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Abstract

Virus replication and progression to disease in
transplant patients is determined by patient-, graft-
and virus-specific factors. This complex interaction is
modulated by the net state of immunosuppression and
its impact on virus-specific cellular immunity. Due to
the increasing potency of immunosuppressive regi-
mens, graft rejections have decreased, but susceptibility
to infections has increased. Therefore, cytomegalovirus
(CMV) remains the most important viral pathogen
posttransplant despite availability of effective antiviral
drugs and validated strategies for prophylactic, pre-
emptive and therapeutic intervention. CMV replication
can affect almost every organ system, with frequent
recurrences and increasing rates of antiviral resistance.
Together with indirect long-term effects, CMV
significantly reduces graft and patient survival after
solid organ and hematopoietic stem cell transplanta-
tion. The human polyomavirus called BK virus (BKV),
on the other hand, only recently surfaced as pathogen
with organ tropism largely limited to the reno-urinary
tract, manifesting as polyomavirus-associated nephro-
pathy in kidney transplant and hemorrhagic cystitis
in hematopoetic stem cell transplant patients. No
licensed anti-polyoma viral drugs are available, and
treatment relies mainly on improving immune func-
tions to regain control over BKV replication. In this
review, we discuss diagnostic and therapeutic aspects
of CMV and BKV replication and disease
posttransplantation.
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Introduction

The key challenge after transplantation is the recogni-
tion of alloantigens by immune effectors. The resulting
acute and chronic immune reactions cause transient
and lasting damage with decreasing organ function and
graft loss. In recent years, potent immunosuppressive
protocols significantly improved graft survival in solid
organ transplantation (SOT) by reducing rejections,
across HLA mismatches [1]. However, as illustrated
by registry data of 7500 pediatric kidney transplant
patients, decreasing hospitalization rates in the first
2 years posttransplant for acute rejection from >30%
in 1982 to �12% in 2002 were paralleled by increasing
hospitalization rates for infections from 20.4% to
30.8% [2]. Similarly, infection rates increased in
adult kidney transplant recipients of >50 years from
48% to 69% during the first year post-transplantation
[3]. In hematopoietic stem cell transplantation (HSCT),
summary data from the European Bone Marrow
Transplantation on 14 403 HLA-identical siblings
with early leukemia indicated a declining mortality
due to infections within the first 12 months between
1980 and 2002 from 6% to 1% which in part reflected
reduced toxicity of induction and conditioning proto-
cols [4]. However, virus attributed mortality largely
persisted, with older age and T-cell depletion as
significant risk factors [4].

Virus replication and disease posttransplant results
from complex interactions of patient, graft and virus
determinants (Figure 1) which are modulated by the
net state of immunosuppression [5,6]. Transplant
patients are at high risk for acute, typically respiratory
viruses transmitted according to their activity in the
community. By contrast, viruses persisting in patients
or in transplants reactivate in an almost time table-like
sequence of first Herpes simplex, then cytomegalovirus
(CMV), and varicella-zoster virus [5]. Herpes simplex
and varicella-zoster virus are conveniently suppressed
by well tolerated drugs like acyclovir and famciclovir
peri- and post-transplantation. For CMV, markers of
virus-specific cellular immune functions are considered
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for risk stratification [6]. Thus, CMV seronegative
recipients (R�) receiving solid organ transplants from
CMV infected, seropositive donors (Dþ) are at highest
risk for CMV replication and disease. The risk also
increases in CMV (Rþ) patients treated with T-cell
and/or B-cell depleting antibody regimens adminis-
tered for induction or rejection. Conversely, CMV
(D�/Rþ) HSCT patients are at higher risk since
specific immune effectors depleted by the induction
and conditioning regimens cannot be adequately
restored by the donor graft, particularly in the presence
of graft-versus-host-disease (GvHD) prophylaxis or its
treatment. The identification of patients at high
risk for CMV replication according to the serostatus
of donor and recipient provides the rationale for
prophylactic and preemptive administration of anti-
virals and significantly reduces CMV disease and its
associated mortality. However, late manifestations
and indirect effects seem to persist as significant
challenges. Similar approaches are still being explored
for BKV, but, some progress has been made and will
be discussed here.

