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Human immunodeficiency virus type 1 (HIV-1) RNA that persists in the lymphoid tissue of patients despite
treatment with highly active antiretroviral therapy (HAART) may represent extracellular virions or intracellular
RNAs residing within HIV-infected cells. To further characterize residual viral transcription, tonsil biopsy
specimens from patients receiving long-term HAART, untreated patients, and patients undergoing 2 weeks of
structured treatment interruption were analyzed by polymerase chain reaction quantification of virion-en-
capsidated RNA, intracellular unspliced HIV RNA (HIV UsRNA), multiply spliced HIV RNA encoding tat and
rev (HIV MsRNA), and HIV DNA. Tonsil biopsy specimens from viremic patients harbored high amounts of
virions, which primarily stemmed from local production, as indicated by a strong correlation of extracellular
tonsillar RNA with intracellular HIV-1 nucleic acid levels but not with plasma viremia, and as shown by
phylogenetic analysis of clonal env sequences from lymphoid tissue and plasma. In patients receiving HAART,
intracellular HIV UsRNA persisted at significantly decreased levels, whereas HIV MsRNA and lymphoid virion
levels were depleted. Thus, residual lymphoid HIV-1 RNA in patients receiving HAART indicates attenuated
viral transcription in HIV-1–infected cells that lack virion production.

Combination antiretroviral therapy may reduce levels

of viral RNA in plasma to levels below detection [1],

but low levels of HIV-1 RNA in peripheral blood mono-

nuclear cells (PBMCs) [2–4] or in lymphoid tissue per-

sist for years [4–6]. Such persistent viral transcripts may
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arise from newly infected cells as a result of ongoing

productive viral replication [2], or they may originate

from reactivated HIV-1–infected cells [7]. Alternatively,

persistent HIV-1 RNAs may reflect viral transcription

in HIV-1–infected cells that do not produce virions and,

possibly, do not produce viral antigens [8]. There is

evidence that ongoing low-level HIV-1 replication oc-

curs in a fraction of patients, despite treatment with

highly active antiretroviral therapy (HAART), as has

been shown by sequence evolution of virus quasi species

[5, 9] and by reduction of residual viremia on therapy

intensification [10]. Nevertheless, even in viremic pa-

tients, productively infected cells are the rarest class of

HIV-1–infected cells in lymphoid tissue [11, 12] and

PBMCs [8], presumably because of their short half-life

[13]. Therefore, the main fraction of persistent viral

transcripts in patients receiving HAART may be derived

from cells with a repressed viral expression pattern [8].

A major difficulty in associating persistent HIV-1

transcription with individual classes of HIV-1–infected
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cells is the complexity of HIV-1 transcription represented by

130 different RNAs [14, 15]. One key transcript of HIV-1 is

unspliced HIV RNA (HIV UsRNA), because it mediates an

array of different functions, serving as (1) the primary retroviral

transcript, (2) mRNA for the translation of gag and pol, and

(3) genomic RNA, which is encapsidated into virions [16].

Thus, HIV UsRNA can be found intracellularly and extracel-

lularly in lymphoid tissue [12] and in PBMCs [8, 17]. Quan-

titative in situ hybridization has suggested that a major fraction

of HIV-1 RNA in the lymphoid tissues of HIV-1–infected pa-

tients with viremia corresponds to extracellular viral particles

bound to follicular dendritic cells (FDCs) [11, 12, 18]. Efforts

to characterize the topology of HIV RNAs in the lymphoid

tissue of patients receiving HAART have been impeded by the

lower sensitivity of in situ hybridization, compared with that

of polymerase chain reaction (PCR) analysis [6]. However,

novel specific and highly sensitive PCR-based assays now per-

mit detection and quantification of both extracellular virion-

encapsidated HIV UsRNA and intracellular HIV UsRNA [8].

In addition to HIV UsRNA, a second class of HIV-1 RNAs—

multiply spliced HIV-1 RNAs encoding tat and rev (HIV

MsRNAs)—plays a central role in the retroviral life cycle. The

HIV MsRNA gene products that promote the transcriptional

activation of the HIV-1 long terminal repeat [19] and the nu-

cleocytoplasmic transport of a majority of HIV-1 RNAs [20]

mediate efficient expression of HIV-1 and are essential for viral

replication. In addition, expression of HIV MsRNA also occurs

early after infection [21–24], and detection of HIV MsRNA in

vivo has been associated with newly infected cells [23, 25]. Ex-

pression of HIV MsRNA has also been observed in latently in-

fected cells showing posttranscriptionally blocked latency [26].

