
Vol. 30 no. 2 2014, pages 287–288
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt657

Sequence analysis Advance Access publication November 9, 2013

HPC-CLUST: distributed hierarchical clustering for large sets of

nucleotide sequences
João F. Matias Rodrigues and Christian von Mering*
Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland

Associate Editor: Inanc Birol

ABSTRACT

Motivation: Nucleotide sequence data are being produced at an

ever increasing rate. Clustering such sequences by similarity is often

an essential first step in their analysis—intended to reduce redun-

dancy, define gene families or suggest taxonomic units. Exact clus-

tering algorithms, such as hierarchical clustering, scale relatively

poorly in terms of run time and memory usage, yet they are desirable

because heuristic shortcuts taken during clustering might have unin-

tended consequences in later analysis steps.

Results: Here we present HPC-CLUST, a highly optimized software

pipeline that can cluster large numbers of pre-aligned DNA sequences

by running on distributed computing hardware. It allocates both

memory and computing resources efficiently, and can process more

than a million sequences in a few hours on a small cluster.

Availability and implementation: Source code and binaries are

freely available at http://meringlab.org/software/hpc-clust/; the pipe-

line is implemented in Cþþ and uses the Message Passing

Interface (MPI) standard for distributed computing.

Contact: mering@imls.uzh.ch

Supplementary Information: Supplementary data are available at

Bioinformatics online.

Received on September 6, 2013; revised on October 19, 2013;

accepted on November 7, 2013

1 INTRODUCTION

The time complexity of hierarchical clustering algorithms (HCA)

is quadratic OðN2Þ or even worse OðN2 logNÞ, depending on the

selected cluster linkage method (Day and Edelsbrunner, 1984).

However, HCAs have a number of advantages that make them

attractive for applications in biology: (i) they are well defined and

should be reproducible across implementations, (ii) they require

nothing but a pairwise distance matrix as input and (iii) they are

agglomerative, meaning that sets of clusters at arbitrary similar-

ity thresholds can be extracted quickly by post-processing, once a

complete clustering run has been executed. Consequently, HCAs

have been widely adopted in biology, in areas ranging from data

mining to sequence analysis to evolutionary biology.
Apart from generic implementations, a number of hierarchical

clustering implementations exist that focus on biological se-

quence data, taking advantage of the fact that distances between

sequences can be computed relatively cheaply, even in a transient

fashion. However, the existing implementations such as

MOTHUR (Schloss et al., 2009), ESPRIT (Sun et al., 2009) or

RDP online clustering (Cole et al., 2009), all struggle with large

sets of sequences. In light of these performance limits, heuristic

optimizations have also been implemented such as CD-HIT (Li

and Godzik, 2006) and UCLUST (Edgar, 2010).
Hierarchical clustering starts by considering every sequence

separately and merging the two closest ones into a cluster.

Then, iteratively, larger clusters are formed, by joining the closest

sequences and/or clusters. The distance between two clusters

with several sequences will depend on the clustering linkage

chosen. In single linkage, it is the similarity between the two

most similar sequences; in complete linkage, between the two

most dissimilar sequences; and in average linkage, the average

of all pairwise similarities. The latter method is also known as the

Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) and is often used in the construction of phylogenetic

guide trees.
In the type of approach used by CD-HIT and UCLUST, each

input sequence is considered sequentially, and is either added to

an existing cluster (if it is found to meet the clustering threshold)

or is used as a seed to start a new cluster. Although this approach

is extremely efficient, it can lead to some undesired characteris-

tics (Sun et al., 2012): (i) it will create clusters with sequences that

may be more dissimilar than the chosen clustering threshold; (ii)

it can occur that a new cluster is created close to an existing

cluster, but at a distance just slightly longer than the clustering

threshold; at this point, any new sequences close to both clus-

ters will be split among the two clusters, whereas previous se-

quences will have been added to only the first cluster; this

effectively results in a reduction of the clustering threshold lo-

cally; and (iii) different sequence input orders will result in dif-

ferent sets of clusters due to different choices of the seed

sequences. Point (i) also affects HCA using single linkage and

to a lesser extent average linkage, but does not occur with com-

plete linkage.
Here we present a distributed implementation of an HCA that

can handle large numbers of sequences. It can compute single-,

complete- and average-linkage clusters in a single run and pro-

duces a merge-log from which clusters can subsequently be

parsed at any threshold. In contrast to CD-HIT, UCLUST

and ESPRIT, which all take unaligned sequence data as

their input, HPC-CLUST (like MOTHUR) takes as input a

set of pre-aligned sequences. This allows for flexibility in the

choice of alignment algorithm; a future version of HPC-

CLUST may include the alignment step as well. For further de-

tails on implementation and algorithms, see the Supplementary

Material.*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85219187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://meringlab.org/software/hpc-clust/
mailto:mering@imls.uzh.ch
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
H
C
A
-
,
very 
:
,
,
,
-
-
-
-
While
ile
,
hierarchical clustering algorithms
-
,
-
-
very 
,
,
s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
m
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1


2 METHODS

For all benchmarks, we used one or more dedicated Dell Blade M605

compute nodes with 2 quad-core Opteron 2.33GHz processors and 24

GB of random access memory. The most recent version of each software

pipeline was used: HPC-CLUST (v1.0.0), MOTHUR (v.1.29.2), ESPRIT

(Feb. 2011), CD-HIT (v4.6.1) and UCLUST (v6.0.307). Detailed infor-

mation on settings and parameters is available in the Supplementary

Material.