Cytomegalovirus

Virological aspects

CMV belongs to the human herpes viruses and has a
linear double-stranded DNA genome of about 235 000
base pairs with more than 200 open reading frames,
coding for at least 59 proteins [7,8]. CMV latency and
replication is tightly regulated with coordinated
expression of immediate-early (IE), early and late
genes. IE proteins, e.g. pp72 and IE2 are central
regulators of viral gene expression. Early gene proteins
like UL97 phosphokinase and UL54 DNA polymerase
facilitate viral genome replication, while late proteins
e.g. pp65 and glycoprotein B (gB) include structural
proteins found in the viral capsid, matrix and envelope.
CMV is transmitted via saliva, body fluids, cells
and tissues. The seroprevalence depends on socio-
economic status and ranges from 30%–70% in
Western Europe and North America [9]. Following
primary CMV replication in seronegative individuals,

CMV establishes non-replicative infection (latency) in
CD34þ myeloid progenitor cells as a major site [10].
Secondary CMV replication in seropositive individuals
can be viewed as the net result of activating stimuli and
inhibitory immune functions acting at the respective
cells and tissues (Figure 1). Activation may result
from stress, drugs (catecholamines), inflammatory
mediators (TNFa) and hypoxia (oxygen radicals) as
encountered during sepsis or ischemia/reperfusion
posttransplant and increases CMV IE transcription
via NF-kB, AP1 or CREB [11,12]. The state of
CMV-specific immune controls together with local
microenvironment determines progression to organ-
invasive disease in intestines (40%), liver (20%), lungs
(10%), kidneys (5%), eyes (1%) and the central
nervous system (1%) (Table 1). In addition CMV
uses diverse immune evasion mechanisms such as
downregulating major histocompatibility complex
(MHC) class I molecules, inhibiting NK cells (like
gpUL18 [13] or gpUL40 [14]), and producing cytokine
homologues like the viral IL10 [15].

Immunological aspects

Neutralizing antibodies predominantly target the
glycoprotein B (gB) localized in the viral envelope.
In pregnant women with primary CMV infection
administration of CMV hyper-immune IgG may
reduce CMV disease in infants [16]. In transplant
patients, administration of CMV hyper-immune IgG is

Fig. 1. Interaction of virus, patient and graft (adapted from [131]).

Table 1. Effects of Cytomegalovirus and Polyomavirus BK
Posttransplant

Direct effects Indirect effects Drug effects

Cytomegalovirus

CMV Disease Acute rejection Ganciclovir
Syndrome
Myelosuppression

Graft-versus-Host
Disease

Neutropenia
Infections

Hepatitis Bronchiolitis obliterans Teratogenicity
Colitis Vanishing bile duct Foscavir
Pneumonitis Graft nephropathy Renal Failure
Encephalitis Graft vasculopathy Cidofovir
Retinitis Immunosuppression Renal failure

Other infections
(Fungal Bacterial,

Viral)

Leucopenia
Teratogenicity

Post transplant
lympho-proliferative
disease (PTLD)

Polyomavirus BK
Polyomavirus
associated
nephropathy
(PVAN)

Acute rejection?
Chronic allograft

nephropathy?
Diabetes?

Cidofovir
Renal failure
Leucopenia
Teratogenicity

Hemorrhagic cystitis PTLD? Leflunomide
(Renourinary cancer?) Infections
(Progressive
multi-focal
leucencephalopathy-
like?)

Neutropenia
Liver toxicity

Quinolones ?
yeast infections
resistance
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restricted to cases with CMV pneumonitis and antiviral
resistant CMV disease. Cellular immunity is central
in containing CMV replication as evidenced by
increased reactivation in CMV seropositive (Rþ)
transplant recipients treated with T-cell depleting
agents. Natural killer cells (NK; CD3-CD56þ
CD16þ) have a role in early innate defense, but
seem to confer only transient protection [17,18].
Disseminated, life-threatening CMV replication has
been reported in rare cases with absolute NK cell
deficiency [19–21]. In HSCT patients, NK cells are
among the first lymphocyte populations to recover.
No significant differences in NK cells was found in
patients with or without active CMV replication [22].
In renal transplant patients (n¼ 61) with active
CMV replication (78%), no discernible changes in
NK cells were reported [23]. Thus, the role of specific
and functional T-cells is emphasized for relevant
immune containment of CMV.

