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The cytokine macrophage migration inhibitory factor (MIF) is a constitutive element of the host antimicrobial

defenses and stress response that promotes proinflammatory function of the innate and acquired immune

systems. MIF plays an important role in the pathogenesis of acute and chronic inflammatory or autoimmune

disorders, such as sepsis, acute respiratory distress syndrome, asthma, rheumatoid arthritis, and inflammatory

bowel diseases. Polymorphisms of the human MIF gene (that is, guanine-to-cytosine transition at position

�173 or CATT-tetranucleotide repeat at position �794) have been associated with increased susceptibility to

or severity of juvenile idiopathic and adult rheumatoid arthritis, ulcerative colitis, atopy, or sarcoidosis.

Whether these MIF polymorphisms affect the susceptibility to and outcome of sepsis has not yet been examined.

Analyses of MIF genotypes in patients with sepsis may help to classify patients into risk categories and to

identify those patients who may benefit from anti-MIF therapeutic strategies.

The innate immune system assumes an essential role

in the natural host defenses against microbes [1, 2].

Sensing of microbial pathogens, either in tissue in con-

tact with the host’s environment or in the systemic

circulation after invasion of the bloodstream, is car-

ried out by macrophages, dendritic cells, natural killer

cells, granulocytes, and monocytes acting as sentinels

of the innate immune system. Binding of microbial

products to pathogen recognition molecules activates

signal-transduction pathways and the transcription of

immune genes, resulting in the expression of costim-

ulatory molecules at the cell surface and in the release

of immunoregulatory effector molecules in the extra-

cellular compartment [1, 3].

Failure to recognize pathogens at an early stage of

invasion, for example because of genetic defects in the

ability of macrophages to detect and kill microbial path-

ogens, facilitates unrestricted microbial growth and the
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development of overwhelming and potentially life-

threatening infections [4, 5]. Among numerous effector

molecules involved in the antimicrobial host defenses,

cytokines have a crucial role because they kick off the

host inflammatory response and coordinate the cellular

and humoral responses aimed at the eradication or the

containment of invasive pathogens [6]. The increased

susceptibility to infection of transgenic animals with

qualitative or quantitative defects of their cytokine re-

sponse, due to mutations or deletions of cytokine or

cytokine receptor genes, is an example of the critical

role played by cytokines or cytokine receptors in an-

timicrobial host defenses [6]. However, exuberant pro-

duction of proinflammatory mediators may also be-

come life-threatening, as observed in patients with

severe sepsis or septic shock [7–9], indicating that a

tight control of cytokine production is essential for bal-

anced innate immune responses.

MACROPHAGE MIGRATION INHIBITORY
FACTOR

Investigations of the delayed-type hypersensitivity re-

action conducted 40 years ago led to the identification

of one of the first cytokine activities: macrophage mi-

gration inhibitory factor (MIF). It was described orig-
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Figure 1. Mode of action of macrophage migration inhibitory factor (MIF). MIF may exert its biological effects either via the binding to a cognate
receptor (1) or via a nonclassical endocytic pathway (2). MIF is associated with activation of the extracellular signal–regulated kinase-1/2 (ERK-1/2),
promoting cell growth and activating Ets transcription factors (3) shown to be critical for the expression of the Toll-like receptor 4 (TLR4) gene (Tlr4)
encoding for the signal-transducing molecule of the endotoxin receptor complex. By up-regulating TLR4 expression, MIF facilitates the sensing of
endotoxin-containing particles (4), thereby promoting the production of proinflammatory mediators, including cytokines (such as MIF) and nitric oxide
(NO) (5). MIF activates a series of events initiated by the phosphorylation of ERK-1/2 and followed by the production of cytoplasmic phospholipase
A2 (cPLA2), arachidonic acid, and prostaglandin E2 (PGE2) (6). Via the generation of oxidoreductase activity, NO and cyclooxygenase (COX)–2, MIF
prevents activation-induced apoptosis mediated by the oxidative burst (7) and by p53 (8). Finally, MIF counterbalances the immunosuppressive effects
of glucocorticoids (9). GR, glucocorticoid receptor; iNOS, inducible nitric oxide synthase; MMPs, matrix metalloproteinases; NF-kB, nuclear factor–kB.
Adapted from Calandra et al. [14].

