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S U M M A R Y
We describe a new technique for implementing the constraints on magnetic fields arising
from two hypotheses about the fluid core of the Earth, namely the frozen-flux hypothesis
and the hypothesis that the core is in magnetostrophic force balance with negligible leakage
of current into the mantle. These hypotheses lead to time-independence of the integrated
flux through certain ‘null-flux patches’ on the core surface, and to time-independence of their
radial vorticity. Although the frozen-flux hypothesis has received attention before, constraining
the radial vorticity has not previously been attempted. We describe a parametrization and an
algorithm for preserving topology of radial magnetic fields at the core surface while allowing
morphological changes. The parametrization is a spherical triangle tesselation of the core
surface. Topology with respect to a reference model (based on data from the Oersted satellite)
is preserved as models at different epochs are perturbed to optimize the fit to the data; the
topology preservation is achieved by the imposition of inequality constraints on the model,
and the optimization at each iteration is cast as a bounded value least-squares problem. For
epochs 2000, 1980, 1945, 1915 and 1882 we are able to produce models of the core field which
are consistent with flux and radial vorticity conservation, thus providing no observational
evidence for the failure of the underlying assumptions. These models are a step towards the
production of models which are optimal for the retrieval of frozen-flux velocity fields at the
core surface.

Key words: geomagnetism, secular variation, frozen flux.

1 I N T RO D U C T I O N

Direct observations of the Earth’s magnetic field play an important
role, alongside palaeomagnetic measurements, dynamo simulations
and laboratory experiments, in contributing to our ultimate under-
standing of the processes which generate and sustain the field over
time. Earth’s main magnetic field has been modelled repeatedly since
the first least-squares models were derived by Gauss, but the advent
of vector satellite observations with launching of the Magsat satel-
lite in late 1979 ushered in an era in which high quality geomagnetic
data are routinely used to address the problem of obtaining accurate
and consistent models of the Earth’s main magnetic field at the core–
mantle boundary (CMB). Although direct observations do provide
the highest resolution images of the field, they remain limited in
their resolution, not least because of the presence of the magnetized
crust which obscures the shortest wavelength features of the field.
Even the most accurate satellite data, currently being provided by
the Oersted and Champ satellites, are unable to unequivocally de-
termine the number and locations of patches of opposite polarity
flux at the core surface. Such a deficiency was demonstrated neatly,

for the case of Magsat data, by O’Brien (1996). Therefore, there
remains an unavoidable ambiguity in the images of the field that
they can provide.

Beginning with the work of Roberts & Scott (1965), many tech-
niques have been developed over the last 40 yr to produce large-scale
maps of the geomagnetic field at the CMB from a given data set.
Most adopt a least-squares rationale for fitting the model to the im-
perfect data, along with some other methodology for making the
problem well posed; both models at a particular epoch (e.g. Shure
et al. 1982; Gubbins & Bloxham 1985; Bloxham et al. 1989) and
time-dependent models (Bloxham & Jackson 1992; Jackson et al.
2000) have successfully been produced using this approach.

The thrust of our paper is to test whether it is possible to con-
struct models of the core magnetic field which satisfy the known
constraints which arise when one makes two simplifying assump-
tions: that the core is a perfect conductor and that the mantle is an
insulator. Although these assumptions cannot represent geophysical
reality, they are likely to be very good approximations; this preju-
dice can be used in the geophysical inverse problem to choose from
the huge space of models compatible with any particular data set.
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We see the construction of these models as a prerequisite to the
construction of self-consistent models of fluid flow at the CMB.

The frozen-flux hypothesis is motivated by the differing
timescales associated with diffusion and advection in the induction
equation, which describes the evolution of the geomagnetic field.
The difference is so great that over the time period that one is able
to generate field models from direct observations of the magnetic
field (ca. 400 yr) the diffusive term plays a secondary role and can
reasonably be neglected. This in turn implies that the magnetic field
lines are frozen to the fluid of the liquid outer core and, therefore,
changes in the magnetic field are due solely to advection of the
field by the flow. Mapping the field at the CMB also gives partial
information on the fluid flow at the CMB.

Adopting the frozen-flux approximation imposes rigorous con-
straints on resulting field models. Under the frozen-flux approxima-
tion, null-flux curves (NFC, curves on which the radial component
of the field is zero) are material lines and can neither be created
nor destroyed, implying that the topology of field models must be
constant throughout time. This means that once a null-flux patch
(defined as a patch on the core surface bounded by a NFC) exists
it cannot split apart to form two patches, nor can it merge with any
other such patch thereby lessening the overall number.

Null-flux patches are subject to additional constraints, namely the
constraint of constant integrated flux (Backus 1968) and (when ad-
ditional approximations are invoked) the radial vorticity constraint
(Jackson 1996). The frozen-flux constraint simply states that the flux
linked by a patch must be preserved at all times; this is described
by eq. (15) below. The vorticity constraint, described in Jackson
(1996),1 requires that the mantle is an insulator so that the radial
current vanishes identically at the CMB. Then Kelvin’s celebrated
circulation theorem applies and the equatorially projected area of a
null-flux patch must remain invariant in time. This arises because of
the magnetostrophic force balance at the core surface, owing to the
very small values of the Ekman and Rossby numbers in the core.
Fig. 1 illustrates these ideas schematically.

