data set includes about six times
more events and about seven times more phases than our repicked
data set. Based on the study of Röhm et al. (2000) we estimate the
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minimum average timing error of the filtered data set to be in the
order of 0.3 s.

We used the same initial model and the same inversion parameters
(damping value 100, five iterations, RKP-ray tracing) for the 3-D
inversion of the ISC data set as we used for the re-picked data.
The right-hand column of Fig. 14 shows the corresponding cross-
sections through the ISC based 3-D model. The bold black contours
in Fig. 14 outline the resolution diagonal element (RDE) of 0.15,
which is used as a first order assessment of the solution quality in
both models.

The uppermost part of the model seems to be rather well resolved
by ISC data set (Fig. 14, 0 km depth) due to the higher data coverage
compared to the repicked data set (indicated by enlarged area of
RDE = 0.15 in the ISC data). Tectonic units like massifs (Black–
Forest, Vosges mountains), sedimentary deposits (southern Rhine
Graben, Po plain, partly Molasse basin), and the Alpine orogen
are clearly resolved by the ISC data. The higher noise level of
the ISC data becomes obvious in 30 km depth (Fig. 14), where
the crustal root of the Alps and the northern Apennines are much
more clearly imaged by the repicked data set. The tomographic
image derived from the ISC data shows only few coherent structures
and, in addition, it denotes a multitude of checkerboard type single
cell anomalies where a smooth P-wave structure is expected. The
reduced resolution of the ISC data in the deeper part of the model
might result from the increased number of inconsistently picked or
misidentified regional Pn phases.

Considering the higher noise level of the ISC data, stronger damp-
ing might be in order and this would likely reduce the amplitude
of single cell anomalies that lead to the checkerboard appearance.
This, however, would obviously also reduce the amplitude of the
fair and well resolved anomalies making any interpretation of deep
structure such as the Alpine crustal root even more difficult. In
conclusion, ISC data is of significantly lower quality than our com-
piled and selected local earthquake data set and higher quality data
leads to better resolution. Neither of these conclusions comes as a
surprise.

4.3 Consistency of repicked data set

The consistency of the preliminary 3-D model is demonstrated in
Fig. 15. The v P = 7.25 km s−1 iso-surface (grey colour code) of the
3-D model is compared with the Moho topography from Controlled
Source Seismology (CSS) modeling of Waldhauser et al. (1998).
Topography of the CSS model is indicated as coloured contour lines,
representing European-, Adriatic- and Ligurian–Moho. The dashed
line in Fig. 15 outlines the well-resolved parts of the 3-D model.
Poorly resolved or unresolved areas are masked. The tomographic
model agrees very well with the CSS model for the major parts of
the region. We observe steep gradients in the western Alps and a
wider trough in the eastern Alps. Crustal roots below the Alps and
the Apennines are pronounced features. Furthermore, we compared
the tomographic model with the recent receiver functions study
of Lombardi et al. (2008). The colour of the triangles in Fig. 15
represent Moho depth derived from a grid-search technique. Results
of both methods show a high degree of agreement.

5 D I S C U S S I O N A N D C O N C LU S I O N

Compilation of high-quality phase data for regional tomography
typically requires the repicking of seismograms, since routine picks
contain a large number of mispicks. In addition, error assessment of

Figure 15. Moho topography derived from iso-surface of v P = 7.25 km s−1

in our preliminary 3-D model. Contour lines indicate Alpine Moho derived
from CSS after Waldhauser et al. (1998). Colour code of triangles denote
Moho depth from receiver function study of Lombardi et al. (2008). The
dashed line outlines the well-resolved parts of the 3-D model.

merged routine data is usually inconsistent. A uniform assessment of
phase identification and timing uncertainty, however, is essential for
traveltime inversion. The routine hand picking procedure presented
in this work leads to highly consistent phase picks and allows a
flexible quality weighting. Since the error intervals of the onsets
(defined by t E and t L ) are explicitly picked, the weighting scheme
can be adjusted posterior to the picking, if necessary.

Considering the amount of waveform data necessary for regional
studies, hand picking does not represent a feasible alternative to au-
tomated repicking approaches. The MPX picking system provides
quality-weighted automatic picks with an accuracy and consistency
comparable to manually picked data. Automatic quality classifica-
tion achieved by the MDA leads to excellent assessment for picks
at local distances (Pg phases exclusively) but only a satisfactory as-
sessment for mixed picks at local to regional distances. By splitting
the data set into two distance ranges and by using a regional min-
imum 1-D model, we achieve a first order discrimination between
Pg and Pn phases. Therefore, different settings for MPX (Fisher
coefficients and waveform filters) have to be used for the two sub-
sets. For reliably picking Pn phases, a more conservative weighting
scheme avoids misidentification of later arrivals, though the con-
servative weighting results in a smaller recovery rate of medium
quality picks. The separate treatment of Pg and Pn phases during
automated picking and subsequent merging of picked phases leads
to a significantly increased number of automatic picks of high over-
all assessment quality. The good agreement between the reference
and these automatic picks indicates that the phase association is
correct for the majority of picks.