We compiled a dataset of publicly available full-length 16S bacterial

ribosomal RNA sequences fromNCBI Genbank. Sequences were aligned

using INFERNAL v1.0.2 with a 16S model for bacteria from the ssu-

align package (Nawrocki et al., 2009). Importantly, INFERNAL uses a

profile alignment strategy that scales linearly O(N) with the number of

sequences, and can be trivially parallelized. Indels were removed and

sequences were trimmed between two well-conserved alignment columns,

such that all sequences had the same aligned length. The final dataset

consisted of 1 105 195 bacterial sequences (833 013 unique) of 1301 in

aligned length.

3 RESULTS

3.1 Clustering performance on a single computer

HPC-CLUST has been highly optimized for computation speed
and memory efficiency. It is by far the fastest of the exact clus-
tering implementations tested here, even when running on a

single computer (Fig. 1). Compared with MOTHUR, it produces
identical or nearly identical clustering results (see Supplementary
Material). Because CD-HIT and UCLUST use a different ap-

proach to clustering, they are not directly comparable and are
included for reference only..
In HPC-CLUST, the largest fraction of computation time is

spent calculating the pairwise sequence distances, the second lar-
gest in sorting the distances and the final clustering step is the

fastest. HPC-CLUST can make use of multithreaded execution

on multiple nodes and practically achieves optimal paralleliza-

tion in the distance calculation step. Additional benchmarks are

shown and discussed in the Supplementary Material.

3.2 Distributed clustering performance

Clustering the full dataset (833 013 unique sequences) to 97%

identity threshold required a total of 2 h and 42 min on a com-

pute cluster of 24 nodes with 8 cores each (192 total cores).

Owing to parallelization, the distance and sorting computation

took only 57 min (wall clock time), corresponding to410 000

min CPU time. The remaining 1h and 45 min (wall clock time)

were spent collecting and clustering the distances. The combined

total memory used for the distance matrix was 59.8 or 2.6 GB per

node. The node on which the merging step was performed used a

maximum of 4.9 GB of memory when doing single-, complete-

and average-linkage clusterings in the same run

4 CONCLUSION

Clustering is often among the first steps when dealing with raw

sequence data, and therefore needs to be as fast and as memory

efficient as possible. The implementation of a distributed version

of hierarchical clustering in HPC-CLUST makes it now possible

to fully cluster a much larger number of sequences, essentially

limited only by the number of available computing nodes.

ACKNOWLEDGEMENT

The authors thank Thomas S. B. Schmidt for his feedback and

help in testing HPC-CLUST.

Funding: ERC grant (Starting Grant ‘UMICIS/242870’ to

C.vM.).

Conflict of Interest: none declared.

REFERENCES

Cole,J.R. et al. (2009) The Ribosomal Database Project: improved alignments and

new tools for rRNA analysis. Nucleic Acids Res., 37, D141–D145.

Day,W. and Edelsbrunner,H. (1984) Efficient algorithms for agglomerative hier-

archical clustering methods. J. Classif., 1, 7–24.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics, 26, 2460–2461.

Li,W. and Godzik,A. (2006) CD-HIT: a fast program for clustering and comparing

large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659.

Nawrocki,E.P. et al. (2009) Infernal 1.0: inference of RNA alignments.

Bioinformatics, 25, 1335–1337.

Schloss,P.D. et al. (2009) Introducing MOTHUR: open-source, platform-independ-

ent, community-supported software for describing and comparing microbial

communities. Appl. Environ. Microbiol., 75, 7537–7541.

Sun,Y. et al. (2009) ESPRIT: estimating species richness using large collections of

16S rRNA pyrosequences. Nucleic Acids Res., 37, e76.

Sun,Y. et al. (2012) A large-scale benchmark study of existing algorithms for tax-

onomy-independent microbial community analysis. Brief. Bioinform., 13,

107–121.

Fig. 1. Runtime comparisons. For HPC-CLUST and MOTHUR, run-

times are shown both including and excluding sequence alignment run-

time. UCLUST and CD-HIT exhibited only negligible decreases in

runtime when using multiple threads. Identity threshold for clustering

was 98% identity

288

J.F.Matias Rodrigues and C.von Mering

,
supplementary 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
material
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
,
to
supplementary 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
material
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
Since
very 
,
,
supplementary 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
material
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt657/-/DC1
ours
utes
Due
utes
more than 
utes
our
utes
GB
,

