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Synopsis
In this article, we study the functional H(u) = I1ln[\\duldt(x, t)|2-F(Vxu)] dxdt where ftcz|Rn is a
bounded open set and u: ft x (0, T) —* Rm and when F: Rnm —»IR fails to be quasiconvex. We show that
with respect̂  to strong convergence of du/St and weak convergence of Vxu, the above functional
behaves as H(u) = $ $n[^\du/dt\2 - QF(V xu)] dx dt where QF is the lower quasiconvex envelope of F.

Introduction

Consider the functional

H(u) =u)=[ f \l
Jo Jn LZ dt x '

where
(i) £lcRn is a bounded open set and T>0 ,

(ii) u(x, t): Un x IR -»• Rm and thus

-F(Vxu(x, t))l dxdt (0.1)
J

Vu = (Vxu; —) € Rnm x |Rm,
\ dt /

(iii) F: |R"m —*• [R is continuous and satisfies

.c + d\A\p (0.2)

for some a,ceU, d^b>0, p > 1 and for every AeUnm.
We can associate with (0.1) the functional

JE(u)=f F(Vxu(x))dx (0.3)

where u(x,t) = u(x).
Before describing the results of this article, one should remark that the

functional H is rarely studied from the point of view of the calculus of variations,
since H has undesirable properties such as unboundedness from below. However,
we will see that this is not a major obstacle to obtaining a relaxation theorem.

The usual hypothesis imposed on F in (0.1) or in (0.3) is the so called
quasiconvexity condition, i.e.

f F(A+V(p(x))dxSF(A)measD (0.4)
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40 B. Dacorogna

for every bounded domain DcR", A<=Unm and cp e Wo'°°(D; IRm) (i.e. <p is locally
Lipschitz and ip=0on d£l).

Note that in the case m = 1 (or n = 1), the notion of quasiconvexity reduces to
the ordinary convexity condition. Furthermore, (0.4) implies the well known
Legendre-Hadamard condition, i.e.

for every A eUn, fj. elRm and A eRnm.
If one assumes F to be quasiconvex and thus (0.5), then the Euler equations

associated with (0.1) (respectively (0.3)) are hyperbolic (respectively elliptic). In
the case m = 1, the Euler equations reduce to a single equation, i.e.

§-div/(gradxu) = 0, (0.1')
at

div/(gradxu) = 0, if u(x, t) = u(x), (0.3')

where / = grad F (provided F is C1). Thus, in this case, the quasiconvexity of F is
equivalent to the monotonicity of /.

The purpose of this article is to study (0.1) when F fails to be quasiconvex,
therefore the Euler equations are of mixed type (hyperbolic-elliptic). We will
show that if QF denotes the lower quasiconvex envelope of F, i.e.

QF = sup { $ S F : $ quasiconvex}
and

H(u) = JT j H (^ (x, t)|2 - QFWMx, 0)] dx dt, (0.6)

then the following theorem holds.

THEOREM. For every u<=W = {u(x,t):VxueLp
nm(Clx(0,T)), 3u/3teL^(nx(0,

T))}, there exists a sequence uv e W so that

uv(x, t)=u(x, t), (x, t)e3flx(0, T),

uv(x, 0) = u(x, 0), xeft,

^"(x ,0) = ̂ (x ,0 ) , xeil,
dt dt ( 0 7 )

V x u"-V x u in LUflx(0,T)) ,

^ - > ^ in U(nx(0,T)),

Furthermore, in the case m = 1, if F is C1 and if we let f = grad F and / = grad QF,
(hen

—2— div /(gradx u
v) —» —j - div /(gradx u) in the sense of distributions (0.8)

3t dt
(where —>• denotes weak convergence in Lp).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500013627
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:52:14, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500013627
https:/www.cambridge.org/core


Relaxation for some dynamical problems 41

The proof of the theorem is based on that of [1] valid for the functional E and
on a representation theorem (Theorem 5) for the quasiconvex envelope QF.

By rephrasing the theorem, one can say that with respect to weak convergence,
the functionals H and H are "equivalent"; note however that the Euler equations
associated with H are hyperbolic in contrast to those associated with H. Besides,
in the case m = 1, one can consider the weak solutions of the equation associated
with H if they exist (which is obviously an open problem), as generalized solutions
of (0,1') in the sense of (0.7) and (0.8).

The article is divided into three sections. The first recalls basic facts about
quasiconvex functions and relaxation theorems. The second section gives the
proof of the above theorem. In the last section, we see how to apply the above
result to nonlinear conservation laws of mixed type

| u t - t ; x = 0 ,
\vt-o-(u)x=0,

where a is not necessarily an increasing function of its argument.