CMV-specific CD4þ T helper cells and CD8þ
cytotoxic T-cells contribute to controlling CMV
replication, and protecting against disease [24–26].
Since cytotoxic activities are difficult measure in
clinically relevant routine settings, flow-cytometry
for MHC-I tetramers painting, intracellular cytokine
production or cytokine secretion or ELISPOT assays
are commonly used (Figure 2). [27–29]. Interestingly,
the range of CMV peptide epitope recognized by
CD8 or CD4 T-cells seems rather small and hierarch-
ical. CMV-specific CD8T cells recognize in up to 40%
pp65 (late tegument protein) and IE1 pp72, whereas
the remaining activities target pp50, gB, and IE-2pp
[30–32]. Additionally, different viral epitopes of one
given protein are preferentially recognized by different
HLA class I alleles [11,33]. While CMV-specific
CD8 T-cells confer immediate control by killing of
CMV-replicating host cells, CD4 T-cells seem to be
more important for mounting and maintaining longer
term antiviral control. Decreasing CMV-reactive CD4
T-cell frequencies during the first months after
transplantation correlated with increasing CMV load

[34]. CMV pp65-directed responses are more fre-
quently detected [35], but appear later than responses
to gB or pp72 (A. Egli and H. H. Hirsch, submitted).
Recent data correlated with increasing concentrations
of calcineurin-inhibitors (cyclosporine >100 ug/mL;
tacrolimus >6 ng/ml) with reduced interferon-g
(IFN-g) production of T cells. Interestingly, CD8
T-cells seemed more sensitive than CD4 T-cells [25].
Our data in CMV-seropositive kidney transplant
patients indicate significantly lower IFN-g responses
in CD4 and CD8 T-cells compared to healthy non-
immunosuppressed individuals and even lower levels
in kidney transplant patients with ongoing CMV
replication [36].

Current management strategies

Antiviral strategies aim at eliminating or reducing
CMV replication before CMV disease develops
(Figure 3) [5]. CMV disease is stringently defined
by the need to demonstrate organ invasiveness
by histology [37]. Although developed for research
purposes, the definitions also proved helpful in clinical
practice for decisions regarding diagnostic procedures
and for starting antivirals (Figure 3). Without
intervention, the majority of CMV replication and
disease occurs early during the first 3 months
post-transplantation at the time of the highest
immunosuppressive load [38].

Universal prophylaxis with valganciclovir (VGCV)
or oral ganciclovir (GCV) for 3 months is now the
preferred strategy for high-risk CMV Dþ/R� SOT
recipients in many transplant centers. After disconti-
nuing prophylaxis, still significant rates of CMV
replication and disease have been noted which are
more difficult to be identified in the outpatient
situation [39,40]. In liver transplant recipients, CMV
disease after discontinuing prophylaxis was associated
with an increased mortality rate [41]. Liver transplant
recipients who received antiviral CMV prophylaxis,
developed in 8.5% CMV disease at a median of
4.5 months. The mortality was 12% and in 49%

Fig. 2. Quantification of virus-specific interferon-g (IFN-g) producting T-cells. Production of INF-g and/or other cytokines after stimulation
with viral epitopes is detected by ELISPOT assay (top) or intracellular cytokine staining (bottom) and has been used as a surrogate marker of
CMV-specific T-cell function. BFA: Brefeldin A.
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associated with CMV replication [42]. Therefore,
extending prophylaxis to 6 months posttransplant for
CMV (Dþ/R�) SOT is currently evaluated. Of note,
2% of CMVDþ/R� of VGCV treated patients had
detectable CMV replication compared to 10% in the
oral GCV group. The difference might be attributed to
the better oral bioavailability and higher GCV levels in
patients on VGCV [43,44]. Since GCV-resistant late
CMV disease has been observed under oral GCV in
CMV Dþ/R– SOT [45], a decreased risk of late disease
and GCV resistance should be expected [46,47]. This
conclusion has to stand the test of clinical routine,
where this proportion is likely to be larger than inside
of studies.