We make it quite clear at this point that we understand that the
preservation of topology is the weakest part of the frozen-flux hy-
pothesis: when two NFCs become very close, it can take a minuscule
amount of diffusion for them to merge. That being said, the inte-
grated flux of the merged patch will be the same as the sum of the
fluxes of the two original patches, and the same is true of the radial
vorticities. Let us clarify that we employ the topological constraints
as a necessary vehicle to enable us to keep relevant fluxes and vor-
ticities correct; it is indeed the case that in some of our models flux
patches have become so close that it would require only tiny dif-
fusion for them to merge. We do not see this as a problem, since
they individually contain the correct fluxes and vorticities. If it is
possible to satisfy the constraints whilst preserving topology, it is
certainly possible to do so when merging of patches is allowed. In
this sense, our strict adherence to the frozen-flux constraints with
preserved topology represents the most stringent test of frozen-flux
possible.

The frozen-flux approximation was examined in some detail in
a series of papers dealing first with estimates of secular variation
(Gubbins 1984) and subsequently with the main field (Bloxham &
Gubbins 1985, 1986; Gubbins & Bloxham 1985). The problem of
developing geomagnetic field models for successive epochs that ac-

1 Note a typographical error in Jackson (1996), namely the omission of a
minus sign on the right-hand side of eqs (2.9)–(2.11); this does not alter the
conclusions.

tually incorporate frozen-flux constraints was first considered by
Bloxham & Gubbins (1986). They note two methods for testing the
frozen-flux hypothesis: comparison of differences in flux integrals
between epochs in light of formal error estimates, and construction
of models consistent with the constraints, followed by examination
of the degradation in quality of fit to the observations. In applying
these tests to data from 1959.5, 1969.5 and 1980 they tentatively
concluded that there was evidence for violation of the hypothesis—
noting that this result was sensitive to the formal error bars on flux
integrals. In an analysis over a longer time interval Bloxham &
Gubbins (1985) noted that their core field models evaluated at
around 65 yr intervals from 1715 to 1980 were inconsistent with
Backus’s necessary conditions on the frozen-flux hypothesis. In a
later development, Constable et al. (1993) enforced the frozen flux
constraints by constraining the field model being developed, in this
case epoch 1945, to have the same flux patch integrals as a given ref-
erence model and minimizing differences from the chosen model.
The reference model chosen comprised eight flux patches and was
obtained from the Magsat data set, epoch 1980. Constable et al.
(1993) concluded that the frozen-flux approximation was valid, at
least over this interval, since they found models satisfying the con-
straints (15).

O’Brien et al. (1997) provided a more elegant method of enforc-
ing the frozen-flux constraints, when generating field models. They
devised an ingenious method for constraining the topology of any
field model by the use of inequality constraints; a simple example
will illustrate the point. It is crucial that in a patch of negative flux
all the field values remain negative everywhere, otherwise nesting
of the patch occurs with a patch of positive flux and the topology
of the patch is lost. It is this preservation of topology that is the
most difficult aspect of the problem to address, at least from a com-
putational standpoint. O’Brien et al. (1997) were able to preserve
the topology of the patches, but the positions of the patches were
prescribed in the modelling process to conform with those in a ref-
erence model—once specified they were not allowed to move, and
occasional artificial surgical procedures had to be implemented dur-
ing the modelling. These limitations may not conform to reasonable
field behaviour when one considers the kinds of motions that ap-
pear to take place with westward drift and other forms of secular
variation.

In this paper, we extend the works of Constable et al. (1993) and
O’Brien et al. (1997) (hereafter known as CPS and OCP, respec-
tively) by developing a more flexible algorithm for handling the
topological constraints and constructing field models conforming
to both the flux and vorticity constraints, defined by eqs (15) and
(16). We generate an epoch 2000 reference model, from the high
quality Oersted satellite data which has recently been made avail-
able, as our starting point for this work. From this we construct four
single-epoch models, for the years 1980, 1945, 1915 and 1882, and
examine to what extent the frozen-flux approximation is valid over
this temporal range by attempting to fit the data satisfactorily, while
conforming to both the flux and vorticity constraints. Our results
indicate that it is possible to find simple, smooth models of the field
which satisfy the required constraints; we therefore, consider that
there are no observational grounds for rejecting the frozen flux hy-
pothesis, nor the hypothesis of magnetostrophic balance (which has
never been tested before).

The organization of the paper is as follows: Section 2 describes
the parametrization of the magnetic field on the core surface, along
with the topology preservation algorithm which is the crux of the
procedure for easily finding optimal models fitting the data and
the constraints. Section 3 describes the reference model, generated
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Frozen flux in geomagnetism 135

Figure 1. Schematic diagram illustrating the conservation of flux and radial vorticity. In this diagram, negative flux is white and the intensity of positive flux
is given by grey-shades; the total flux over the surface is zero. A NFC is the line of zero flux, and a null-flux patch is enclosed by that curve. The frozen flux
conditions allow a null-flux patch to shrink in size, provided that the flux linked by the patch is preserved. However, the imposition of Kelvin’s theorem means
the only way that a patch can shrink is to change the latitude of at least part of the patch (bottom panel compared to top).

using the recent Oersted data set, that we use to provide the values
of the patch integrals that all other models must achieve. Section 4
describes the results for epochs 1980, 1945, 1915 and 1882.

2 M AT H E M AT I C A L F O R M U L AT I O N

2.1 Unconstrained modelling

Much of the mathematical detail is explained in CPS and OCP
(to which we refer readers), however below we briefly review their
methodology, paying particular attention to modifications we have
introduced.