Because these different classes of HIV-infected cells may coexist

in vivo, unambiguous identification of defined cell types that

produce HIV MsRNA is difficult. However, absence of HIV

MsRNA strongly suggests depletion of �1 category of cells—in

particular, of HIV-1–infected cells producing virions [8].

To elucidate the origin of persistent HIV-1 RNAs in vivo

during treatment with HAART, the present study focused on

viral expression patterns in lymphoid tissue, which is the major

reservoir of HIV-1 [27], by use of assays for HIV MsRNA and

extracellular and intracellular HIV UsRNA. These HIV RNAs

were studied in conjunction with levels of HIV-1 DNA mapping

to the gag gene (HIV DNA). Because of the presence of defective

genomes [28–30], episomal viral genomes, and nonintegrated

linear viral DNA [31], HIV DNA levels are a maximum estimate

of the number of infected cells exceeding the number of rep-

lication-competent provirus genomes.

Combined analysis of these virological parameters permitted

characterization of productive infection in lymphoid tissue in

vivo, under conditions of ongoing viral replication in therapy-

naive patients and during structured treatment interruption

(STI). Observation of highly repressed viral transcription pat-

terns in the lymphoid tissue of patients receiving HAART sug-

gests that residual HIV RNA mainly resides in latently infected

cells.

PATIENTS, MATERIALS, AND METHODS

Patients and specimens from patients. Tonsil biopsy spec-

imens obtained from untreated viremic patients ( ) andn p 13

from patients receiving HAART resulting in plasma viremia

levels !50 copies/mL for 112 months ( ) were studied.n p 21

A subgroup of patients receiving HAART ( ) underwentn p 11

a 2-week STI. Samples were obtained from patient 4 before

initiation of HAART, during treatment, and after STI.

All 33 patients were enrolled in the Swiss HIV Cohort Study

[32] and provided written informed consent, according to the

guidelines of the ethics committee of the University Hospital

Zurich (Zurich). Tonsil biopsy specimens were obtained during

3 clinical trials. In 2 trials, biopsy specimens were obtained

from therapy-naive patients (patients 1–13) [33, 34]. The im-

munological status of untreated patients included a mean CD4

cell count (�SE) of cells/mL of blood (median, 505466 � 49

cells/mL; range, 65–743 cells/mL) and a mean CD8 cell count

(�SE) of cells/mL of blood (median, 814 cells/mL;1014 � 169

range, 365–2400 cells/mL).

Treatment with HAART consisted of 2 reverse-transcriptase

(RT) inhibitors plus 1 protease inhibitor (for patients 14–23

[35] and for patients 28, 29, and 33 [36]). Patients 24–27 and

patients 30–32 were initially treated with 2 RT inhibitors plus

1 protease inhibitor for �6 months and then were switched to

a simplified drug regimen consisting of 3 RT inhibitors when

the plasma viremia level was !50 copies/mL [36]. Tonsil biopsy

specimens from patients undergoing STIs (patient 4 and pa-

tients 14–23) were obtained at baseline (i.e, “on-therapy” spec-

imens) and 2 weeks after STI (i.e., “off-therapy” specimens)

[35]. The immunological status of patients receiving HAART

included a mean CD4 cell count (�SE) of cells/mL694 � 56

of blood (median, 723 cells/mL; range, 347–1269 cells/mL) and

a mean CD8 cell count (�SE) of cells/mL of blood756 � 60

(median, 342 cells/mL; range, 805–1228 cells/mL). The CD4 cell

counts of patients receiving HAART were significantly higher

than those of untreated patients ( , by t test), whereasP p .01

differences in CD8 cell counts did not reach statistical signif-

icance ( ).P p .1

Plasma samples were obtained by Ficoll-gradient purification

(Lymphoprep) or by use of Vacutainer CPT tubes (Becton Dick-

inson). Tonsil biopsy specimens were snap-frozen at �80�C.