Preemptive therapy is favored in many centers for
CMV Rþ SOT recipients, since CMV replication
and disease is less likely due to some degree of
protection by CMV-specific immunity. This strategy
is challenged by the need for sensitive and specific
screening procedures operating under clinical routine
conditions and by the potential negative impact of
indirect effects [48,49]. Quantitative assays detecting
CMV in the peripheral blood are generally used
such as CMV pp65 antigenemia in buffy coat cells or
real-time PCR on plasma or whole blood. Both
types of assays show high positive and negative
predictive values above 80–90% for CMV disease
when combined with thresholds, yet allowing a
sufficient time window sufficient to institute antiviral
therapy before disease manifestation (Figure 3) [50].
Quantitative PCR has a higher sensitivity especially in
HSCT patients and can provide important viral kinetic
information. Severely immunosuppressed transplant
recipients may show faster CMV dynamics, delayed
clearance and more recurrences [51] [7A]. In a recent
randomized controlled trial of kidney transplant
recipients, prophylaxis reduced significantly CMV
replication over pre-emptive treatment (6% vs 59%)
during the first 100 days [40]. No differences in mean
peak CMV load levels or in the time needed to clear the
first episode of CMV viremia were noted between the
both study arms. However, significantly prolonged
viremia was seen in CMV Dþ/R� patients indicating
that transplant patients benefit from (residual) specific

antiviral immunity [40]. This patient population is at
significant risk of selecting GCV-resistance.

In HSCT patients, prophylaxis is not widely used
because of potential myelosuppressive effects of GCV,
which may change with new drugs like maribavir.
However, pre-emptive therapy has lead to significant
reduction of CMV disease during the first 3 months
after transplantation (20–30% to <5%) [52].
Nevertheless, a significant survival disadvantage
remains for CMV Rþ compared to D�/R� HSCT
patients, despite the availability of antiviral drugs,
sensitive and specific monitoring tools and an overall
reduction of early CMV disease. After a median of
169 days, 17.8% had CMV late disease with a
mortality of 46%. This corresponds to approximately
10% of all HSCT patients [53].

The prevention of indirect CMV effects is difficult to
judge and is likely to be more pronounced in patients
with more extensive CMV replication and CMV
disease. However, part of the indirect effects could be
mediated by CMV-induced immune pathology
which may persist beyond actual CMV replication
(Table 1). Therefore, an important question is whether
treatment of CMV replication with effective antivirals
should be accompanied by reducing immunosuppres-
sion, a strategy retained from the pre-antiviral era.
We believe that the first episode of CMV replication
should be treated with sufficient dosing of antivirals,
without modifying maintenance immunosuppression.
In cases of recurrence, antiviral treatment activating
stimuli should be controlled and combined with
moderately reduced immunosuppression since CMV-
specific immunity might be inadequate. The viral
factors causing indirect effects are not well understood
and may involve cytokine activation, immunomodula-
tory effects as well as triggering of alloimmune
responses with slowly progressive inflammation with
collateral damage in host and graft tissues [54]. In
addition, CMV replication may add to the net state of
immunosuppression and thus give rise to more fungal
infections and PTLD [55]. In kidney transplant
patients without CMV prophylaxis, Dþ/R� patients
had shorter graft survival over three years (74%) in
comparison to D�/R� patients (82%) [56]. Brennan
and coworkers found that HLA-DR mismatching was
associated with reduced renal allograft survival after
CMV disease [48]. In a classic paper, Lowance et al
reported that high-dose valaciclovir prophylaxis
reduced not only CMV disease, but also the number
acute rejection episodes in CMV Dþ/R� kidney
transplant recipients [57]. A meta-analysis by Small
et al. showed no significant difference in rejection
episodes between the two intervention strategies [58],
but there were insufficient data to evaluate graft loss
and opportunistic infections.