1. Quasiconvex envelopes and the relaxation theorem

We recall first some elementary properties of quasiconvex functions (the notion
of quasiconvexity was introduced by Morrey [5], [6]). For more details about the
history and the proofs of the next theorems, see [2].

THEOREM 1. Let F: Unm —»[R be continuous and let

I ( u , n ) = | F(Vu(x))dx. (1.1)

(i) Let F satisfy

for every ueUnm and for some a,beU, cSO and p ^ l . Then I is (sequen-
tially) weakly lower semicontinuous in W1>p, i.e.

) (1.2)

for every uv ̂  u in W1-p if and only if F is quasiconvex, i.e.

I F(u+V<p(x))dx^F(u)measD (1.3)

for every bounded domain D^U", ueUnm and <p e W^°°(D; Um).
(ii) If F is quasiconvex, then it is rank one convex, i.e.

F(\u + (1 - A)u) =£ kF(u) + (1 - \)F(v) (1.4)

for every A. e[0,1], u, veRnm with rank(u-i))gl. Furthermore, if F is C2
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42 B. Dacorogna

then (1.4) is equivalent to the Legendre-Hadamard (or ellipticity) condition

J ^ a O (1.5)

/or every Aei" , fx e |Rm, u e |Rnm.
(iii) If n = 1 or m = 1, (hen F is quasiconvex if and only if F is convex.
(iv) If n = m and there exists G:M-*U continuous and such that

F(u) = G(det u),

then F is quasiconvex if and only if G is convex.

Remarks, (i) One has in general

F convex ^> F quasiconvex ^ F rank one convex,

the converse being false for the first implication and an open problem for the
second.

(ii) The case n = 1 corresponds in (0.3) to the case of a system of ordinary
differential equations while that of m = 1 corresponds to the case of a single
equation.

A special class of quasiconvex functions are the so called quasiaffine functions
(i.e. functions <I> such that $ and —<f> are quasiconvex).

THEOREM 2. The following properties are equivalent:
(i) <!> is quasiaffine,

(ii) let adjs u denote the matrix of all s X s ( l S s g inf {n, m}) subdeterminants of
the matrix u e Unm, then

inf{n,m)

^(u) = A+ X <B.;adj,u>ffW (1.6)
s = l

where

s As/ s! (m-s)! s! (n-s)!'

(., .)CT(S) denotes the scalar product in IRCT(s), A eIR and Bs eRCT<s) are constants.

We now show that quasiconvex functions must be Lipschitz, analogous to
convex functions [4, Corollary 2.4, Chap. I]).

PROPOSITION 3. Let F: Unm -+M. be quasiconvex. Then F is locally Lipschitz.

Proof. Step 1: We first show that F is continuous. Observe that there is no loss
of generality if we prove the continuity at u = 0 and if we assume that F(0) = 0.

For fixed e €(0, |), we want to find 8 > 0 such that

M=S8 z> |F(u)|Se. (1.7)

Let us put
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Relaxation for some dynamical problems 43

We then define
if

and let <pe W^B^U"1) be denned as

<p(x) = -»x(x)x. (1.8)

Since F is quasiconvex we have that

F(v) meas Bj ̂  [ F(v+V<p(x)) dx
J B ,

= f F(v + V<p (x)) dx + f F(u + V<p (x)) dx
«,-. JB,-B,_.

meas B ^ + F(u + V<p(x)) dx

F(u+Vcp(x))dx, (1.9)

since F(0) = 0.
Observe then that there exist K and K' such that

( K'\ K
1 + — 1 ^ — \v\, almost everywhere in B,. (1.10)

el e

We then define

^ l } , (1.11)

and let

8 = e/K

so that

|u|SS => K/e |u |S l => |u+V<p|^l almost everywhere

and hence

F(t)+V<p(x))^a almost everywhere in B j - B ^ ^ (1.12)

On combining (1.9) and (1.12), we obtain

c/ w meas ( B t - B t . J

meas Bx

Similarly, if we choose

tHx) = v\(x)x

and use the quasiconvexity of F, we have

F(0) meas Bx = 0 =s | F(V^(x)) dx S F(u) meas B ^ + f F(Vi/r(x)) dx.
*B, ^B^-B^,

(1.14)
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44 B. Dacorogna

As in (1.10)-(1.12), we also find that

and thus since e e (0, §),

meas(Bi -Bi_p) nae
a 1.15

By combining (1.13) and (1.15), we obtain

\v\^e/K => \F(v)\^2nnae. (1.16)