inally as a factor released by activated lymphocytes that inhib-

ited the random migration of exudate cells, hence its name [10,

11]. Until the cloning of a human MIF complementary DNA

in 1989 [12] and its rediscovery in 1991 as a pituitary-derived

peptide released after exposure to endotoxin [13], MIF had

remained a mysterious cytokine. The intriguing observation

that MIF was a neuroendocrine mediator potentiating host

responses to microbial products (endotoxin) suggested that

MIF was at the crossroads of the endocrine and immune sys-

tems. It also helped to uncover an important feature of this

molecule, namely its capacity to promote proinflammatory im-

mune functions. Over the past decade, several studies have

revealed that MIF is a regulator of inflammatory and innate

immune responses (reviewed in [14]).

MIF is constitutively expressed by a broad variety of cells

and tissues, including such innate immune cells as monocytes

and macrophages [15], and is rapidly released after exposure

to microbial products (cell wall components and toxins) and

proinflammatory mediators and in response to stress [16–18].

Once released in the extracellular milieu, MIF promotes proin-

flammatory biological activities, acting in an autocrine, para-

crine, or endocrine manner as a regulator of immune responses.

MIF has been shown to counterregulate the immunosuppres-

sive effects of glucocorticoids on immune cells [17], to activate

the extracellular signal–regulated kinase–1/2 (ERK-1/2) mito-

gen-activated protein kinase pathway [19], to inhibit the activity

of JAB-1/CSN5, a coactivator of the activator protein–1 (AP-

1) [20], to up-regulate the expression of Toll-like receptor 4,

to facilitate the sensing of endotoxin-bearing bacteria [21], and

to sustain proinflammatory function of macrophages by in-

hibiting p53-dependent apoptosis [22] (figure 1). As a proin-

flammatory mediator, MIF has been shown to be implicated

in the pathogenesis of severe sepsis and septic shock [13, 16,

17, 23, 24], acute respiratory distress syndrome [25], and several

other inflammatory and autoimmune diseases [26], including

rheumatoid arthritis [27, 28], glomerulonephritis [29, 30], and

inflammatory bowel diseases [31].

A single MIF gene located on chromosome 22q11.2 has been

identified in the human genome [32, 33]. This region is in

syntenic conservation with a region of mouse chromosome 10

containing the mouse Mif gene [34, 35]. The human MIF gene

is short, composed of 3 exons of 205, 173, and 183 bp and 2

introns of 189 and 95 bp (figure 2) [12, 32, 34–38]. Genes with

a high degree of homology with human and mouse Mif have

been identified in the genome of several other mammals (rats,

gerbils, cattle, and pigs), where they are expressed as a single
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Figure 2. Structure of the human macrophage migration inhibitory factor (MIF) gene. The 3 exons, 2 introns, and putative transcription factor–
binding sites are represented by black, white, and gray boxes, respectively. Arrows indicate the positions of the 3 single-nucleotide polymorphisms
and of the CATT(5–8)-tetranucleotide microsatellite. AP, activator protein; CREB, cyclic adenosine 3′,5′-monophosphate–responsive element–bindingprotein;
Ets, E–twenty-six; NF-kB, nuclear factor–kB; Sp1, specificity protein 1.

copy per haploid genome. In contrast to other mammalian

genomes, the mouse genome also contains several processed

(intronless) pseudogenes [34, 35, 38]. Homologues of the hu-

man MIF gene, encoding for proteins sharing ∼30% identity

with MIF at the amino acid level, have been identified in chick-

ens, jawless and jawed fish, ticks, parasites, plants, and cyano-

bacteria [36, 39–42]. The high degree of conservation of the

MIF protein across different animal species suggests that it may

exert important biological functions.