GCV-resistant CMV replication

In recent years, GCV resistant CMV mutants emerged
as a significant problem in transplant patients.

Fig. 3. Antiviral strategies: prophylaxis, pre-emptive treatment and
therapy.
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Principle risk factors for CMV resistance are insuffi-
cient drug levels, frequent recurrence, repetitive treat-
ment, and residual replication, all of which are more
likely in patients with impaired or absent CMV-specific
immune effectors. Depending on the laboratory
method used, GCV resistance is defined as IC50 over
6-12 uM or a two- to five-fold increase in IC50
for viruses during treatment compared to pre-treat-
ment state [59]. Mutations in the viral kinases
(UL97 gene) increase the IC50 by reducing the
phosphorylation rate of GCV which is required for
activation and inhibition of efficient viral DNA
replication (Figure 4) [60]. Cidofovir and foscarnet
enter the nucleotide pool downstream of UL97 and
remain effective alternatives for GCV resistance.
Mutations in the viral DNA polymerase (UL54) are
less common, but may cause some cross-resistance.
In HSCT patients, CMV resistance does not yet seem
to be a major issue, probably due to the fact that
prophylaxis was rarely used, and treatment was so far
administered intravenously. In a European multicenter
study only 2 patients had phenotypically confirmed
resistance, but 23 clinically were suspected [61]. In
SOT, CMV (Dþ/R�) patients are more prone to
develop GCV-resistant CMV replication and disease,
particularly when on oral GCV [46]. We predict that
the convenient oral administration of VGCV for
outpatient treatment will result in more GCV-resistant
cases because of suboptimal dosing adjustments and
compliance issues.

Current recommendations for management of
GCV resistant CMV replication are summarized in
Figure 5. If access to phenotypic or genotypic
resistance testing is not available in clinically relevant
time, intravenous GCV dosage should be increased
and/or, if not tolerated (myelosuppression) or
viremia persists, switching to foscarnet and to cidofovir
should be considered [62]. In cases of clinical or
genotypic or phenotypic resistance, reducing immuno-
suppression and administration of CMV hyper-immu-
noglobulins should be considered.

Polyomavirus BK

Virological aspects

BKV is closely related to the other human polyoma-
virus type 2 (JC virus) with a >70% homology of the
5.3 kb circular double-stranded DNA genomes. In the
last year, two other polyomaviruses, called WU and
KI, have been detected in humans with respiratory
infections. The polyomavirus genome structure is
conserved and encodes only 6 proteins. The regulatory
large tumor antigen (LT-ag) and the small t antigen are
early gene proteins, while the capsid VP-1, -2 and -3
and the agnoprotein are late gene proteins. Early and
late viral gene expression is driven by the non-coding
control region (NCCR) which contains also the origin
of DNA replication. Rearrangements of the NCCR
occur with persisting BKV replication increasing
replication capacity [63,64]. Transmission of BKV
occurs typically during childhood (median 4-5 years
of age) [65] via oral and respiratory routes, but data
suggesting transmission via cells and tissues, in
particular by kidney transplantation have been
reported [66,67]. Seroprevalence increases to >80%
in adults [65]. After primary replication in seronegative
individuals, BKV establishes non-replicative infection
in the renourinary tract, without known complications
for the immunocompetent host. About 5% of healthy
individuals intermittently reactivate BKV replication
with detectable viruria [68].

Polyomavirus associated nephropathy (PVAN) and
late-onset hemorrhagic cystitis are major complica-
tions linked to high-level BKV replication in kidney
transplant recipients and HSCT patients, respectively
[69]. BKV dynamic studies after surgical removal
of PVAN-containing allografts revealed a rapid drop
of plasma BKV loads. This suggests that the vast

Fig. 5. Recommendations: management of GCV resistant CMV
replication (adapted from Preiksaitis et al. 2005 AJT 5: 218).
GCV ganciclovir, VGCV valganciclovir, FOS Foscarnet, and CDV
cidofovir. IC50: concentration with 50% inhibition of viral
replication. CMV load testing is recommended weekly during
therapy until negative.