Cryosections were prepared using a strategy that ensured op-

timal homogeneity of the 5 aliquots of tissue for nucleic acid

analysis, by use of our previously developed strategy for tissue

sectioning [11], with minor modifications: Each biopsy spec-
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imen was entirely cross-sectioned, and each series of 18 con-

secutive sections was defined as a level. Per level, 3 consecutive

sections were used for morphologic analysis, to verify that lym-

phoid tissue was present, and 3 consecutive sections were

pooled into 5 separate tubes for nucleic acid extraction.

Differential extraction of particle-associated and total HIV

RNA. Differential extraction of particle-associated and total

HIV RNA was performed in duplicate, as described elsewhere

[8], with minor modifications. For some biopsy specimens, only

1 extraction was performed. Singular extraction of the extra-

cellular fraction was performed for patients 14 (on-therapy and

off-therapy specimens) and 15 (on-therapy specimen); extrac-

tion of total RNA was performed for patients 4 (off-therapy

specimen), 16 (off-therapy specimen), 18 (off-therapy speci-

men), 19 (on-therapy and off-therapy specimens), 21 (on-ther-

apy and off-therapy specimens), and 22 (on-therapy specimen).

For the biopsy specimens of 2 patients (patient 18 [off-therapy

specimen] and patient 21 [off-therapy specimen]), extracellular

fractions were measured in triplicate.

Nucleic acid quantitation. Plasma HIV RNA was quan-

tified using the Amplicor HIV-1 Monitor Test, version 1.5

(Roche), or an ultrasensitive modification of the test [37]. Cell-

associated HIV-1 RNAs were quantified as described elsewhere

[8]; HIV UsRNA was quantified using a modification of the

Amplicor HIV-1 Monitor Test [8]. HIV MsRNA was measured

using a limiting dilution analysis of an ultrasensitive direct RT-

PCR assay, followed by a 96-well immunosorbent assay [8] that

used PCR primers encompassing the start codon of rev and

the second coding exon of tat and rev [38].

HIV DNA was extracted using the QIAmp DNA extraction

minikit (Qiagen) and was quantified using the Amplicor HIV-

1 Monitor Test, as described elsewhere [39]. Absolute detection

limits of HIV RNA and HIV DNA measurements were !2

copies/PCR [8, 39]. Relative detection limits of HIV RNA and

HIV DNA in PCR-negative specimens, normalized to the cel-

lular input and expressed as the number of copies per cells,610

were calculated as reported elsewhere [8].

Total cellular RNA and DNA were quantified fluorometrically

by use of fluorescent dyes (Ribogreen and Picogreen; Molecular

Probes). Residual endogenous cellular RNA was monitored by

RT-PCR for glyceraldehyde-3-phosphodehydrogenase mRNA

[8, 40, 41].

Phylogenetic analysis. Amplification, cloning, and se-

quencing of HIV-1 env in nucleic acid preparations from

plasma samples (RNA) and tonsil biopsy specimens (DNA and

extracellular RNA) were performed as reported elsewhere [9],

with minor modifications. HIV-1 env (410 bp, including C2

and V3) was amplified by nested PCR in duplicate reactions.

Combined cDNA synthesis and first-round PCR (RT-PCR kit;

Finnzymes) were followed by second-round PCR performed

using HotStarTaq (Qiagen) with primers (5′-GAACAGGACCA-

TGTACAAATGTCAGCACAGTACAAT-3′ and 5′-GCGTTAA-

AGCTTCTGGGTCCCCTCCTGAG-3′). Pooled products were

cloned (with use of the pCR-4 TOPO cloning system; Invi-

trogen), and 16 clones per sample were selected. Virus inserts

were amplified by direct PCR analysis of bacterial colonies and

were bidirectionally sequenced (BigDye; Applied Biosystems).

The average misincorporation rate under these conditions was

!0.2%.

Diversities were calculated using MEGA software, version 2.1

(S. Kumar et al., http://www.megasoftware.net), under the as-

sumption of a Tamura and Nei substitution model. Phyloge-

netic trees were constructed using the maximum-likelihood

method DNAML, by use of transition/transversion ratio 2.0,

global rearrangements, and random input order (PHYLIP, ver-

sion 3.6; J. Felsenstein, University of Washington, Seattle; http:

//evolution.genetics.washington.edu/phylip.html). Trees were

displayed by TreeView (version 1.6; R. Page, University of Glas-

gow, Glasgow, UK; http://taxonomy.zoology.gla.ac.uk/rod/

treeview.html). The reference sequence used for constructing

phylogenetic trees was HXB2 [42]. All sequences reported were

deposited in GenBank (for patient 4 [known as “SSITT patient

109”], AY375568–AY375615; for patient 17 [known as “SSITT

patient 120”], AY375616–AY375662; for patient 20 [known as

“SSITT patient 102”], AY375711–AY375758; and for patient 21

[known as “SSITT patient 118”], AY375663–AY375710).