Step 2: We are now in a position to show that F is actually locally Lipschitz. Let

and let

m=ini{F(v):ve£l}, (1.17)

M = sup{F(u):uen}. (1.18)

For v efl, we define

G(u) = F(u + v)-F(v), (1.19)

so that if u,u + v>€il we have

G(u)^M-m for uefl

and using (1.16) we get that

u\S e/K 4> |G(u)| S ( M - m)2nne. (1.20)

On letting u = u + u and choosing e = K\u — v\, we get from (1.20) that

\U-V\^E/K => |F(u)-F(u)|SiC(M-m)2nn \u-v\. (1.21)

Now let w €fl and consider the segment [ t ,w]c ( l and choose points u l 5 . . . , uN

on [v, w] such that

u = u 1 ; . . . , uN = w

with
\uk-uk^\^e/K, k = l,...,N. (1.22)

By using (1.21) and (1.22), we get

and thus

\F(w)-F(v)\^K(M-m)2nn\w-v\

for every o.weft. D
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Relaxation for some dynamical problems 45

We now turn our attention to quasiconvex envelopes of F and we mention here
a result obtained in [1]. Let

QF = sup {<£> ̂  F: <J> quasiconvex}. (1-23)

THEOREM 4. Let D<=u" be a bounded domain and suppose that

a^F(u)^b(l + \u\"), (1.24)

aeU, bmO, p § 1 and ueMnm. Then

QF(u) = inf { 1— [ F(u+V<p(x)) dx: <pe W^(D;Um)}.
v uneas D JD J

Remark. The question of whether F e C1 implies that QFe C1 is still open, as
Proposition 3 just ensures that QF is locally Lipschitz. However if n = 1 or m = 1,
Theorem 1 shows that the notions of convexity and quasiconvexity are equivalent,
thus QF = F** (where F** is the convex envelope of F) and in this case a direct
application of the Hahn-Banach Theorem shows that F** is also C1.

We now obtain a more explicit form of the quasiconvex envelope in some
special cases.

THEOREM 5. Let u{x, t): W x |RN - * Rm, Vu(x, t) = (Vxu, Vtu) and let

F(Vu(x, 0) = G(Vxu(x, 0) + H(V,ii(x, t)) (1.25)

where G: Rnm —>U, H: lRNm -»1R are continuous and satisfy hypotheses of the type
(1.24). Then

QF=QG + QH. (1.26)

Proof. The proof is in three steps.
Step 1. We first show that

Q F S Q G + H. (1.27)

Step 2. A similar proof to that of Step 1, but inverting the roles of x and t will
give

QF^G + QH. (1.28)

Step 3. Assume that Step 1 (and thus Step 2) have been established and let us
demonstrate the theorem. Apply Step 2 to

to get

QV=Q(QG + H)^QG + QH. (1.29)

By using (1.27) and (1.29), we obtain

QG + QH^ Q(QF) = QF^ Q(QG + H)^QG + QH
and thus the result.

It therefore remains to show (1.27). Let u sUnm and t; elRNm and use Theorem
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46 B. Dacorogna

4 to get

QF(u, v) = inf\\ f [G(u+VMx,t)) + H(v+V

(peW^(Dxi

(1.30)
where D<=Rn, a<=[RN are unit hypercubes.

Let e > 0 be fixed, then Theorem 4 implies that there exist cre Wo°°(D;[Rm)
such that

f G(u+Vxo-(x))dx=ie + QG(u). (1.31)

On extending a by periodicity from D to Rn, we trivially have that for veN,

. (1.32)

Let ftvcftbea hypercube with the same centre as a and such that

dist (a; av) = 1/v. (1.33)

We then define if/e Wo'°°(a), OSi/»(()Sl such that

fl if ( e f l y c f l c R
N ,

if
We now choose

1
(1.34)

and observe that cpe Wo°°(Dxa;IRm). On using (1.30), we get

QF{u, v)^\ [ G(u + ̂ (t)Vxo-(vx)) dxdt

[ I H[v+-a(vx)<S)gradilf(t))dxdt, (1.35)

where <r(vx)(g)grad «^(t)e[RNm denotes the tensor product.
We next use (1.32) to estimate separately the two terms on the right hand side

of (1.35), recalling that meas D = meas a = 1. Thus we have

G(u + i(i(t)Vxcr(vx))dxdt

= | I G(u+Vxa(vx))dxdt+ f | G(u + iK0Vxo-(wx)) dx dt
-«„ JD •'n-nv JD

Smeas a,,(e + QG(w)) + meas ( a - a v ) sup{|G(u + ^(t)Vxa(vx)\}. (1.36)

Similarly,

H\v + - cr(vx)<8)grad ifj(t)\ dx dt
JD Jn \ v I
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Relaxation for some dynamical problems 47

flv+ H(u+-o-(vx)<g)grad iHO ) dxdt

meas £lv +meas ( f t - H J sup | \ H ( V +- cr(ra:)<g)grad i//(r)J J. (1.37)

By combining (1.36) and (1.37) and choosing v sufficiently large, we deduce that

Since e is arbitrary, we have indeed obtained (1.27) and thus the theorem is
proved. •

We conclude this section with the relaxation theorem established in [1].