CMV infected cell

Viral kinase
(UL97)

GCV

Cellular kinase

GCV-P GCV-PPP

Interruption of CMV
DNA replication

GCV CDV

CDV CDV-PP

FOS

FOS

DNA polymerase (UL54)

Fig. 4. Mechanisms of UL97 and UL54 associated Ganciclovir
resistance. Phosphokinase (UL97) mutations decrease the efficacy of
GCV, whereas mutations in the DNA polymerase (UL54) reduce
efficacy of all antiviral agents.
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majority or all of the BKV loads in plasma are derived
from BKV replication in the allograft. Calculated
plasma viral half-life of 1–2 h imply viral turnover of
more than 99% per day and a tubular epithelial cell
loss of about 10e6 cells per day [70,71].

BKV-associated hemorrhagic cystitis is of late onset
approximately more than 10 days after HSCT, as
opposed to early onset hemorrhagic cystitis which
occurs at the time of conditioning as a toxic side effect
to busulfan and irradiation. Late-onset hemorrhagic
cystitis occurs typically at the time of engraftment and
associated with persistent high-level BKV viruria
[72,73]. Therefore, BKV-associated late-onset HC
may represent an immune reconstitution disease [74].
Interestingly, BKV is frequently detectable in plasma
samples of patients with or developing HC suggesting
that local inflammation may increase access to the
blood [75]. It is important to note that only about
half of HSCT patients with high-level BKV viruria
develop hemorrhagic cystitis and that other viral
infections, including CMV and adenovirus, may
cause similar clinical presentation and may even
coexist [76].

Immunological aspects

Neutralizing antibodies target the major capsid protein
VP1 and closely correlate with antibody titers mea-
sured by type 0 hemagglutination inhibition titers or by
BKV VP1-derived virus-like particles [65,77]. These
antibodies probably have a role in clearing and
protecting from BKV viremia, but might be less
effective in case of tissue-invasive disease in transplant
patients. In kidney transplant patients, risk factors of
BKV replication and disease have been described and
include older age, male gender [78], sero-positive donor
[79,80], sero-negative recipient [80,81], lack of BKV-
specific cellular immune memory compartment [82],
use of potent immunosuppressive regimens [83–85],
HLA C7 negative donor or negative recipients [79],
HLA mismatches [86,87] and rejection episodes fol-
lowed by anti-rejection treatment [86,87]. Most of these
factors point to impaired cellular immune functions as
a common denominator. The protective effects of BKV
antibody titers in this setting is probably not partly
related to neutralizing activity [79,86]. More likely,
higher antibody titers are measure of recent exposure
to BKV with correspondingly larger BKV-specific
cellular immune compartment [88]. BKV-specific
cellular immunity has been investigated directly
measuring IFN-g responses of PBMC after stimulation
with BKV preparations from cell culture, overlapping
peptide pools covering the LT-ag and VP1 and
observed an increasing activity in patients after
PVAN had been cleared following reduced immuno-
suppression [82,89,90]. Similar results have reported
for CD8 T-cells from HLA-0201 kidney transplant
patients using labeled MHC-class I tetramers with VP1
derived peptides after short-term amplification cultures
[91, 92]. Recent work in our laboratory suggested
that VP1 and LT-ag responses were higher in patients

with >2 log declining plasma BKV loads. Overall,
these responses were more likely to involve CD4 than
CD8 T-cells [93,94]. LT directed IFN-g responses of
>69 spot-forming units per 10e6 PBMC in ELISPOT
assays identified more patients with >2 log declining
plasma BKV loads [95]. If confirmed in prospective
studies, combined determination of plasma BKV load
and BKV-specific LT-ag-responses might allow distin-
guishing BKV protected patients from those at high
risk for BKV disease progression. Recently, a strong
VP1-directed CD8 T-cell response in PBMC was
associated with loss of allografts [90], indicating that
BKV-specific immune responses might be involved in
indirect effects favoring graft failure after kidney
transplantation. BK-agno protein albeit significantly
expressed during replication of BKV seems not to
mount a significant cellular and humeral immune
response [96].