Following CPS, whose notation is followed henceforth, the model
Br (ŝ) is defined at a finite set of N nodes on the sphere of unit radius,
representing the (normalized) surface of the Earth’s core. The nodes

are defined by covering the sphere with a tessellation of spherical
triangles, generated by bisections and trisections of the regular icosa-
hedron on the unit sphere (Baumgardner & Fredrickson 1985, see
fig. 2). This results in an approximately even distribution of spatial
nodes over the unit sphere. This representation turns out to be sig-
nificantly more flexible than the more familiar representation of the
field in terms of spherical harmonics (e.g. Langel 1987) and is much
more suited to our purposes. For example, under this parametriza-
tion the value and sign of the field at a single point is dependent on
at most three node values (those adjacent to the point in question)
whereas under the spherical harmonic representation the point value
depends on the weighted sum of the entire set of model parameters;
this leads to considerable difficulties when one wants to constrain
the sign of the field at a particular point, one of the operations that
we find necessary to perform in what follows.
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136 A. Jackson et al.

Figure 2. The tessellation of the sphere by spherical triangles, generated
by bisections and trisections of the regular icosahedron on the unit sphere
(Baumgardner & Fredrickson 1985). The planar triangles are shown here
for clarity, although the computations take into account the sphericity of the
core by using spherical triangles.

The components of the magnetic field B at a position r outside the
core are given by the convolution of the model with the appropriate
Green’s functions:

Br,θ,φ(r) =
∫

∂C
Br (ŝ)Gr,θ,φ(r, ŝ)d2ŝ. (1)

Here the subscripting r, θ , φ is shorthand for the three spherical
components (r, θ, φ), ŝ is a position on the core surface, ∂C indicates
integration over the core surface and the circumflex denotes a unit
vector. G denotes the Green’s function which, for each spherical
component, is given by

Gr (r, ŝ) = 1

4π

[
ρ2(1 − ρ2)

R3
− ρ2

]
, (2)

Gθ (r, ŝ) = − 1

4π

ρ3(1 + 2R − ρ2)

R3T
(ŝ · θ̂ ), (3)

Gφ(r, ŝ) = − 1

4π

ρ3(1 + 2R − ρ2)

R3T
(ŝ · φ̂). (4)

Here, the core radius s = 3485 km, ρ = s/|r|, µ = ŝ · r̂, R =√
1 − 2µρ + ρ2 and T = 1 + R − µρ. These Green’s functions

are derived from the exterior solution to Laplace’s equation with
Neumann boundary conditions (see CPS for more details)

To generate a continuous representation of the field everywhere,
Br at position s within and on the edges of each spherical triangle
is defined by linear interpolation of the vertex values, after the tri-
angle is projected onto the plane tangent at its circumcentre using a
gnomonic projection (see CPS).

s =
3∑

i=1

αi xi and Br (s) =
3∑

i=1

αi Br (xi ), (5)

where Br is defined at vertices xi of the spherical triangle, and∑3
i=1 αi = 1. A complementary view is that attached to each node

is a 2-D tent-like basis function, with five or six planar faces rising
to the apex at the node in question (the ambiguity in the number of
faces arises from the different number of nearest neighbours result-
ing from the original tesselation: the 20 nodes of the original icosa-
hedral tesselation have five-fold coordination). Fig. 3 illustrates an
example basis function for a five-fold coordinated node, showing the
local support. The basis function shows the influence of the model
parameter in synthesizing the model: the entire model is generated
by summing the basis functions weighted by their node values. In
1-D problems, these basis functions are known as the B-splines of
order 2 (see e.g. Lancaster & Salkauskas 1986).

We note that in order for monopoles to be excluded from the
model, we must impose the additional constraint∫

∂C
Br d2ŝ = 0 (6)

which would not otherwise be obeyed by an arbitrary model under
this parametrization (though note that a model computed with frozen
flux constraints imposed (Section 2.2) will automatically fulfill this
condition provided the reference model does). We can write the
general relationship between a datum dj at position r and the model
b as

d j = F j (b), (7)

Figure 3. The basis function associated with a five-fold coordinated node, illustrated on a small section of a polyhedral rather than a spherical core. The vertical
axis shows the amplitude of the basis function; it is zero everywhere apart from in the triangles adjacent to the node to which it is associated. The basis functions
are linear ‘tent’ functions, with value unity at the vertex and zero on the edges. The local support is the key to the efficient computations reported herein.
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Frozen flux in geomagnetism 137

where b = {bi} are the N model parameters (i.e. the values of
the field at the N nodes) and F j represents the forward functional
relating the model b to the datum dj. For the models reported in this
paper N = 812. In the case of linear data, such as measurements of
the X , Y or Z components of the field, the relationship between a
datum can be written

d = Ab (8)

and A contains the inner products of the appropriate Green’s function
with the basis functions for each of the node values bj; these form the
rows of the so-called design matrix. Inner products for the forward
problem (and for the fluxes and radial vorticities) are computed using
a weighted sum of samples of the function in the plane triangle, using
an optimal degree-5 cubature rule (again, see CPS for more details).

By virtue of the compact support of the basis functions which
describe Br, the location of every NFC is defined solely by the values
of the nodes which are immediately adjacent to it. Thus finding NFCs
requires simply looking for adjacent nodes of opposite sign. This
feature is central to the application of inequality constraints which
is described in Section 2.2.

Following the standard regularized least-squares methodology
(e.g. Parker 1994) we seek a model estimate b = {b1, b2, . . . , b N}
which fits the data d = {d 1, d 2, . . . , d M} while minimizing some
measure of the model complexity, that is, we seek that b which
minimizes

�(b) =
M∑

j=1

[
d j − F j (b)

σ j

]2

+ λsR(b)

= [d − F (b)]T C−1
e [d − F (b)] + λsR(b).