Calculations and statistics. Copy numbers of extracellular

HIV UsRNA were calculated, with the efficacy of nuclease di-

gestion of cellular nucleic acids taken into account, as reported

elsewhere [8]. Copy numbers of intracellular HIV UsRNA were

calculated as the difference between measurements of total HIV

UsRNA and extracellular HIV UsRNA [8]. HIV RNA copy

numbers in undigested control samples were normalized to the

input of total cellular RNA (expressed as the number of copies

per 106 cell-equivalents), with a median of 2.68 mg of RNA

(range, 0.4–11.4 of mg of RNA; samples) recovered pern p 41

106 cell-equivalents. The number of cell-equivalents in a given

sample was calculated from the recovery of total DNA, under

the assumption that 7 mg of total cellular DNA represents 106

cell-equivalents [43]. Copy numbers obtained from nuclease-

treated samples were normalized, under the assumption that

the input of cell-equivalents per PCR was equal to that of the

matched undigested control [8].

Statistical analyses were performed using GraphPad Prism

software (AMPL Software). Mean values (�SE) are indicated.

Median values were compared using the Mann-Whitney test.

Correlation coefficients (r2) were calculated by linear regression

on log10 values. Alternatively, adjusted r2 values were calculated

by Statview software, version 5.0.1 (SAS; data not shown), re-

sulting in slightly lowered values (mean difference [�SE] of

), which almost completely correlated (�0.06 � 0.008 P !

; ) with unadjusted r2 values.2.0001 r p 0.997
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Table 1. Characteristics of untreated asymptomatic HIV-1–infected patients with detectable
plasma viremia.

Patient

Plasma HIV-1
RNA level,
copies/mL

Measurement of HIV-1 nucleic acids
in tonsil biopsy specimens, copies/106 cellsa

Total HIV
UsRNA

Intracellular
HIV UsRNA

Extracellular
HIV UsRNA

HIV
MsRNA

HIV
DNA

1 12,483 1,149,265 NAb 1,176,340 3566 1671

2 7149 8328 747 7581 190 92

3 88,637 2,329,785 658,043 1,671,742 3649 2611

4 42,487 245,868 142,772 103,096 1929 852

5 11,379 9,425,289 5,540,779 3,884,510 8586 5782

6 91,110 440,346 326,263 114,083 89 2420

7 50,527 12,708 3834 8874 !50 90

8 64,916 57,769 56,571 1198 1026 628

9 62,786 11,129 4486 6643 !38 602

10 102,900 225,078 28,185 196,893 780 1036

11 1943 155,162 115,320 39,842 1029 585

12 38,836 576,456 294,351 282,105 4174 982

13 14,560 145,355 101,398 43,957 5007 1871

NOTE. HIV MsRNA, multiply spliced HIV RNA encoding tat and rev; HIV UsRNA, unspliced HIV RNA; NA,
not applicable.

a “Less than” symbols (!) denote detection limits of polymerase chain reaction–negative specimens.
b Could not be calculated because 199% of total HIV UsRNA in the biopsy specimen was contained in the

extracellular fraction.

RESULTS

Plasma viremia in untreated patients receiving HAART and

in untreated patients undergoing STI. The following groups

of HIV-1–infected patients were studied: untreated asymptom-

atic patients with detectable plasma viremia levels in the range

of HIV-1 RNA copies/mL (median, 42,48751943–1.02 � 10

HIV-1 RNA copies/mL; mean [�SE], HIV-143,563 � 9664

RNA copies/mL; patients 1–13) (table 1) and patients receiving

HAART with plasma viremia levels !50 copies/mL (patient 4

and patients 14–33) (table 2). All patients who were receiving

HAART continuously had plasma viremia levels !50 copies/

mL for 112 months. For a subgroup of patients receiving

HAART (patient 4 and patients 14–23), therapy was interrupted

for 2 weeks. This resulted in increased plasma viremia levels

in 8 of 11 patients (range, 141–213,043 HIV-1 RNA copies/

mL; median, 15,134 copies/mL; mean [�SE], 47,330 �

copies/mL), whereas, for 3 patients (patients 16, 19, and25,765

22), no rebound of plasma viremia was observed (table 2).