In HSCT patients, patients developing BKV viruria
and hemorrhagic cystitis are typically seropositive
prior to HSCT. Thus, BKV replication is a secondary
reactivation following exposure to chemotherapy and
irradiation, which also depleted BKV-specific cellular
immunity. Early work in HSCT patients found a
correlation with increasing antibody titers and BKV
viruria [72,97]. The determinants for an immune
reconstitution pathology remain to be defined.
Further work is needed to better understand the
pathogenesis of hemorrhagic cystitis, a prerequisite
for better management and intervention.

Current management strategies

Hemorrhagic cystitis complicates HSCT in 5% of
patients, between 2–6 weeks post-transplantation. The
disease often starts abruptly in hematologically recon-
stituted patients and may persist for 4–12 weeks, with
immobilizing pain and anemic bleeding requiring
hospitalization. Treatment remains challenging and
currently consists of pain relief, bladder irrigation and
in severe cases with direct urologic intervention.
Successful treatments with systemic and intravesical
cidofovir have been reported [98], but larger studies are
lacking. Our own experience with local instillation of
cidofovir was negative. Leung et al reported that
standard doses of ciprofloxacin may lower BK viruria
levels [99]. Some urine BKV loads in patients did
not respond to ciprofloxacin and possible resistance
was investigated. The clinical impact of ciprofloxacin
was difficult to discern as the number of cases was
too low to identify a clinical benefit and requires
larger prospective studies. In the absence of interven-
tion protocols of proven benefit, there is currently no
reason to screen for BKV viruria in the clinical routine
setting.

PVAN complicates kidney transplantation in 1–10%
of cases, mostly at the end of the first year
posttransplantation, with clinically silent, creeping
allograft failure in 50–90% (Table 2). Graft loss
may occurs in about 50% of cases during the
subsequent 6–60 months [100,101]. Persisting BKV
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replication is associated with a higher probability of
graft loss [102,103] (Table 3):

� PVAN A (early) shows focal virus replication in
renal tubular epithelial cells with positive nuclear
LT-ag staining, but strong inflammatory infiltrates
are lacking (graft loss<10%).

� PVAN B is characterized by extensive interstitial
infiltrates and strong cytopathic effects (graft loss
� 50%).

� PVAN C (late) is dominated by tubulus cell atrophy
and interstitial fibrosis, and only few cells with virus
replication (graft loss<80%) [104,105].

The definitive diagnosis of PVAN requires allograft
biopsies, but is challenged by

1. Focal involvement with false-negative results in
10-30% of cases [102].

2. Acute interstitial rejection which is morphologically
and molecularly hardly distinguishable [87,106,107]

3. BKV-specific immune reconstitution, after reducing
immunosuppression [100].

4. Chronic allograft nephropathy in late PVAN C
[108].

Therefore, testing for BKV replication in the urine
has become the most pivotal test to exclude PVAN
in 65%-85% of kidney transplant patients, whereas

in patients with detectable viruria, plasma BKV
loads allowed to diagnose ‘‘presumptive PVAN’’
in cases with confirmed higher values to the equiva-
lent of >10 000 copies/ml [86,102,109–111] (Table 3).
Screening for BKV replication is therefore recom-
mended 3 monthly during the first 2 years
posttransplant, when allograft biopsies are performed
for any reason, or when allograft dysfunction
occurs [109].

Reducing immunosuppression currently is consid-
ered to be the intervention of choice. Although it is
widely accepted that earlier intervention is more likely
to preserve allograft function, there are currently three
major proposals when to reduce immunosuppression:
1. Treat histological confirmed cases with decreased
allograft function (‘definitive PVAN’, typically pattern
B–C) 2. Treat histological confirmed cases with
baseline allograft function (‘definitive PVAN’, typi-
cally pattern A>B). 3. Treat patients with persistently
high plasma BKV load, but negative or unknown
histology result (‘presumptive PVAN’). These options
have not been fully elucidated or compared to each
other regarding efficacy and outcome.

