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Abstract

Anisotropy of acoustic propagation velocities is a ubiq-
uitous feature of wood. This needs to be considered for
successful application of travel time tomography, an
increasingly popular technique for non-destructive test-
ing of living trees. We have developed a simple correction
scheme that removes first-order anisotropy effects. The
corrected travel-time data can be inverted with isotropic
inversion codes that are commercially available. Using a
numerical experiment, we demonstrate the conse-
quences of ignoring anisotropy effects and outline the
performance of our correction scheme. The new tech-
nique has been applied to two spruce samples. Subse-
quent inspection of the samples revealed a good match
with the tomograms.
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Introduction

The stability of urban trees is an issue of increasing con-
cern. Owing to the maximized utilization of space in most
downtown areas, falling trees may result in significant
damage to the population and/or infrastructure. It is
therefore essential that fast, reliable and inexpensive
testing procedures are devised to help mitigate this
potential hazard. In particular, local defects caused by
fungi and hidden cracks need to be detected. In situ
methods using small drill holes are clearly unsuitable,
since they exacerbate the decay of the trees.

Over the past few years, acoustic methods for the non-
destructive testing of trees have become increasingly
popular (Niemz 2001). Acoustic waves are sensitive to
the elastic constants and density of wood, thus making
them suitable for characterizing local defects, decay and
anomalous moisture content. Standard procedures
include transmission measurements along two orthogo-
nal directions, in the course of which relatively low fre-
quencies are used (300 Hz to 20 kHz) (Mattheck and
Bethge 1992). Such procedures provide only very gross

estimates of the elastic properties and may be subject to
significant systematic errors. To better exploit the infor-
mation content offered by acoustic data, tomographic
imaging techniques have recently been used (Socco
et al. 2004). First results are encouraging, but there are
several issues that need to be resolved before this tech-
nique can be applied routinely.

Here, we focus on the effects of anisotropy, an impor-
tant problem related to wood tomography. After a brief
introduction of the inversion techniques employed, pos-
sible effects of anisotropy are discussed in more detail.
Then a simple correction scheme is presented that allows
travel-time data recorded in tree trunks to be inverted
with isotropic inversion programs that are commercially
available. The benefits and limitations of our novel tech-
nique are demonstrated based on synthetic data and on
two authentic spruce samples.

Travel-time tomography

The general set-up of a tomographic experiment is
sketched in Figure 1. Acoustic waves emitted sequen-
tially from i source positions are recorded at j receiver
positions. The tomographic plane, which is defined by
the source and receiver positions, is subdivided into k
small cells. Tomography aims to find a set of cell veloc-
ities for which the computed travel times match the
observed data in an optimum fashion. Usually, only the
first-arriving wave trains of the recorded seismograms
are analyzed. Their wavepaths can be represented by
seismic rays, as indicated in Figure 1. The travel time of
a seismic wave from source i to receiver j can be written
as:

t s l s , (1)ij ijk k8
cells

where lijk is the length of the ray segment and sk is the
slowness (1/velocity) of the kth cell. The relationship
between the travel time and slowness can be written in
matrix form:

tsGs, (2)

where vector t includes the travel times, matrix G the ray
segment lengths and s the slowness values.

One of the inputs to the tomographic inversion process
is an initial slowness model sini, with which travel times
tcalc can be computed. An improved slowness model sest

that represents an attempt to minimize the differences
between the calculated and observed travel times is then
sought. It is common practice to minimize the squares
of the differences . An estimate of the improvedcalc obs 2Z Zt yt
slowness distribution sest may be found (Menke 1984) by
solving:
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Figure 1 Schematic diagram of the set-up for a tomographic
experiment.

yy 1T 1 T obs calcDss G GqC G t yt (3)Ž . Ž .M

and substituting the result in

est inis ss qDs, (4)

where is a regularization operator that may include-1CM

smoothing and damping constraints (Maurer et al. 1998).
Formally, the tomography problem described by Eqs.