(9)

Here σ j is the uncertainty in dj which enters the (diagonal) data co-
variance matrix Ce. The final termR, describes the model complex-
ity and the damping parameter λs represents the trade-off between
model smoothness and fit to the data: we use λs to achieve a fit to
the data of one standard deviation on average, namely that the misfit

M =
√√√√ 1

M

M∑
j=1

[
d j − F j (b)

σ j

]2

(10)

has the value unity. The numbers of data (M) for the different data
sets used are given in Section 4. In what follows, we adopt the F4

norm of Shure et al. (1982) as our regularization; we minimize the
squared horizontal gradient of the radial component of the field,
integrated over the core surface:

R = F4(Br ) =
∫

∂C
|∇h Br |2d2ŝ = bT C−1

m b (11)

(Other forms ofR could equally well have been used, for example,
the Ohmic heat norm or the dissipation norm: qualitatively the same
result would be obtained.) For more details on the evaluation of R
see CPS.

In (9) the fit to the data is measured by the squared misfit, a
commonly used criterion for discriminating between models (see
the discussion in Parker 1994). This would also be a maximum
likelihood estimator if the errors contaminating the data set were
to originate from a Gaussian distribution. However, we caution that
there is accumulating evidence that the distribution of errors may be
far from Gaussian (e.g. Walker & Jackson A. 2000). Nevertheless,
bearing this cautionary note in mind we shall proceed with the least-
squares approach. In generalF is non-linear so an iterative approach
is employed: F is linearized about an estimate of the solution bk ,
where the superscript denotes the kth estimate, and then (9) is solved

for an estimate bk+1:

bk+1 = (
AT C−1

e A + λsC
−1
m

)−1
AT C−1

e

[
d − F (bk) + Abk

]
, (12)

where A is the matrix of derivatives of the data with respect to the
model at the kth iterate. As in OCP we use the Newton algorithm
variant that solves for the vector bk+1, rather than a perturbation
δb to bk , in order that inequality constraints (which apply to bk+1

and not to δb) can be imposed. The linear system is actually solved
using the QR algorithm, which obviates the need to generate the
normal equations ATC−1

e A; the QR version (Lawson & Hanson
1995) of the system is passed to the algorithm Bounded Variable
Least Squares (BVLS) (see Section 2.2 and OCP) when constraints
are imposed. Clearly for linear data the termsF (bk) and A bk cancel,
but, somewhat surprisingly, this is also the case for H and F intensity
data, illustrating that the non-linearity is very slight for these data.
We illustrate this for H , but a similar relation follows for F:

δH

δbi
= H−1

(
X

δX

δbi
+ Y

δY

δbi

)
(13)

so

Abk = δH

δbi
bi = H−1

(
X

δX

δbi
bi + Y

δY

δbi
bi

)
= H−1(X 2 + Y 2)

= H = F (bk). (14)

The iterative procedure continues until a converged solution is ob-
tained (the end of Section 2.2 gives exact criteria). For all non-linear
data we work with the true magnetic elements (X , Y , Z, H , F, I , D),
rather than the linear Bauer (1894) representation of I and D em-
ployed by OCP and CPS. This is because the flux and radial vorticity
constraints (see below) imposed on the model result in the problem
being non-linear; we found that the additional non-linearity due to
I and D caused little extra computational expense.

2.2 Constrained modelling

The frozen-flux approximation (Roberts & Scott 1965) has some
severe consequences on the magnetic field at the core surface. Since
diffusion is neglected, NFCs (curves on which the radial magnetic
field Br = 0) cannot connect or break, thus implying that the topol-
ogy of the field must be preserved throughout time. Further to this
there are constraints on each patch (defined by the region on the core
surface enclosed by a NFC) which must also be preserved through-
out time; namely the flux constraint (Backus 1968) and the radial
vorticity constraint (Jackson 1996).

The flux and vorticity constraints are given by

B = d

dt

∫
S j

Br d2ŝ = 0 (15)

V = d

dt

∫
S j

cos θ d2ŝ = 0, (16)

respectively, where Sj is the region bound by a NFC and θ is the co-
latitude. Eq. (15) is well known, and originates from Backus (1968);
we do not discuss its origins further. Eq. (16) is perhaps less-well
known, and originates from Jackson (1996). It originates from a
treatment of the Navier–Stokes equation in the so-called magne-
tostrophic limit, in which inertial and viscous forces have been
dropped on account of the small Rossby and Ekman numbers in
the core. The Navier–Stokes equation reads

2ρΩ ∧ u = −∇ p + ρ ′g + J ∧ B, (17)

C© 2007 The Authors, GJI, 171, 133–144

Journal compilation C© 2007 RAS



138 A. Jackson et al.

where u is the fluid velocity, � is the rotation vector, ρ is the den-
sity, p is the pressure, ρ ′ is the density perturbation associated with
convection and J is the electrical current density. When integrals of
the radial part of the curl of the left-hand side over null-flux patches
are considered, all contributions from the pressure, buoyancy and
Lorentz force on the right-hand side vanish. The vanishing of the
Lorentz force contribution occurs because we have chosen NFCs
as boundaries of the regions of integration. Despite the fact that
the fluid moves magnetostrophically in general, the NFCs actually
move geostrophically by dint of the fact that the Lorentz force van-
ishes identically on these curves. This, coupled with the fact that the
NFCs are material lines, leads to eq. (16).

The veracity of eq. (16) cannot be ensured. The dismissal of
the viscous force is correct in the main body of the core, but the
fluid must obey non-slip boundary conditions at the CMB, and will
form some type of viscous boundary layer. We have assumed that
the constraint holds beneath the viscous (or magnetic) boundary
layer, across which the radial component of B is continuous (this is
required in the proof), but the issue is a delicate one on which we will
not dwell. A similar unanswered question concerns the continuity
of the horizontal components of B across the viscous (or magnetic)
boundary layer.