To further improve the performance of MPX, an automatic as-
sessment of the various phase onsets will have to be included in the
picking algorithm, since the MDA cannot account for it directly.
As any other such algorithms, MPX picks the earliest well-defined
signal as the first arriving phase. However, beyond the crossover dis-
tance the first arriving Pn is often less well-defined than secondary
arriving phases such as Pg or PmP. To correctly identify the picked
phase multiple picking approaches, as suggested by Bai & Kennett
(2000), have to be considered. They propose the use of attributes
provided by short- to long-term average ratios, autoregressive
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modeling and polarization analysis to pick and identify series of
P- and S-phases.

The iterative use of an automatic picker and minimum 1-D mod-
els are necessary to obtain consistent sets of regional phase data,
since the accuracy of the automatic picks strongly depends on the
reliability of predicted arrival times. Particularly for locations in-
between networks, catalogue locations provided by agencies can
differ significantly from the true location. In addition, 3-D struc-
ture as expected in an orogen region requires the use of station
corrections.

The combined data set of reference picks and quality-weighted
automatic picks suggests an average picking error of about 0.12 s.
In combination with a 3-D model parametrization of 25 × 25 ×
15 km, the average accuracy allows the resolution of at least 5 per
cent P-wave perturbations in the mid crust. The 1-D inversion of
the combined data leads to a robust regional minimum 1-D model
with rather consistent station corrections, reflecting subsurface ge-
ology and Moho topography of the Alpine region. Results of the
preliminary 3-D inversion indicate satisfactory lateral resolution for
about 80 per cent of the Alpine arc. The resolution in depth encom-
passes the entire crust and the uppermost mantle up to depths of 50–
60 km for the most parts of the Alps. The Moho topography derived
from the iso-surface of v P = 7.25 km s−1 in the preliminary 3-D
model agrees very well with models from CSS and recent receiver
function studies.

The comparison between repicked phase data and routine picks
extracted from the ISC Bulletin clearly demonstrates the impact
of a high-quality data set on the resolution and reliability of the
tomographic image. The resolution of lower crustal structures with
local earthquake tomography requires a consistently picked data
set. Inconsistencies in picking and the lack of a common quality
assessment cannot be compensated by an increased quantity of
phase data.
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A P P E N D I X A : S E T S O F F I S H E R
C O E F F I C I E N T S F O R G R E AT E R
A L P I N E R E G I O N

Table A1. Set of Fishers linear discriminant coefficients for nine predictors
and one constant derived from a subset of reference events with M l ≥ 4.0.
For a detailed description of predictors see Di Stefano et al. (2006).

Automatically assigned quality classes

Predictors Class 0 Class 1 Class 2 Class 3 Class 4

Constant −17.512 −15.671 −15.063 −15.613 −17.041
WfStoN 0.297 0.311 0.302 0.302 0.290
GdStoN −0.555 −0.360 −0.367 −0.407 −0.407

GdAmpR 0.676 0.429 0.438 0.480 0.473
GdSigFR 0.251 0.233 0.199 0.164 0.152

GdDelF −0.002 −0.003 0.015 0.026 0.031
ThrCFRat −0.084 −0.200 −0.212 −0.144 −0.079
PcAboThr −2.326 −2.416 −2.454 −2.338 −0.493
PcBelThr 0.040 0.051 0.061 0.074 0.100

CFNoiDev 6.141 6.937 7.519 8.128 8.288

Table A2. Set of Fishers linear discriminant coefficients for 9 predictors and
one constant derived from a subset of reference picks at epicentral distances
� < 100 km (predominantly Pg phases). For a detailed description of
predictors see Di Stefano et al. (2006).

Automatically assigned quality classes

Predictors Class 0 Class 1 Class 2 Class 3 Class 4

Constant −12.940 −11.605 −11.926 −13.219 −26.743
WfStoN 0.205 0.201 0.210 0.254 0.242
GdStoN −0.357 −0.246 −0.198 −0.395 −0.644

GdAmpR 0.272 0.117 0.086 0.280 0.547
GdSigFR 0.260 0.276 0.215 0.218 0.182

GdDelF −0.053 −0.033 −0.010 −0.023 −0.023
ThrCFRat 0.128 −0.015 0.026 −0.028 −0.003
PcAboThr −1.582 −1.748 −1.253 −0.838 6.376
PcBelThr 0.044 0.069 0.143 0.096 0.159

CFNoiDev 3.591 4.445 4.544 4.787 5.387
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