(1)–(4) is linear, such that the matrix G is independent of
the unknown model parameters sest. However, seismic
rays obey Fermat’s principle, which requires the first-
arriving wave trains to travel along the fastest path. Con-
sequently, the presence of pronounced velocity contrasts
may cause the seismic rays to be curved. Matrix G may
thus depend on the slowness vector s. As a conse-
quence, the inversion problem becomes non-linear and
must be solved iteratively. After determining the initial
solution of Eqs. (3) and (4), the estimated model sest is
used as the initial model for the next iteration. This pro-
cedure is repeated until the model adjustments become
negligibly small.

Ray curvature also imposes problems on computation
of the predicted travel times. Curved ray paths may be
computed using two-point ray tracing schemes (Zelt and
Smith 1992), but in the presence of strong velocity con-
trasts this may lead to numerical instabilities. A more
robust alternative is to compute travel times using a
finite-difference approximation to the governing Eikonal
equation (Schneider et al. 1992) and to reconstruct the
ray paths by following the steepest descent of the result-
ing travel-time fields (Aldrige and Oldenburg 1993).

Finally, we highlight a common problem in acoustic
wood tomography. Owing to inherent instrumental limi-
tations, it is often difficult or impossible to determine pre-
cisely the difference between the origin time of the
seismic pulse and the time of the first sample of the digi-
tized seismogram. This time difference is generally
unknown, but it usually remains constant during an

experiment. Consequently, the origin time to may be
included as a further unknown in the tomographic inver-
sion procedure by modifying Eq. (1):

t s l s qt . (5)ij ijk k o8
cells

As shown by Maurer (1996), it is only necessary to
append a column with values of 1 to matrix G to solve
the inverse problem related to Eq. (5). The solution vector
s will then include adjustments not only to the slowness
of individual cells, but also to the origin time to.

Anisotropy

A peculiarity of trees is the presence of pronounced ani-
sotropy. The elastic properties and associated acoustic
velocities are generally quite different in the radial, tan-
gential and longitudinal directions. In tomographic exper-
iments, variations of the radial and tangential velocities
are of particular interest. Usually, velocities are higher in
the radial than in the tangential direction.

Anisotropic wave propagation

Numerical simulations of anisotropic wave propagation
are based on the equations of motion for plane strain
expressed in cylindrical coordinates:

2≠ u ≠s 1 ≠s s ysw wwr rr r rr
r s q q (6)

2≠t ≠r r ≠w r

and

2≠ u ≠s 1 ≠s 2sw w ww wr r
r s q q , (7)

2≠t ≠r r ≠w r

where ur and uw are displacement in the radial and tan-
gential directions and sij (i and j represent either r or w)
are the components of the stress tensor (Gsell et al.
2004). The stiffness matrix C relates the stress tensor s

and the corresponding strain tensor V (Hook’s law)

ssCV (8)

and V is related to the displacements u via a spatial
operator matrix L:

VsLu. (9)

For 2D simulations in the radial-tangential plane, only
three components of C are required to describe the
orthotropic behavior of a tree trunk. We used a finite-
difference approximation to compute the temporal and
spatial derivatives in Eqs. (6) and (7), assumed stress-
free boundary conditions, and modeled the excitation by
presetting the stresses at specified parts of the boundary.
A more detailed description of the algorithm can be
found in Gsell et al. (2004).
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Figure 2 (a) Velocity model used for the numerical experiment. The source position is shown by the black dot. Note the anisotropy
that causes the velocities to vary in the radial and tangential directions. (b) Snapshot at 245 ms extracted from a finite-difference
wave field simulation. (c) Travel time isochrones for the anisotropic medium as shown in (a). Solid lines represent examples of the
ray paths. (d) Travel time isochrones for an isotropic medium at 1483 m s-1. Solid lines represent examples of seismic rays.