To enforce eqs (15) and (16) we follow CPS (who only consider
constraint eq. 15) and define a reference model, b∗ say, which des-
ignates the number of patches, P, to be preserved, together with the
flux and vorticity associated with each patch. This gives us a set
of P target fluxes and a set of P target vorticities which any epoch
model estimate must match. In enforcing constraints (15) and (16)
on the model estimate, the function (9) is expanded to the problem
of minimizing

�(b) =
M∑

j=1

[
d j − F j (b)

σ j

]2

+ λsR(b)

+ λ f

P∑
j=1

[
B j (b) − B j (b

∗)
]2

/B j (b
∗)

+ λv

P∑
j=1

[
V j (b) − V j (b

∗)
]2

/V j (b
∗). (18)

Here λf and λv are parameters defining how well constraints eqs (15)
and (16) are enforced; values of 1010 have been used. For example,
λf = 0 implies that eq. (15) is not enforced, while λv = 0 implies (16)
is not enforced. Eqs (15) and (16) are implemented via quadratic
constraints in eq. (18), and therefore, B j (b∗) and V j (b∗) can be
thought of as 2P additional ‘data’, supplied by the reference model,
and the ‘forward function’ for each of the 2P ‘data’ is made up of
a suitably weighted vector, describing the contribution of the nodes
within patch Sj to its flux or vorticity integral. Note that we have
chosen to implement the constraints as a penalty on the relative
difference between the current model and the reference model. This
ensures that all constraints are satisfied to the same small percentage
error. Without this device, it is possible for the largest fluxes and
vorticities to be preferentially fit at the expense of the smallest.

In order to optimize the system (18) we use a Newton algorithm.
For the linear data we use the matrix linking the data to the model
parameters, and for the non-linear data we use the Frechét derivatives
of the data with respect to the model parameters. For the patch
integrals we need the derivatives with respect to perturbations in the
model. Consider the general integral

I =
∫

x= f (b)
g(b, θ, φ) dS. (19)

Then the derivative is in general

δ I =
∫

x= f (b)
δg(b, θ, φ) dS +

∮
x= f (b)

g(b, θ, φ)(δx · n̂) dl, (20)

where δx · n̂ is the component of the perturbation of the boundary
in the direction n̂ normal to the boundary due to a change in the
model. We find

δx · n̂ = − δBr

|∇h Br (r)| (21)

for both our integrals where the boundaries are the NFCs. Although
the null-flux integrals (eq. 15) are non-linear, it is a felicitous fact
that a perturbation δB can be related to a perturbation in the model
δb as

δB = Bδb (22)

with no approximation at all by virtue of the fact that the boundary
terms in the perturbation of eq. (15) vanish (Bloxham & Gubbins
1985). This is not the case for the Frechét derivatives of V j with
respect to the bi, for which the boundary integral is the only non-
vanishing contribution.

The system is solved by iterating to a converged solution using a
BVLS algorithm to find a field model which retains the topology of
the given reference model, b∗ (described in Section 2.3). We omit
a description of the methodology of BVLS here and refer readers
to Lawson & Hanson (1995) and Stark & Parker (1995) who give
a lucid description of the method. With the topological constraints
satisfied we are able to enforce constraints eqs (15) and (16) by
choosing λf and λv , appearing in eq. (18), such that a desired con-
formity is achieved. The final converged model is such that both the
normalized misfit and model complexity (R) have converged, the
model fits the data satisfactorily, and the average percentage error
(averaged over the P patches) of the flux and vorticity constraints is
less than 1 per cent.

2.3 Topology preservation

At the heart of our optimization procedure is an algorithm to re-
tain topology of a model from iteration to iteration while allow-
ing changes in morphology. Topology preservation ensures that the
number and nestedness of patches remains the same; morphological
changes are allowed, so that patches can change their shape, size and
location.

The concept of neighbours is central to the algorithm. Under
the icosahedral discretization the coordination (or the number of
nearest-neighbours) of any node is either six- or five-fold (the former
being overwhelmingly the more common). The ‘sign’ of a node is
the sign of the value of bi at that node. At any one iteration only
certain nodes are allowed to change sign from their current values.
The nodes which are allowed to change sign form the ‘unconstrained
set’ U , and the nodes which are not allowed to change sign form
the ‘constrained set’ C. All variables are assigned upper and lower
bounds u and l so that l j ≤ b j ≤ u j . The constrained set are assigned
upper and lower bounds in the following way:

If b j ∈ C and b j < 0 then l j = −|ℵ|; u j = −|ε|
If b j ∈ C and b j > 0 then l j = |ε|; u j = |ℵ|, (23)

where in our application we have set ε = 10 and ℵ = 104 µT, though
in reality the upper bounds are generally impotent because of the
regularization of the model that is applied.
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Figure 4. The assignment of nodes to the sets U (unconstrained) and C
(constrained), the sets where signs of the nodes are either free to change sign
or must remain of the current sign, respectively. The assignments ensure that
the topology of null-flux patches is retained. Shown here is an example with
nodes which are free to change sign coloured black; all others must retain
their current sign.