THEOREM 6. Let ft<=lRq be a bounded open set with Lipschitz boundary. Let
<p: Ws -* U be continuous and such that

a + b|A|pS<p(A)Sc + d|A|13 (1.38)

for every AeUqs, for some a, ceR, d g b > 0 and /3>1. Then for every ue
W13(n;[Rs), there exists {uv}, uv e W^ft ; IRS) such that

uv = u on 90, (1.39)

uv^u in W13, (1.40)

f <p(Vuv(x))dx-+ f Q<p(Vu(x)) dx. (1.41)

Remark. In fact, one can allow a much weaker coercivity condition than (1.38).
One only needs

a + I b, \%(A)\*< S <p(A) S c + t d, ̂ (A)!8- (1.42)

for every AelR"8, for some a, ceR, J S l (an integer), /3,>1, d ,gb ,>0 and
where <!>,: Rqs —» U, j = 1 , . . . , / are quasiaffine functions. Then the conclusions of
the theorem hold with (1.40) replaced by

^ ( V u ^ ^ ^ ^ V u ) inL3>, j = l, ...,J. (1.43)

2. Main result

We now restate the hypotheses.
(i) Let OcR" be a bounded open set with Lipschitz boundary and let

O, = 0 x (0, T) c |Rn+1 where T > 0.
(ii) Let F: Unm —*• U be continuous and such that

a + b|A|pSF(A)=Sc + cf |A|P (2.1)

for every AeIRnm and for some a, CGIR, d g b > 0 and p > 1.
(iii) Let p = min {2, p}> 1 and let

W= \u e W^tfl; Rm): v e L m ( " ) , V
I at

We then have the main theorem.
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48 B. Dacorogna

THEOREM 7. For every UeW, there exist uv e W so that

uv = u on dft,

V x u"^V x u inL£m(ft),

f F(Vxu"(x, 0) dx dt ̂  f QF(Vxii(x, 0) dx dt.

(2.2)

(2.3)

(2.4)

(2.5)

Remarks, (i) Obviously if F satisfies coercivity conditions similar to (1.42)
instead of (2.1) then the theorem remains valid provided (2.3) is replaced by the
natural weak convergence, i.e. (1.43).

(ii) (2.4) and (2.5) imply in particular that H(uv) -*• H(u).
(iii) An elementary change in Theorem 6 allows the replacement of (2.2) by the

more interesting conditions

uv(x, t) = u(x, t), (x, t)e30x (0, T),

uv(x, 0) = u(x, 0), xeO,

at
xeO.

Proof. Let

VXM,-U) = -
dt / Z

u) = cp(Vu(x, t)I(

I(u)= Q<p(Vu(x,t))dxdt =

where we have used Theorem 5 in (2.8).
We then apply Theorem 6 to such a <p. We deduce that there exist uv e W so

that

— u
at

2

+ F(Vxu),

) dx dt,

d 2

+ QF(Vxu) Idxdt,

(2

(2

(2

•6)

•7)

•8)

uv = u on 3ft,
v — Vxii in L£m(

(2.9)

(2.10)

(2.11)

(2.12)

Observe furthermore that since the functions u^>\u\2 (Um —*• U) and QF:Unm -» U
are quasiconvex, they are weakly lower semicontinuous (Theorem 1) and thus

lim [

lim [ F(Vxu
v(x,

d_

dt
- u(x, t)
dt

dxdt,

QF(Vxu(x, t)) dxdf.

(2.13)

(2.14)
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Relaxation for some dynamical problems 49

On combining (2.12) with (2.13) and (2.14) we get that (2.13) and (2.14) are
actually equalities; thus the theorem is proved. •

We now conclude this section by a refinement of Theorem 7, in the case m = 1,
in particular the Euler equations are reduced to a single equation and QF = F**.