Anisotropic travel time computations

The computation of travel times in anisotropic media has
been extensively discussed in the literature. Some
authors proposed algorithms based on ray tracing (Cer-
veny 1989), while others considered finite-difference
approximations to the Eikonal equation (Faria and Stoffa
1994). In this study we followed Faria and Stoffa (1994)
and modified the algorithm described by Schneider et al.
(1992) to yield anisotropic travel times.

Although anisotropy in its most general form is math-
ematically awkward, Thomsen (1986) showed that these
equations can be substantially simplified when approxi-
mations for ‘‘weak anisotropy’’ are made. These approx-
imations are reasonably accurate, even for materials with
moderate anisotropy such as wood. For the sake of sim-
plicity, we have further simplified the ‘‘weak anisotropy’’
equations and assumed elliptic anisotropy (Thomsen
1986), where the angle-dependent velocity v can be writ-
ten as:

2vsv 1y´sin fyw , (10)Ž Ž . .radial

where f is the ray angle, w represents the azimuth of the
vradial direction relative to the axis of the coordinate sys-
tem, and ´ is the degree of anisotropy:

v yvradial tangential
´s . (11)

vradial

Numerical example

To illustrate the effects of anisotropy, we assumed a cir-
cular tree trunk with a diameter of 450 mm and a realistic

ratio of the elastic constants of Cww/Crrs0.5 (Figure 2a).
Assuming a density of 546 kg m-3, this corresponds to
velocities of 1483 and 1048 m s-1 for a wave propagating
along the radial and tangential axes, respectively. Results
for the full waveform simulations are shown in the form
of a snapshot in Figure 2b. The wave front advances
much faster along the radial direction, resulting in sub-
stantial deformation of the radiation pattern.

Results for travel-time computations using our aniso-
tropic Eikonal solver are displayed in Figure 2c. For com-
parison, an isotropic travel-time field using vradial is shown
in Figure 2d. As shown for the snapshot in Figure 2b, the
travel-time isochrones in Figure 2c are compressed per-
pendicular to the radial direction. This has important con-
sequences for the geometry of the seismic rays, which
are always perpendicular to the travel-time isochrones.
Whereas in the isotropic case (Figure 2d) the rays are
always straight, the anisotropic rays are curved, so that
they travel preferably along the fast radial direction (Fig-
ure 2c). Consequently, first-arriving travel times within a
limited zone opposite to the source position are almost
identical (;2=radius/vradial).

The effect of this important phenomenon is clearly evi-
dent in the seismic section of Figure 3. Here, synthetic
seismograms are plotted as a function of the angular dis-
tance from the source. In the zone between 1108 and
2508, the onsets of the first-arriving wave trains are
almost identical. For comparison, travel times obtained
from our Eikonal solver are superimposed in Figure 3
(solid black line). The shape of the curves formed by the
onsets in the seismograms and the computed travel
times are in good agreement, thereby indicating that our
simplified assumption of elliptical anisotropy is reason-
able. Note that the seismogram onsets appear to be
shifted relative to the computed travel times. This is
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Figure 3 Synthetic seismic section for the set-up shown in Fig-
ure 2a. Note that larger amplitudes in the seismograms were
clipped to enhance the onsets of the first-arriving wave trains.
The solid line depicts computed travel times with our anisotropic
Eikonal solver. Dashed lines represent isotropic travel-time
curves at 1483 and 1048 m s-1, respectively. Emergent onsets
of the seismograms mean that the computed travel times appear
to be shifted.

Figure 4 Tomographic results for the numerical experiment. Open dots indicate the source positions and crosses indicate the
receiver positions. (a) RMS misfits for tomographic inversions using different anisotropy correction factors. The horizontal axis indi-
cates tangential velocities used for computation of the correction factors. (b) Uncorrected tomogram showing radial velocities. (c)
Tomogram computed with optimum correction factors associated with vtangentials1048 m s-1. (d) Overcorrected tomogram computed
with correction factors associated with vtangentials656 m s-1. Radial velocities are shown in b–d.

caused by the emergent character of the source wavelet
used for the simulations. The actual onsets have small
amplitudes. For comparison, isotropic travel-time curves
using vradial and vtangential are also shown (dashed lines in
Figure 3). As expected from the results of Figure 2, these
are inadequate representations for the travel times of
waves traveling through an anisotropic medium.