The promoter region of the MIF gene contains several pu-

tative DNA-binding sequences for transcription factors, in-

cluding AP-1, nuclear factor (NF)–kB, Ets, GATA, specificity

protein 1, and cyclic adenosine 3′,5′-monophosphate (cAMP)–

responsive element-binding protein (figure 2). Whether these

DNA-binding sequences are implicated in the control of the

expression of the human MIF gene is not known. Of note,

however, a cAMP-responsive element DNA-binding site located

in the proximal promoter region of the mouse Mif gene, which

is conserved in the human MIF gene promoter, has been im-

plicated in Mif gene activation of AtT-20 mouse pituitary cells

induced by forskolin, an activator of the cAMP-dependent pro-

tein kinase A pathway [43]. To improve our understanding of

the factors implicated in the regulation of the expression of the

MIF gene, it remains imperative to identify which regions of

the MIF promoter and their cognate transcription factors are

implicated in the control of the basal and stimulus-induced

expression of the MIF gene. The MIF 5′ flanking region lacks

a TATA box but is rich in GC nucleotides, 2 characteristics

usually associated with the presence of multiple transcriptional

start sites. Yet, on the basis of primer extension and 5′-rapid

amplification of complementary ends PCR analyses of the hu-

man MIF gene, there is a single RNA initiation start site located

97 bp upstream of the methionine codon [32]. In agreement

with this finding, a single transcriptional start site was also

identified in the mouse Mif gene. A single MIF mRNA species

of ∼800 bp was observed in human, mouse, or rat cell lines or

tissues. The 345-bp open-reading frame of MIF mRNA encodes

for a 115–amino acid nonglycosylated protein of 12.5 kDa.

Crystallographic studies of the human and rat proteins have

revealed that MIF is a homotrimer [44, 45].

MIF GENE POLYMORPHISMS
AND SUSCEPTIBILITY TO INFLAMMATORY
DISEASES

Genetic studies of twins and adoptees have revealed that host

factors are essential determinants of susceptibility to infectious

and autoimmune diseases [46]. Immunogenetic analyses have

linked genes of the major histocompatibility complex (MHC),

as well as non-MHC genes, to increased susceptibility or resis-

tance to several infectious diseases, such as malaria, tuberculosis,

leprosy, AIDS, and viral hepatitis [47]. Of the non-MHC genes,

polymorphisms within the promoter region of cytokines (e.g.,

TNF, IL-1, IL-4, and IL-10) and of cytokine or chemokine re-

ceptors (e.g., IL-7R, IFN-gR, IL-12R, and CCR5) have been as-

sociated with mostly enhanced, but sometimes also reduced

(CCR5), predisposition to inflammatory and infectious diseases.

In recent years, the advent of modern sequencing tools and

the development of high-throughput technologies has greatly

facilitated the study of gene polymorphisms and their impact

on the pathogenesis of human diseases. Susceptibility to infec-

tion and propensity to develop severe inflammatory and im-

mune diseases are likely to be strongly influenced by genetic

factors. By analogy with other cytokines and given the role of

MIF in the control of inflammation and innate immune re-

sponses to microbial invasion, it was reasonable to postulate

that mutations in the human MIF gene would predispose af-

fected hosts to altered susceptibility to or severity of inflam-

matory or infectious diseases. Indeed, loss-of-function MIF

mutations may affect the capacity of the host to mount in-

flammatory and innate immune responses. Alternatively, gain-

of-function MIF mutations may predispose the host to more-

severe inflammatory and immune reactions. Over the last 3

years, a rapidly growing body of literature has linked MIF gene
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Table 1. Allele frequencies of macrophage migration inhibitory
factor (MIF) promoter polymorphisms, CATT(5–8) and �173*G/C, in
healthy subjects from various countries.

Reference
Country
of origina

No. of
subjects

Allele frequency, %b

No. of CATT repeats �173 SNP
5 6 7 8 G C

[57] UK 342 25.3 65.6 8.8 0.3 88 12
[56] Germany 390 ND ND ND ND 79 21
[51] Spain 122 ND ND ND ND 85 15
[50] US 159 27.7 60.7 11 0.6 ND ND
[54] Japan 750 ND ND ND ND 80.7 19.3
[55] Japan 155 39.4 42.6 17.4 0.6 77.7 22.3

NOTE. ND, not determined; SNP, single-nucleotide polymorphism.
a UK, United Kingdom; US, United States.
b The frequencies of the +254*T, +254*C, +656*C, and +656*G alleles

have been determined only in white subjects in the United Kingdom and were
88.8%, 11.2%, 86.3%, and 13.7%, respectively [49].

polymorphisms with susceptibility to or severity of inflam-

matory diseases in which increased MIF concentrations had

been associated with severe clinical manifestations, high severity

scores, and often poor outcome.