COROLLARY 8. Let ft be as above, F:Un-*M be C1 and let / = gradF, / =
grad QF. We suppose furthermore that

\A\'~\ (2.15)

\A\P, (2.16)

where a, foS0, ceUd>0 and p > 1. If ue W, then there exist uv eW such that

uv = u on da, (2.17)

gradx u" - - gradx u in L£(ft), (2-18)

- « " - » - « inL2(O), (2.19)
dt dt

— 5 — divx /(gradx u") —> —j - divx /(gradx ii) in the sense of distributions. (2.20)
dt dt

Proof. From Theorem 7, there exist v" &W such that

vv = ii on 3ft, (2.21)

gradx v
v - - gradx u in L£(ft), (2.22)

— vv-+-u inL2(ft), (2.23)
dt dt

(V) = f F(gradx u"(x, ()) dx dt -> I(u) = fJ(uv) = F(gradx u"(x, t)) dx dt -+ I(u) = F**(gradx u(x, t)) dx dt. (2.24)

Observe that since F** is convex, then so is I. Furthermore, I and I are Gateaux
difierentiable and we denote their differential by I' and I' respectively.

Let p = min {2, p}> 1 and

V = { u e W0
1(i(ft);^eI2(fl), gradx u

Let V be the dual of V and (• ; •) the bilinear canonical form on V x V. We then
define for every veV,

J(v) = I(v + u)-I(u)-(I'(u); v), (2.25)

J(v) = I(v + u)-I(u)-(T(u); »>. (2.26)

It is then easy to see that, since I is convex, for every »eV,

J(v) g J(v) S0 = J(0) = min {J(u): u e V}. (2.27)

Furthermore, from (2.21)-(2.24), we have

ueV}, (2.28)
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B. Dacorogna

min {J(u): u e V} = inf {/(u): u e V} = 0. (2.29)

We finally apply [4, Corollary 6.1, p. 30] to the functional J and to the sequence
v" - ii to obtain the result. •

3. Applications

In this section, we show how to apply Corollary 8 to nonlinear conservation
laws of the type

\ uc - vx = 0,
lu,-o-(u)x=0, (3.1)

where cr is not necessarily an increasing function. We only assume that there exist
F: U -» R C1 with F'(z) = cr(z) and such that

a + b |z | pSF(z)Sc + d|z|p (3.2)

and every zeU and for some a, c e [R, d^b>0 and p > 1.
Therefore, a function a of the type shown in Figure 1 is admissible. (For

another approach to the study of equations (3.1), see Shearer [7].)
By setting u = wx and v = wt, it is immediately seen that (3.1) is equivalent to

wtt-cr(wx)x = 0. (3.3)

The above equation governs the one-dimensional motion of a homogeneous
nonlinear elastic material under zero body forces; w{x, t) denotes the displace-
ment at time t of a particle having position x in a reference configuration. We also
have that

F(z)= f a(u)du (3.4)

is the stored energy function and since cr is not a monotone function then F is not
convex.

o(z )
A

Figure 1
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We then define QF, the quasiconvex envelope of F, which is in this case (i.e.
m = n = l and Theorem 2) the convex envelope, F** of F. We also have that F**
is C1, since F is C1 (c.f. Remark following Theorem 4). We may then define

(r(z) = (F**)'(z). (3.5)

More precisely, if a is as in Figure 1, then & appears as in Figure 2 and satisfies
the Maxwell condition, i.e.

fB fB

<x(z) dz = d(z) dz. (3.6)
JA JA

(The line {<T(Z) = ar(A)} is usually called the Maxwell line.)
We then immediately get from Corollary 8 the following result.

THEOREM 9. Let T>0 , a, 0elR with a</3, p=min{2, p} and W =
{ueW1J((a, |3)x(0, T)); du/dteL2, du/dxeLp}, then for every weW, there exist
wveWsothat:

wv(a, t) = w(a, t), w"(p, t) = w(ft t) for every te (0, T),

w"(x, 0) = w(x, 0), — wv(x, 0) = — w(x, 0) for every x e (a, |3),
dt dt

wv
x = uv—wx = u inLp((a,/3)x(0, T)),

< = « " - * * , = « in L2((a, (3) x(0,T)),

w,i;-o-(w^)x —» wtt-a-(wx)x in the sense of distributions.

Remarks, (i) Returning to (3.1), one may rewrite the last equation of the above
theorem as

uf — or(uv)x —>vt — <T(U)X in the sense of distributions.
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52 B. Dacorogna

(ii) The problem of solving the relaxed equations (i.e. (3.1) with <r replaced by
CT) is still open. For recent results on system of equations of the above type with &
allowed to have only one inflection point, see Di Perna [3].
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