Anisotropy correction factors

Ideally, the effects of anisotropy should be included in
the inversion process (Pratt and Chapmann 1992). Alter-
natively, by assuming that anisotropy effects of tree
tomography are governed primarily by a constant radial/
tangential velocity ratio, the travel times observed can be
inverted using standard isotropic travel-time tomography
packages, which are widely available. For this purpose,
synthetic travel times need to be calculated for a range
of different anisotropy factors ´. The correction factors
are obtained by dividing the anisotropic travel times by
the isotropic values computed using the radial propa-
gation velocity. These correction factors are multiplicative
and depend only on ´ and the angular positions. Since
they are independent of the radius, the corrections can
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Figure 5 Tomographic results for sample A. Open dots indicate the source positions and crosses indicate the receiver positions.
(a) RMS misfits for tomographic inversions using different anisotropy correction factors. The horizontal axis indicates the tangential
velocities used for computation of the correction factors. (b) Uncorrected tomogram. (c) Tomogram computed with optimal correction
factors associated with vtangentials1250 m s-1. (d). Photograph of sample A. The radial velocities are shown in b and c.

also be applied in cases for which the cross-section of
the tree deviates from a circle.

Numerical tests with synthetic data

The effects of our correction scheme are illustrated in
Figure 4. We assume the same velocity model as shown
in Figure 2a and consider 36 source and receiver posi-
tions equally distributed around the tomographic plane.
Travel times are computed with our anisotropic finite-dif-
ference Eikonal solver. Correction factors are computed
for a suite of anisotropy factors ´ corresponding to tan-
gential velocities of 656–1483 m s-1. Using a value of
1483 m s-1 (i.e., uniform correction factors of 1) results in
the tomogram shown in Figure 4b. The velocities are too
high in the center and too low in the outer parts of the
tomogram. Ignoring the effects of anisotropy resulted not
only in substantial artifacts in the tomogram, but also in
a relatively large root-mean-square (RMS) misfit between
the computed and observed (synthetic) travel times of
approximately 8 ms.

We repeated the inversion procedure using all correc-
tion factors and computed the resulting RMS misfits (Fig-
ure 4a). As expected, application of the true tangential
velocity of 1048 m s-1 results in the smallest RMS misfit
of 2 ms. Theoretically, the misfit should be zero, but dis-
cretization errors and minor numerical artifacts prevent a
perfect fit between the original data and those predicted
by the tomogram. The radial velocity tomogram corre-

sponding to the true correction factors associated with
vtangentials1048 m s-1 is shown in Figure 4c. The expected
homogeneous velocity of 1483 m s-1 is almost perfectly
reconstructed, with values ranging between 1480 and
1490 m s-1. In contrast, overcorrecting the travel times
with erroneously low tangential velocities of 650 m s-1

results in much larger RMS misfits of 7 ms (Figure 4a)
and a flawed tomographic reconstruction (Figure 4d).

From this numerical experiment, we conclude that our
correction factors are capable of accounting for first-
order anisotropy effects. Furthermore, the repeated
inversions required with different sets of correction fac-
tors allow the average radial/tangential velocity ratio to
be determined.