HIV-1 nucleic acid levels in the lymphoid tissue of patients

with high-level, suppressed, and rebounding viremia. To

assess lymphatic HIV-1 transcription patterns, levels of the fol-

lowing cell-associated HIV-1 nucleic acids were measured in

tonsil biopsy specimens: HIV DNA, HIV MsRNA, and HIV

UsRNA. The latter was further distinguished as intracellular or

extracellular HIV UsRNA. For untreated patients, the ranges

of these measurements were 90–5782 copies/106 cells for HIV

DNA (median, 982 copies/106 cells; mean [�SE], 1479 �

copies/106 cells), !38–8586 copies/106 cells for HIV MsRNA423

(median, 1029 copies/106 cells; mean [�SE], cop-2316 � 712

ies/106 cells), copies/106 cells for intracellular HIV6747–5.5 � 10

UsRNA (median, copies/106 cells; mean [�SE],51.1 � 10

copies/106 cells), and cop-5 5 66.1 � 10 � 4.5 � 10 1198–3.9 � 10

ies/106 cells for extracellular HIV UsRNA (median, 51.0 � 10

copies/106 cells; mean [�SE], copies/1065 55.8 � 10 � 3.1 � 10

cells).

As expected, these levels were generally lower in patients

receiving HAART than in untreated patients ( ) (figureP � .0001

1). However, whereas HIV DNA (range, !22–461 copies/106

cells; median, 98 copies/106 cells; mean [�SE], cop-146 � 31

ies/106 cells) and intracellular HIV UsRNA (range, 4–372 cop-

ies/106 cells; median, 43 copies/106 cells; mean [�SE], 76 �

copies/106 cells) were present at detectable levels in 83% and21

86%, respectively, of all samples, HIV MsRNA (range, !2–10

copies/106 cells; median, 4 copies/106 cells; mean [�SE],

copies/106 cells) and extracellular HIV UsRNA (range,4 � 0.5

!2–!20 copies/106 cells; median, 11 copies/106 cells; mean

[�SE], copies/106 cells) were only detectable in 26%11 � 1

and 5%, respectively, of the tested biopsy specimens and, thus,

were significantly depleted ( and , respectively,P p .01 P � .001

by Fisher’s exact test, in comparison with untreated patients).

The levels of the 3 types of cell-associated HIV-1 RNA assessed

in the tonsil biopsy specimens obtained from patients with



Table 2. Characteristics of HIV-1–infected patients treated with highly active antiretroviral
therapy.

Patient, therapy status

Plasma HIV
RNA level,
copies/mLa

Measurement of HIV-1 nucleic acids
in tonsil biopsy specimens, copies/106 cellsa

Total HIV
UsRNA

Intracellular
HIV UsRNA

Extracellular
HIV UsRNA

HIV
MsRNA

HIV
DNA

4
Receiving therapy !10 43 43 !19 !3 238
2 Weeks’ STI 1876 49 49 !8 !3 142

14
Receiving therapy !9 4 4 !18 !5 !22
2 Weeks’ STI 74,375 312 312 !79 !20 111

15
Receiving therapy 25 114 114 !9 !3 331
2 Weeks’ STI 213,043 2080 1673 406 11 260

16
Receiving therapy !12 7 7 !6 !2 35
2 Weeks’ STI !10 !1 !1 !10 !3 9

17
Receiving therapy !22 91 91 !9 2 66
2 Weeks’ STI 258 6756 2555 4201 52 166

18
Receiving therapy 44 7 7 !12 !4 103
2 Weeks’ STI 141 6 6 !6 !3 !11

19
Receiving therapy 47 78 78 !12 !8 56
2 Weeks’ STI 36 58 58 !14 !5 57

20
Receiving therapy !22 NDb NDb NDb NDb NDb

2 Weeks’ STI 58,678 123,260 105,727 17,534 1191 8917
21

Receiving therapy !6 35 35 !10 !7 45
2 Weeks’ STI 26,815 24,229 18,057 6172 655 451