Only nodes whose radial field value is close to zero are likely to
usefully change sign, so on any one NFC ∂S we begin by ranking
adjacent nodes in terms of their proximity to ∂S. Once the ordered
list has been made we move down the list, assigning to U each
node sequentially, provided it satisfies a set of ‘topology rules’. We
distinguish between ‘inside’ and ‘outside’ the patch (the distinction,
although arbitrary, can be definitely assigned). We give an example
in Fig. 4 of the unconstrained nodes at a particular iteration of a
model. The nodes marked with black dots are unconstrained, and
are free to change sign. All other nodes must retain their current sign.
The figure illustrates the most important topology rule: if a node is
an interior node then it is prevented from being assigned to U if any
exterior neighbour is already inU (and vice versa). This prevents the
creation of new null-flux patches. There are a considerable number
of more elaborate rules designed to deal with patches containing
very small numbers of nodes; a comprehensive list of the rules is
detailed in the Appendix. As an example, there should be more than
one node within any patch at any time. A patch containing only one
node would necessarily always have that node’s sign constrained (to
prevent the patch disappearing) but this means that the patch cannot
migrate without first enlarging. Problems such as this one can be
eliminated by increasing the resolution of the model.

The algorithm works extremely effectively: patches can migrate
easily across the core from iteration to iteration; changes in size and
shape are accomplished smoothly as the model vector is updated.

3 T H E R E F E R E N C E M O D E L

The reference model, b∗ is generated from a subset of the high
quality Oersted data set described in Olsen et al. (2000). The data
set comprises 3907 vector triples (Br , B θ , Bφ) together with 2148
total field intensity measurements, F, spanning an interval of ap-

proximately 4 months around epoch 2000. Using the secular varia-
tion estimate of the IGRF we reduced the data to epoch 2000 and,
furthermore, we remove the Dst-dependent external magnetic field
model of Olsen et al. (2000). Finally, following OCP, we decimate
the resulting data into 5◦ cells in order to remove any possible er-
ror correlation due to crustal noise. This results in a final data set
of 1228 vector triples and 998 scalar measurements with excellent
global coverage.

Associated with each data measurement is an error estimate and,
following Olsen et al. (2000), we allow for 2.25 nT in the scalar
measurements F. Holme & Bloxham (1996) describe a method in
which the vector triples (Br , B θ , Bφ) are rotated to a new coordinate
system (B B , B⊥, B 3), where BB is in the direction of the field
B at the data coordinate, and B⊥, B 3 are in the directions n̂ ∧ B
and B ∧ (n̂ ∧ B), respectively. With respect to the Oersted data n̂
represents a unit vector in the direction of the stellar imager (SIM)
bore-sight (Olsen et al. 2000). In this new rotated coordinate system
the errors on the field components (BB, B⊥, B3) are uncorrelated.
Following Holme & Bloxham (1996) (BB, B⊥, B3) are assigned
weightings defined by the parameters χ and ψ , together with the
field strength |B |. We set χ = 60′′, ψ = 10′′, see Olsen et al. (2000).

In Fig. 5 we illustrate b∗ resulting from the Oersted data, plotted
at the core surface s = 3485 km. We implement a clamping scheme
to make the least-squares method insensitive to outliers: final itera-
tions are performed rejecting data whose residuals exceed 3 standard
deviations. The normalized misfitM of the model is 1.01 and the
number of data rejected is 26 vector triples and 171 scalar measure-
ments. Although this may seem quite a large number of rejected
F data, we account for this by the fact that topological constraints
(eight patches) are enforced on the model, so as to make direct com-
parisons with the work of CPS. (If the topological constraints are
removed a reference model can be found with misfit of 1.01; in this
case only 40 F data are rejected, however the model comprises 11
patches.) The flux strengths and vorticities of each patch, together
with a description of their position, can be found in Tables 1(a) and
(b), where we use the same patch identification as CPS. Compar-
ing Fig. 5 with the 1980 reference model of CPS (therein called
STT1980) we see that the reference models are similar, although b∗

is slightly rougher than STT1980 (also indicated by the flux inte-
grals of b∗ (Table 1a) being of greater magnitude). We find this to
be the case for our own models for 2000 and 1980, see Table 2. This
is to be expected as the Oersted data are of higher quality than those
used by CPS (Magsat data) when developing STT1980.

4 R E S U LT S

We now proceed to investigate whether it is possible to generate
field models consistent with the epoch 2000 reference model b∗,
described above. If we are able to obtain such models which, while
fitting the data adequately, satisfy both the flux and vorticity con-
straints, then we are in a strong position to state that the frozen flux
approximation of Roberts & Scott (1965) is valid, at least over the
timescale considered in this paper.

We investigate the validity of the frozen flux approximation over
five epochs; namely 2000 (which provides the reference patch in-
tegrals), 1980, 1945, 1915 and 1882. The 1980 Magsat data set is
described in detail in OCP, to which we refer readers for more de-
tails. Here we merely state that the data are linear and comprise
1262 X , 1262 Y and 1654 Z measurements. The data set for 1945
comprises observatory and survey data and is described in detail
in CPS; briefly the data are made up of 555 X , 554 Y , 634 Z and
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Figure 5. The reference model b∗, epoch 2000, plotted on the core surface, radius s = 3485 km. Red colours indicate flux out of the core, blue contours are
flux into the core; the contour interval is 100 µT. Misfit = 1.01, R = 0.484µT km−1. Aitoff equal area projection. All models in this paper have used N =
812 nodes.

Table 1a. Fluxes, in µT, of the topologically constrained models. Epoch
2000 defines the reference model, b∗.

Patch Position Epoch

2000 1980 1945 1915 1882

1 N. pole 53.77 53.77 53.77 53.82 53.77
2 N. hemisphere −17 566 −17 565 −17 573 −17 350 −17 561
3 Bone −1317.5 −1317.9 −1316.3 −1310.6 −1316.4
4 S. hemisphere 18 932 18 933 18 940 18 709 18 926
5 Easter Island −21.66 −21.66 −21.84 −21.66 −21.66
6 W. Pacific 27.95 27.68 26.88 27.94 28.12
7 St. Helena −143.51 −143.34 −143.42 −143.35 −143.55
8 E. Pacific 34.55 34.31 34.34 34.33 34.31

Table 1b. Vorticities, in steradian, of the topologically constrained models.
Epoch 2000 defines the reference model, b∗.