Applications to spruce samples

Our tomographic inversion scheme was applied to two
spruce samples. Both had an average diameter of
approximately 400 mm. Sample A originated from a
healthy tree (Figure 5d), whereas the interior of sample B
was largely decayed (Figure 6d). Data were acquired with
the Fraunhofer USH system. A total of 20 source and 20
receiver positions were used for sample A, and 19 source
and receiver positions were considered for sample B. In
both cases, an impulsive source signal was employed
and the resulting seismograms were digitized at a sam-
pling rate of 0.3 ms. First-break onsets were determined
using an automatic picker that is based on the Akaike
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Figure 6 Tomographic results for sample B. Open dots indicate the source positions and crosses indicate the receiver positions.
(a) RMS misfits for tomographic inversions using different anisotropy correction factors. The horizontal axis indicates the tangential
velocities used for computation of the correction factors. (b) Uncorrected tomogram. (c) Tomogram computed with optimal correction
factors associated with vtangentials1360 m s-1. (d) Photograph of sample B. The radial velocities are shown in b and c.

information criteria (Zhang et al. 2003). This algorithm
proved to be extremely reliable for our data. Most first-
break onsets were determined to "2 ms.

Results for sample A are displayed in Figure 5. The
uncorrected tomogram in Figure 5b suggests the pres-
ence of a pronounced high-velocity zone in the center of
the cross-section. This is remarkably similar to the uncor-
rected tomogram in Figure 4b, suggesting that this is an
artifact. Consequently, repeated inversions with different
anisotropy correction factors were performed. The radial
velocity (1700 m s-1) required for our correction scheme
was determined by averaging apparent velocities (dis-
tance/travel time) computed for source-receiver pairs
that were approximately opposite to each other. The
curve in Figure 5a indicates that low RMS values
between 3.5 and 3.75 ms can be reached with tangential
velocities between 1000 and 1500 m s-1. Figure 5c shows
the tomogram resulting from data corrected with a tan-
gential velocity of 1250 m s-1 (minimum of the RMS
curve). Most of the artifacts in Figure 5b are not observed
in Figure 5c. The remaining small fluctuations in the
tomogram are probably minor irregularities in the wood
structure of sample A that are not visible in the photo-
graph of Figure 5d.

The same procedure as described for sample A was
also repeated for sample B. The radial velocity was esti-
mated to be ;1600 m s-1. For transverse velocities of

1200–1500 m s-1, the RMS curve in Figure 6a shows low
values. This indicates that the anisotropy of sample B is
somewhat lower than that of sample A. The low-velocity
zone shown in the tomogram in Figure 6c (computed
with the optimum tangential velocity of 1360 m s-1) asso-
ciated with the decayed region in the center of the sam-
ple appears to be somewhat larger than that observed in
the photograph in Figure 6d. Radial velocities within this
zone vary between 1000 and 1200 m s-1. The decayed
zone visible in Figure 6d is mostly air-filled, which should
result in velocities of approximately 330 m s-1 (air veloc-
ity). Therefore, it must be concluded that the low-velocity
zone delineated in the tomogram rather represents a
region where the decay is in an intermediate state. Subtle
changes in the wood color in the region surrounding the
hole (Figure 6d) support this interpretation.

The fact that the decay hole is not visible in the tomo-
gram as a void is an inherent limitation of travel-time
tomography. According to Fermat’s principle, rays tend
to avoid low-velocity zones. The resulting sparse ray cov-
erage generally decreases the reliability of the tomogram
in regions of decreased velocities. It is therefore often not
possible to identify very low-velocity features within
areas where the velocities are already decreased. Never-
theless, on the basis of our tomographic reconstruction,
the tree from which sample B was taken would have
undoubtedly been identified as critical.
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Conclusions

Conceptually, tomographic travel-time inversion is a
powerful tool for non-destructive testing of trees, but
ignoring the effects of anisotropy may lead to substan-
tially distorted images. Our new correction scheme
removes first-order anisotropy effects and leads to
meaningful tomograms. This has been demonstrated
with synthetic and observed data.

Together with our fully automated picking algorithm,
the methodology presented is applicable with a standard
laptop computer to direct field measurements. The entire
sequence of picking the first breaks, determination of the
anisotropy correction factors and final tomographic
inversion can be performed within a few minutes. If future
developments of the data acquisition procedure allow the
measurements to be accomplished within a similarly
short time, we suggest that acoustic tomography will
become an extremely efficient tool for routinely inspect-
ing urban trees.
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