22
Receiving therapy !11 !5 !5 !20 !5 !32
2 Weeks’ STI !10 !4 !4 !14 !3 !101

23
Receiving therapy 42 NDb NDb NDb NDb NDb

2 Weeks’ STI 3453 1624 1426 197 !5 140
24, receiving therapy 19 5 5 !17 !3 ND
25, receiving therapy !5 73 73 !11 !3 59
26, receiving therapy !5 174 174 !8 4 258
27, receiving therapy !4 121 121 !8 4 158
28, receiving therapy !5 17 17 !20 !7 98
29, receiving therapy !9 19 19 !2 10 ND
30, receiving therapy !6 57 57 !2 !2 182
31, receiving therapy !8 211 211 !15 !3 289
32, receiving therapy !5 376 372 5 3 461
33, receiving therapy 24 13 13 !14 !4 55

NOTE. HIV MsRNA, multiply spliced HIV RNA encoding tat and rev; HIV UsRNA, unspliced HIV RNA; ND, not
determined; STI, structured treatment interruption.

a “Less than” symbols (!) denote detection limits of polymerase chain reaction–negative specimens.
b No tonsil biopsy specimen was available.
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Figure 1. Levels of HIV-1 nucleic acids in tonsil biopsy specimens and plasma. A, Levels of unspliced HIV RNA (HIV UsRNA) in plasma. B, Levels
of HIV-1 nucleic acids (HIV DNA, multiply spliced HIV-1 RNA encoding tat and rev [HIV MsRNA], and HIV UsRNA) in tonsil biopsy specimens. Note
that only patients who had levels of plasma viremia 150 copies/mL were included ( ) in the group showing data for patients after 2 weeks ofn p 8
structured treatment interruption (STI). Closed diamonds, Values of detectable polymerase chain reaction (PCR) measurements; open diamonds, detection
limits of PCR-negative specimens; horizontal lines, medians. P values that indicate the significance of differences between groups are shown within
each panel. HAART, highly active antiretroviral therapy.

rebounding viremia during STI appeared to be intermediate

(figure 1B); they were significantly lower than those in untreated

patients ( ) and were higher than those in patients re-P � .006

ceiving HAART ( ). Levels of HIV DNA in the tonsilsP � .02

of patients with rebounding viremia trended lower ( ),P p .06

compared with samples from untreated patients, but they were

not significantly higher ( ) than such levels in the tonsilsP p .26

of patients receiving HAART.