MIF gene polymorphisms. Four polymorphisms of the hu-

man MIF gene have been reported thus far (figure 2): a 5–8-

CATT tetranucleotide repeat at position �794 (�794 CATT(5–8))

and 3 single-nucleotide polymorphisms (SNPs) at positions

�173 (�173*G/C), +254 (+254*T/C), and +656 (+656*C/G)

[48–50]. The +254 and +656 SNPs are positioned in introns

and, thus, do not affect the coding sequence of the MIF gene.

MIF genotyping studies have focused on the �794 CATT(5–8)

microsatellite and the �173*G/C polymorphisms but have not

examined the impact of the other 2 known polymorphisms

[48–56]. Table 1 shows a summary of the allele frequencies of

these 2 polymorphisms in cohorts of healthy persons from

different countries. In white subjects from the United Kingdom

or United States and in Japanese, the frequency of the CATT

alleles followed the same ranking order: CATT6, followed by

CATT5, CATT7, and CATT8 [49, 50, 55]. The CATT8 allele was

rare (!1%) in all ethnic groups examined. The CATT6 allele

was predominant in white subjects from the United Kingdom

and United States, whereas the CATT5 and CATT7 alleles were

more frequent in Japanese subjects. In all populations studied,

the �173*G allele (75%–90%) was far more common than the

�173*C allele (15%–20%). Of note, in the 2 studies from Japan,

the frequency of the �173*C allele (19.3% and 22.3%) was

almost twice as high as that among the white population from

the United Kingdom (12%). Surprisingly, the �173*C allele

frequency among the German population studied was similar

to that among the Japanese subjects [54–56]. Unfortunately,

the ethnic background of the German population was not re-

ported. Evidence for strong linkage disequilibrium between the

4 polymorphisms was reported in a cohort of 342 white subjects

from the United Kingdom. The CATT5/�173*C allele was ex-

tremely rare (1.3%), whereas the CATT7/�173*G allele was not

observed.

Arthritis. Previous studies have revealed a role for MIF in

the pathogenesis of rheumatoid arthritis (reviewed in [27, 28]).

Increased MIF levels have been detected in the serum and syn-

ovial fluids of children with juvenile idiopathic arthritis (also

called juvenile rheumatoid arthritis) and of adults with rheu-

matoid arthritis [58, 59]. Immunoneutralization of MIF was

observed to inhibit the development of adjuvant- or collagen-

induced arthritis in experimental animal models [60–62]. It

was therefore not surprising that MIF genotyping studies have

been conducted in cohorts of patients with arthritis with the

aim to look for possible associations between MIF gene poly-

morphisms and susceptibility to or severity of inflammatory

arthritis (table 2).

The �173*G/C SNP was the first MIF gene polymorphism

identified in 2001 by Donn et al. [48], who screened for mu-

tations within 1 kb of the 5′ flanking region of the human MIF

gene in 32 unrelated healthy white subjects in the United King-

dom. Compared with expression of the �173*C allele among

172 healthy subjects, the frequency was increased 2-fold (20.5%

vs. 10.2%) in a cohort of 117 patients with systemic-onset

juvenile idiopathic arthritis. Similar results were obtained when

526 patients with juvenile idiopathic arthritis were compared

with 259 healthy white subjects in the United Kingdom [49],

suggesting that the �173*C allele is likely to confer suscepti-

bility to juvenile idiopathic arthritis. Interestingly, patients with

the �173*C allele had increased levels of MIF in the circulation

or in synovial fluids (patients with juvenile idiopathic arthritis)

[49, 63]. Moreover, the presence of a �173*C allele in patients

with juvenile idiopathic arthritis was predictive of a shorter

duration of clinical response to corticosteroid therapy [63]. To

begin to study the molecular mechanism by which the �173*C

SNP may affect MIF gene expression, a �775 to +84 region

of the MIF gene (excluding the CATT repeat region) was cloned

in a luciferase reporter vector and tested for promoter activity

in CEMC7A human T lymphoblasts and A549 human lung

epithelial cells [49]. Although the �173*C promoter was more

active than the �173*G promoter in CEMC7A cells, the op-

posite results were obtained in A549 cells, suggesting that the

�173 SNP may affect promoter activity in a cell type–specific

manner. On the basis of sequence analysis, it was proposed

that the presence of a cytosine at position �173 creates a bind-

ing site for the transcription factor AP4. However, binding of

AP4 to that potential site has not yet been demonstrated.