Reported strategies for reducing the immunosup-
pressive load are:

1. Reduce calcineurin inhibitor trough levels
(Tacrolimus �6 ng/mL, cyclosporine <125 ug/ml.

2. Reduce antiproliferative agent by 50%
(Mycophenolate mofetil �1 g per day,
Azathioprine �75mg per day in adult patients).

3. Discontinuing components of triple drug therapies
(mostly mycophenolate mofetil) [85,112], some
replace with leflunomide (>4 mg/ml) or sirolimus
(<6 ng/ml).

When simultaneous rejection is suspected, anti-
rejection treatment might be given priority. In a
second step immunosuppressives can then be reduced
[113]. Potential antivirals like cidofovir or leflunomide
showed some efficacy in-vitro [114–118], while other

Table 3. Prospective Study of Plasma BKV load and Definitive
PVAN [130]

Viremia at biopsy <10e4 10e4–10e5 >10e5

n¼ 21 n¼ 23 n¼ 31
Definitive PVAN 1 (4.8%) 16 (68.4%) 20 (64.6%) p< 0.001
Pattern A 1 (4.8%) 8 (34.7%) 4 (13%)
Pattern B 0 8 (34.7%) 16 (51.6%)
Pattern C 0 0 0
S-Crea rise (>20%) 4 (19%) 10 (43.5%) 16 (51.6%) p¼ 0.01

Table 2. PVAN prevalence rates and graft loss

Study Center Rates Graft loss

Mengel et al. 2003 [83] Hannover, Germany 1.1% 71%
Trofe et al. 2003 [119] Cincinnati, USA 2.1% 54%
Buehrig et al. 2003 [120] Rochester NY, USA 2.7% 38%
Ginevri et al. 2003 [81] Genua, Italy 3.0% 33%
Rocha et al. 2004 [121] Durham, NC, USA 3.1% n.a.
Rahaminov et al. 2003 [122] Petah, Israel 3.8% 14%
Kang et al. 2003 [123] Seoul, South Korea 3.9% 100%
Vasudev et al. 2005 [101] Milwaukee WI, USA 4.0% 48%
Ramos et al. 2002 [124] Baltimore MD, USA 5.1% 82%
Hirsch et al. 2002 [86] Basel, Switzerland 6.0% 0%
Lipshutz et al. 2004 [125] San Francisco, USA 6.0% 56%
Namba et al. 2005 [126] Osaka, Japan 6.9% 33%
Li et al. 2002 [127] Bethesda MD, USA 7.0% 33%
Maiza et al. 2002 [128] Lyon, France 7.1% 50%
Matlosz et al. 2004 [129] Warsaw, Poland 7.9% n.a.
Moriyama et al. 2003 (ASN 2003) Osaka, Japan 10.3% 22%
Mean 5.0% 46%
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antiviral drugs did not. However larger controlled
trials of these agents are still missing.

Conclusion

Significant progress has been made in the definition of
CMV and BKV infection, replication and disease.
Although both viruses are opportunists in the setting
of transplantation, with potential indirect effects, the
clinical problems currently associated with either virus
are fundamentally different. CMV can affect any organ
system, with substantial morbidity and mortality, all
of which can be essentially controlled by effective
antivirals. BKV on the other hand causes severe
pathologies in the renourinary tract in a limited
number of kidney transplant and HSCT recipients.
The absence of effective anti-polyomaviral drugs
renders BKV treatment strategies largely dependent
on immunological containment of BKV replication.
Access to invasive procedures and biopsy workup is
required for definitive diagnosis of CMV and BKV
disease. However, for both agents, the most relevant
diagnostic study in the clinical setting is early detection
and quantification of virus replication in blood. Assays
quantifying virus-specific cellular immune responses in
real-time are important new avenues to be explored to
better predict risk of replication and disease and to
optimize clinical management.
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