Correlation analysis of HIV-1 nucleic acids in lymphoid

tissue and plasma. To characterize the interdependencies of

HIV-1 nucleic acids in lymphoid tissue and their association

with plasma viremia, analysis of correlation between each of

the parameters tested was performed. Cross-sectional analysis

of combined data from untreated patients and from 8 patients

with rebounding viremia as a result of STI showed highly sig-

nificant correlations of all types of cell-associated HIV-1 nucleic

acid levels (figure 2). Of note, the extracellular fraction of HIV

UsRNA, which, to a great extent, is associated with FDCs [8,

11, 12], was correlated, with high significance ( ), withP � .002

HIV DNA ( ), HIV MsRNA ( ), and intra-2 2r p 0.46 r p 0.52

cellular HIV UsRNA ( ), but not with plasma HIV2r p 0.70

RNA ( ; ). Similarly, no correlation was ob-2P p .22 r p 0.01

served between levels of plasma HIV RNA and HIV DNA or

HIV MsRNA ( ). Plasma viremia was weakly but signif-P 1 .17

icantly correlated with intracellular HIV UsRNA ( ;P p .03

), which verified that virus pools in plasma and ton-2r p 0.23

sils, to a limited extent, communicated with each other. Under

conditions of fully suppressive HAART, HIV RNA in plasma,

HIV MsRNA, and extracellular HIV UsRNA were predomi-

nantly undetectable, which precluded paired analysis, except

for intracellular HIV UsRNA and HIV DNA, for which, again,

the correlation was significant ( ; ).2P p .007 r p 0.41

To corroborate these findings under conditions of restricted

viral replication, the relative change, on STI, in each of the

parameters measured was calculated (figure 3). This longitu-

dinal analysis yielded results similar to those of the cross-sec-

tional analysis of absolute nucleic acid levels. Within the cellular

compartment, paired correlations between levels of HIV-1 nu-

cleic acids were significant ( ), and changes in plasmaP � .01

viremia levels were correlated with intracellular HIV UsRNA

( ) and, to a lesser extent, with HIV DNA ( );P p .004 P p .05

however, they were correlated neither with HIV MsRNA nor

with extracellular HIV UsRNA ( ). Of note, the best cor-P � .1

relation was observed between changes in extracellular HIV

UsRNA and HIV MsRNA ( ; ), revealing an2P ! .0001 r p 0.88

almost complete linkage between increases in these parameters

under conditions of rebounding HIV-1 replication. One outlier

in this correlation, patient 23, had no detectable HIV MsRNA,

despite production of lymphoid viral particles. Insufficient de-

tection of HIV MsRNA in this patient, who was infected with

a non-B clade virus, was the result of primer mismatches (data

not shown).

Phylogenetic analysis of viral nucleic acids in lymphoid tis-

sue and plasma. The high correlation between levels of ton-

sillar extracellular HIV-1 RNA and intracellular viral nucleic

acids in lymphoid tissue was in marked contrast to the lack of
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Figure 2. Correlations of HIV-1 nucleic acid levels in the tonsil biopsy specimens and plasma of patients with detectable plasma viremia. Values
for unspliced HIV RNA (HIV-UsRNA) in plasma are expressed as log10 copies per milliliter, whereas all cell-associated HIV RNA measurements are
expressed as log10 copies per 106 cells. A, Linear regression analysis of log10 values of extracellular and intracellular HIV UsRNA (HIV UsRNAextra and
HIV UsRNAintra, respectively), multiply spliced HIV-1 RNA encoding tat and rev (HIV MsRNA), and HIV DNA in tonsil biopsy specimens and of HIV
UsRNA in the plasma of patients with 150 RNA copies/mL (HIV RNAplasma). Straight lines, Linear regression curves; broken lines, 95% confidence
intervals. Correlation coefficients (r 2), sample size (n), and P values are indicated within the graphs. B, Summary of correlation analysis. Arrows,
Interdependencies between parameters; thickness of the arrow lines, the magnitude of correlation coefficients.

correlation of tonsillar extracellular HIV-1 RNA with plasma

viremia. This finding implies that tonsil-associated viral par-

ticles reflected local virus production in a given lymphoid or-

gan, rather than origination from the pool of HIV-1 particles

in plasma. To verify this hypothesis, phylogenetic analysis of

clonal HIV env sequences derived from plasma HIV RNA, ton-

sillar extracellular HIV UsRNA, and tonsillar HIV DNA was

performed for 4 patients (1 untreated patient [patient 4] and

3 patients who had viral rebound in the tonsils during STI

[patients 17, 20, and 21]). Relatively high viral diversities of

3.4% and 2.6% were observed in patients 4 and 20, respectively,

whereas lower diversities of 1.4% and 0.6% were observed in

patients 17 and 21, respectively. Maximum-likelihood trees (fig-

ure 4) and neighbor-joining trees (data not shown) revealed

clustering of the majority of virus quasi species (�56%) of the

extracellular tonsillar pool into a monophyletic group, which

was designated a lymphoid cluster (table 3). Accordingly, pools

of viral nucleic acids could be grouped into 2 classes: the lym-

phoid cluster and a second class containing the remaining

clones (figure 4 and table 3). In patients 4, 17, and 21, we

observed distributions of virus quasi species derived from

plasma HIV UsRNA within these 2 classes, which were signif-
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Figure 3. Correlations of relative changes in HIV-1 nucleic acid levels in tonsil biopsy specimens and plasma during structured treatment interruption
(STI). Relative increases are indicated as log10 copies during receipt of therapy/log10 copies after STI. When measurements during receipt of therapy
and measurements after STI were both below the limit of detection, relative increases of 0 log10 [1] were assigned. Note that such data points can
coincide for several patients and that these data points may lie on top of each other. Increases in the viral nucleic acids of 2 patients from whom
tonsil biopsy specimens were not collected during receipt of therapy (patients 20 and 24) were calculated by assuming the median measurements in
specimens obtained from the remaining 9 patients during receipt of therapy. A, Linear regression analysis of changes in tonsil-associated unspliced
HIV RNA (HIV-UsRNA [HIV UsRNAextra, extracellular HIV UsRNA; HIV UsRNAintra, intracellular HIV UsRNA), multiply spliced HIV-1 RNA encoding tat and
rev (HIV MsRNA), and HIV DNA and of HIV UsRNA in plasma (HIV RNAplasma). Straight lines, Linear regression curves; broken lines, 95% confidence
intervals. Correlation coefficients ( r2) and P values are indicated within the graphs. B, Summary of correlation analysis. Arrows, Interdependencies
between parameters; thickness of the arrow lines, the magnitude of correlation coefficients.