In 2002, Baugh et al. [50] reported the association between

the �794 CATT(5–8) microsatellite and disease severity in pa-

tients with rheumatoid arthritis. The study included 159 healthy

white subjects in the United States and 184 patients from Wich-

ita, Kansas, with either mild (105 patients) or severe (79 pa-
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Table 2. Association between macrophage migration inhibitory factor gene (MIF) polymorphisms and inflammatory diseases.

Reference Type of disease Countrya Relationship between MIF polymorphisms and disease

[48] Systemic-onset juvenile idiopathic arthritis UK �173*C allele increased susceptibility
[49] Juvenile idiopathic arthritis UK �173*C allele increased susceptibility
[50] Rheumatoid arthritis US CATT5 allele reduced disease severity
[56] Rheumatoid arthritis and juvenile rheumatoid

arthritis
Germany CATT5 allele increased susceptibility to juvenile rheu-

matoid arthritis
�173*C allele reduced susceptibility to rheumatoid

arthritis
[52] Inflammatory polyarthritis UK CATT7/�173*C haplotype increased susceptibility
[51] Sarcoidosis in erythema nodosum Spain �173*C allele increased susceptibility
[55] Atopy Japan CATT7/�173*C haplotype increased susceptibility

CATT5/�173*G haplotype reduced susceptibility
[54] Ulcerative colitis Japan �173*C/C genotype increased disease severity

a UK, United Kingdom; US, United States.

tients) rheumatoid arthritis. The CATT5 allele was associated

with a lower disease severity, because it was present in 50% of

the control subjects and 39% and 32% of patients with mild

or severe rheumatoid arthritis, respectively. Using luciferase

reporter assays in COS-7 monkey kidney fibroblasts, the au-

thors showed that the CATT5 promoter construct exhibited

reduced basal and serum or forskolin-stimulated transcriptional

activity, compared with that of any of the CATT6, CATT7, or

CATT8 promoter constructs. The effect of the �173*G/C poly-

morphism was not studied. Recently, the combined effects of

the �794 CATT and the �173 polymorphisms were assessed

in a cohort of 343 white subjects in the United Kingdom and

438 patients with inflammatory polyarthritis [52]. The �173*C

allele, the CATT7 allele, and the CATT7/�173*C haplotype were

associated with a 1.5-, 1.7-, and 3.0-fold increased risk, re-

spectively, of developing inflammatory polyarthritis (Pp .0001,

, and , respectively), strongly suggesting theP p .02 P p .0001

presence of a linkage disequilibrium between the �173*C and

CATT7 alleles. In contrast to what had been observed in the

cohort of patients with rheumatoid arthritis in the United States

[50], MIF polymorphisms were surprisingly not associated with

disease severity in the UK population.

Arthritis is a complex and polygenic chronic systemic in-

flammatory disease. To investigate possible associations be-

tween candidate genes and adult or juvenile rheumatoid ar-

thritis, Miterski et al. [56] analyzed the polymorphisms of 13

genes, including MIF, in ∼400 German patients and 300–400

control subjects. None of the candidate genes investigated

(among which were HLA-DRBI, TNF, TNFRI, and TNFRII)

was found to be associated with adult or juvenile rheumatoid

arthritis. Of note, the CATT5 and �173*G alleles were unex-

pectedly significantly more frequent in patients with either adult

or juvenile rheumatoid arthritis than in control subjects. Un-

fortunately, the ethnic background of the case-patients and

control subjects was not reported. Given the critical importance

of control subjects in such studies, it is impossible to draw firm

conclusions from the apparently conflicting results of this study.