Patch Position Epoch

2000 1980 1945 1915 1882

1 N. pole 0.079 0.079 0.079 0.079 0.079
2 N. hemisphere 2.916 2.916 2.916 2.916 2.916
3 Bone −0.559 −0.559 −0.559 −0.558 −0.557
4 S. hemisphere −2.445 −2.445 −2.445 −2.445 −2.446
5 Easter Island −0.017 −0.017 −0.017 −0.017 −0.017
6 W. Pacific 0.032 0.032 0.032 0.032 0.032
7 St. Helena −0.032 −0.032 −0.032 −0.032 −0.032
8 E. Pacific 0.024 0.024 0.024 0.024 0.024

322 D measurements. The data distribution is poor in contrast to the
satellite data as it is confined to land based measurements (see figs
3–5 of CPS). However, this gives us a good opportunity to study the
effect of differing data coverage on the constrained modelling. The
1915 data set is derived from the 20th century historical database
described in Bloxham et al. (1989), and contains a considerable
amount of oceanic data from the ship Carnegie. The data set com-
prises 1156 X , 1021 Y , 1455 Z, 628 H , 173 I and 1394 D data.
Finally, the data set for 1882 is the one used in Walker & Jackson
(2000) and comprises approximately 10 000 observations with rea-
sonably global coverage (see fig. 2 of Walker & Jackson 2000).

Table 2. Comparison of model misfits and rough-
nesses.

Model MisfitM RoughnessR
2000 1.010 0.484 µT km−1

1980 0.994 0.431 µT km−1

1945 0.973 0.337 µT km−1

1915 0.976 0.325 µT km−1

1882 1.071 0.370 µT km−1

Table 3. Rules for assigning a node to U or C. #n(b)
j

is the number of boundary neighbours and #n(h)
j the

number of hinterland neighbours. (see appendix).

#n(b)
j #n(h)

j Assignment

1 0 U
2 0 C
2 1, 2 U
3, 4, 5 0 C

In Fig. 6, we illustrate the radial component of the Earth’s mag-
netic field, plotted at the core mantle boundary, for epoch 1980,
constrained by b∗. Comparing Figs 5 and 6, we see that they are
remarkably similar; a fact which is reassuring for two reasons. First
both models are generated from high quality data with excellent
global coverage and second, and more importantly, the two models
are only 20 yr apart. The observable differences between the two
models are fairly small scale, for example, the slight change in the
negative flux patch over the Antarctic. The reference model b∗ is
slightly rougher than epoch 1980; this is to be expected as the data
from Oersted is of a higher quality (smaller error budget) than that
of the Magsat mission. Comparing fluxes (Table 1a) and vorticities
(Table 1b) of epoch 1980 with b∗ we see that they give excellent
agreement, indicating that the frozen flux approximation is valid
over this short period. Comparing Fig. 6 with STT1980 of CPS
we see that they are in good agreement, although Fig. 6 is slightly
rougher than STT1980 due to the stronger constraints placed on
each patch.
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Figure 6. The 1980 constrained field model, plotted on the core surface. Colours as in Fig. 5. Misfit = 0.994,R = 0.431µT km−1.
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Figure 7. The 1945 constrained field model, plotted on the core surface. Colours as in Fig. 5. Misfit = 0.973,R = 0.337µT km−1.

Fig. 7 illustrates the model estimate for epoch 1945. Comparing
with b∗ we first note how much smoother the model is, as shown
by the value of R for the two models. This is because the data
is confined to land based observations, thus giving a much poorer
global coverage than the satellite data used to construct the reference
model. However, even with the contrast in model complexities, we
are able to produce a model for epoch 1945 satisfying both the flux
and vorticity constraints of b∗, see Tables 1a and b. Readers might be
concerned that visually the patch fluxes in Figs 5 and 7 appear not to
be conserved [e.g. compare the positive (red) southern hemisphere
patches]; rest assured that this is not the case. The large peaks in
magnetic field strength are more localized in Fig. 5, whereas in
Fig. 7 they have been smoothed out over a greater area. The net
effect is to conserve the flux, as illustrated in Table 1a, but to the
naked eye the models may look somewhat misleading. The main
difference between the morphology of the two field models is in
patch 3, the ‘Bone’ in the southern hemisphere. We feel that this is
a consequence of the contrast in data distributions over the southern
region, rather than an effect due to the constraints imposed on the
system.

Figs 8 and 9 illustrate the model estimates for epochs 1915 and
1882, respectively. Comparing all the plots we see that patches 5 and
7 (Easter Island and St. Helena) remain fairly stationary throughout
time, whereas patches 6 and 8 (W. and E. Pacific) are much more ac-
tive, changing both their latitude and longitude throughout time. The
two large negative regions of flux within patch 1 (N. Hemisphere)
are approximately independent of longitude in all epoch models, al-
though the region over Canada does drift down into North America
as we track back in time. This effect was also found in the uncon-
strained, time dependent, model of Jackson et al. (2000). Finally, we
note that, once again, the epoch models for 1915 and 1882, whilst
fitting the data satisfactorily, conform to both the flux and vorticity
constraints.