One approach to avoid that problem is to perform family-based

analyses. In an elegant study, Donn et al. [53] investigated the

transmission of MIF promoter polymorphisms in 321 white

families in the United Kingdom with one child with juvenile

idiopathic arthritis. The CATT7/�173*C haplotype was ob-

served to be transmitted in excess in the patients with juvenile

idiopathic arthritis. Moreover, both conditional and pairwise

extended transmission disequilibrium tests predicted functional

interaction between the 2 polymorphisms. Functional studies

comparing the activities of all possible combinations of the

various CATT and �173 alleles suggested the existence of an

association between the length of the CATT repeat and either

the �173*C allele (CEMC7A T cells) or the �173*G allele

(A549 epithelial cells) in a cell type–dependent manner. How-

ever, in both cell lines, CATT7/�173*C promoter activity was

similar to that of CATT5/�173*G and CATT6/�173*G pro-

moters, a finding in apparent contradiction with the hypothesis

that CATT7 and �173*C alleles enhance promoter activity.

Other inflammatory diseases. Three case-control studies

conducted in other patient populations confirmed and ex-

tended the observations made in patients with arthritis. In the

first study performed in Spain, the frequency of the �173*C

allele was significantly higher in 28 patients with erythema no-

dosum secondary to sarcoidosis (34%) than in 70 patients with

erythema nodosum due to other causes (12%) or in 122 matched

control subjects (15%) [51]. Moreover, the presence of the

�173*C allele was found to increase the risk of developing

sarcoidosis in erythema nodosum patients. In the second study,

MIF genotyping was performed in 221 patients with ulcerative

colitis and in 438 healthy control subjects from Japan [54].

There was no difference in the distribution of the �173 ge-

notypes between control subjects and patients with ulcerative

colitis. Yet, there was an overrepresentation of the �173 C/C
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genotypes in the subgroup of patients with severe pancolitis

(i.e., extending to the cecum) (OR, 10.7; 95% CI, 1.3–86.6; P

p .007), suggesting a possible relationship between the �173*G/

C polymorphism and disease severity in Japanese patients with

ulcerative colitis. The third case-control study conducted in

Japanese patients with atopy and asthma (349 subjects with

atopy, 197 of whom had asthma, and 235 subjects without

atopy, of whom 80 had asthma) confirmed the existence of

association between the CATT and �173 promoter polymor-

phisms in atopic but not in patients with asthma [55]. Indeed,

the risk of atopy was reduced in carriers of the CATT5/�173*G

haplotype, whereas it was increased in carriers of the CATT7/

�173*C haplotype. However, analyses of MIF promoter activity

in A549 lung epithelial cells yielded conflicting results, as the

CATT7/�173*C promoter exhibited lower activity than the

CATT5/�173*G or the CATT6/�173*G promoters. These and

other results reported above argue in favor of a complex reg-

ulation of the transcriptional activity and expression of the MIF

gene. Given the lack of information on the identity of proteins

potentially interacting with the CATT and �173 regions of the

MIF promoter, the mechanisms by which these polymorphic

sites may modulate MIF transcription remain unknown.

MIF polymorphisms and sepsis. The studies described

above strongly suggest that MIF gene polymorphisms predis-

pose to the development of inflammatory diseases. Given that

MIF is an important mediator of innate immunity and sepsis

(reviewed in [14]), we postulate that genetic variations within

the MIF gene also may influence predisposition to or outcome

of sepsis. To verify this hypothesis, we are currently investigat-

ing whether the �794 CATT(5–8) and �173*G/C MIF polymor-

phisms play a role in the pathogenesis of human sepsis.

CONCLUSIONS

In recent years, a rapidly growing amount of literature has

revealed an important role for MIF in innate immunity, in-

flammation, and sepsis. Increased systemic or local MIF con-

centrations have been associated with severe clinical manifes-

tations, high severity scores, and often poor outcome of sepsis

and inflammatory and autoimmune diseases. Similarly, poly-

morphisms of the MIF gene have been linked to susceptibility

to or severity of chronic systemic inflammatory diseases. Given

these observations, one would predict that polymorphisms of

the human MIF gene would also predispose affected hosts to

altered susceptibility to or outcome of sepsis. Work is in pro-

gress to verify these assumptions in a cohort of patients with

severe sepsis and septic shock.
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