Table 2 summarizes the characteristics of the model. We find that
all the models have less complexity, measured by the roughnessR,
than the reference model. This is precisely what we would hope,
since none of the data sets have the resolving power of the reference
model data set. This point is reinforced in Fig. 10, which shows the
Lowes magnetic energy spectrum of the field, as a function of spher-
ical harmonic degree. None of the models with constraints require
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Figure 8. The 1915 constrained field model, plotted on the core surface. Colours as in Fig. 5. Misfit = 0.976,R = 0.325µT km−1.
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Figure 9. The 1882 constrained field model, plotted on the core surface. Colours as in Fig. 5. Misfit = 1.071,R = 0.370µT km.

Figure 10. Comparison of spherical harmonic energy spectra (Lowes spec-
tra) for the unconstrained and constrained models.

more energy than the 2000 reference model, and the imposition of
the constraints does not affect their smooth decay of power with
degree l.

5 C O N C L U S I O N S

The main result of the paper is that we find no insuperable difficul-
ties in calculating models for the last century which are consistent
with the frozen-flux hypothesis. This is encouraging, since theoreti-
cally we expect the core’s behaviour to be well approximated in this
way. Recent dynamo calculations support this view: both Roberts
& Glatzmaier (2000) and Rau et al. (2000) find that the frozen flux
hypothesis is a useful one, though their approaches are different.
Roberts & Glatzmaier (2000) analyse the unsigned flux, which is
the sum of all the fluxes through the null-flux patches considered
here, but without regard to sign; it is constant for a frozen-flux core.
They find that over a 150 yr time span the change in the unsigned
flux is only 3 per cent, which they understandably consider to be
small. Rau et al. (2000) test their ability to recover velocity fields
from dynamo calculations under the frozen-flux approximation, and
again find a fair degree of success in doing so. In these calculations
the magnetic Reynolds number (the ratio of diffusive to advective
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timescales) is between 100 and 300, possibly slightly low for the
core.

Many attempts have been made to recover the fluid flow at the
CMB from surface observations, for comparison with dynamo mod-
els, and for calculations of core angular momentum and core-mantle
coupling. With occasional exceptions (e.g. Waddington et al. 1995),
these calculations are performed by using models of global geomag-
netic main field and secular variation as the ‘data’ for the inversion.
Although diffusive theories exist, the vast majority of methods for
inverting for fluid flow at the CMB are based on the frozen-flux hy-
pothesis. Therefore, we see the models we have developed herein as
a logical step towards the self-consistent derivation of fluid motions
(i.e. the fluid motions are based on models which are consistent
with the assumptions required by the fluid motion inversion). In
the future we will report on the calculation of time-dependent mag-
netic field models that satisfy the same constraints as in the present
paper.
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A P P E N D I X

Here we explain the rules for the division of nodes into the con-
strained and unconstrained sets, C and U , respectively, introduced
briefly in Section 2.3. A certain null-flux patch has nodes interior b(i)

i

[numbering N (i)] and exterior b(e)
i [numbering N (e)] to it—the most

natural assignment of the nodes, which we implement, is that the set
with the least number of nodes is interior. We only consider nodes
adjacent to a NFC, and assign them to the interior or exterior sets,
also ranking them in terms of their proximity to the curve. We then
work through this list, beginning with the node closest to the curve,
and decide if it is allowed to be free to change sign (enter set U )
based on a set of rules which ensure that the topology of the curve
is preserved: in particular, we prevent a curve from disappearing al-
together, or from breaking up into multiple patches. Rule 1, below,
is the most important criterion; rules 2–6 are implemented to deal
with patches containing only a few nodes, and are redundant if if the
density of nodes is increased in the model to a suitable level. The
final check (last paragraph) to prevent merging of patches always
needs to be performed.

Let the node under consideration for assignment to U or C be
b(i)

i . Let n(i)
j and n(e)

j be nearest neighbours which are interior and
exterior, respectively. The interior neighbours can be subdivided into
boundary neighbours n(b)

j and hinterland neighbours n(h)
j ; a boundary

neighbour is adjacent to a NFC, whereas a hinterland neighbour
is not. Clearly the maximum number of boundary neighbours is
five, because if a node has six boundary neighbours by definition
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it is a hinterland node (not adjacent to a NFC) and does not need
considering.

1 The rules

(i) If any n(e)
j ∈ U , set b(i)

i ∈ C; apply same logic also to external
nodes b(e)

i . This rule prevents the generation of extra patches as a
result of two adjacent nodes which previously had opposite signs
(NFC lies between them) swapping signs.

(ii) If N (i) = 1 set b(i)
i ∈ C (patch with only one node must be

fixed to prevent patch disappearing).
(iii) If N (i) = 2 and one node already in U set b(i)

i ∈ C (again,
prevent patch disappearing).

(iv) If N (i) = 3 and two neighbours already in U set b(i)
i ∈ C (all

live on same triangle; three cannot be free or patch may disappear).
(v) Check against boundary neighbours and hinterland neigh-

bours: use Table 3.
(vi) Check interior free list to see if any interior neighbours are

free. This can occur because the free nodes are not adjacent to
the same portion of the NFC; schematically they are of the form

(where—is a NFC and x represents a free node)
− − − − − − − − −
x x x x

x x x
− − − − − − − − −
A final check now needs to be performed to prevent merging of
different patches, which results from exterior nodes which are in U
being neighbours; if both changed sign the patches would merge.
We implement this using multiple passes through the list of exterior
nodes in U . At each pass, for each node in the (exterior) free list of
the two patches we check to see if there are either common nodes
or adjacent nodes. If so, we discard the node which is furthest from
the NFC from the free list, and then repeat the pass until no nodes
in U are adjacent and exterior. Note that we must treat the magnetic
equator as special, because it is the only NFC which has nested
NFCs; therefore, we must check both its interior and exterior list
of free nodes to ensure that there is a fixed node between any free
node associated with it and any free node associated with another
curve.
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