icantly different ( ) (table 3) from the distributions ofP � .01

clones derived from extracellular tonsillar HIV UsRNA. Re-

markably, also, the distribution of provirus quasi species dif-

fered from that of plasma virus. This trend reached statistical

significance for patient 4 ( ). Thus, the lymphoid pro-P p .003

virus and lymphoid extracellular RNA populations appeared to

be more related to each other than to the pool of virions in

plasma. Even though such clear clustering into 2 monophyletic

groups could not be documented for patient 20, this lack of

documentation did not reflect homogeneity between plasma

and tonsillar virus quasi species but, rather, the relatively high

overall viral diversity (2.6%) observed in patient 20.

The notion of genetic disparity between plasma and tonsil

biopsy specimens was substantiated by an analysis of combined

data from these 4 patients (patients 4, 17, 20, and 21). Results

of the analysis showed that the distribution of virus quasi species

in both lymphoid virus DNA and lymphoid extracellular RNA

was significantly different from that in plasma ( andP p .004
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Figure 4. Phylogenetic analysis of virus quasi species in plasma and
tonsils. Maximum-likelihood phylogenetic tree of HIV-1 env clones obtained
from plasma (shaded circles), tonsillar extracellular unspliced HIV RNA (HIV
UsRNA; closed triangles), and tonsillar HIV DNA (open diamonds) of patients
4, 17, 20, and 21. Shaded areas denote monophyletic clusters of viral clones
of predominantly tonsillar origin (i.e., “lymphoid clusters”). Individual clones
were compared with the HXB2 reference sequence [42].

Table 3. Differential clustering of virus quasi species in plasma
and lymphoid tissue.

Patient,
lymphoid
cluster statusa

Frequency
in plasma

HIV-1 RNA, %

Frequency in tonsil
biopsy specimens, %

Extracellular
HIV UsRNA Pb

HIV
DNA Pb

4 .01 .003

Present 31 81 88

Absent 69 19 13

17 .002 .47

Present 53 100 69

Absent 47 0 31

20 1.0 1.0

Present 50 56 50

Absent 50 44 50

21 .002 .16

Present 38 94 69

Absent 63 6 31

Allc !.0001 .004

Present 43 80 69

Absent 57 20 31

NOTE. HIV UsRNA, unspliced HIV RNA.
a Defined by analysis of recent common ancestors, as shown in figure 4.
b Differences in the distribution of clones in lymphoid clustered or non-

clustered sequences, compared with the distribution of clones derived from
plasma RNA. By use of Fisher’s exact test, 16 clones were analyzed for each
nucleic acid pool, with the exception of the plasma RNA of patient 17, for
whom 15 clones were analyzed for each nucleic acid pool.

c Combination of all data from patients 4, 17, 20, and 21.

, respectively) (table 3); however, the distribution ofP ! .0001

virus quasi species in lymphoid virus DNA was not significantly

different from that in lymphoid extracellular RNA ( ).P p .22

Determination of the average viral productivity of lymphoid

HIV-1–infected cells. We calculated the average content of

HIV MsRNA and intracellular HIV UsRNA per infected cell,

to test whether the reduction in HIV-1 RNA levels in the lym-

phoid tissue of patients receiving HAART, compared with that

in untreated patients, was the result of a reduction in HIV-1–

infected cells or of differences in viral expression patterns in

the persisting infected cells. HIV-infected cells of untreated pa-

tients contained a median of 1.63 HIV MsRNA copies/cell

(range, 0.04–4.3 copies/cell) and a median of 113 intracellular

HIV UsRNA copies/cell (range, 7–958 copies/cell). In the tonsil

biopsy specimens of patients receiving HAART, highly signif-

icant reductions in average viral RNA productivity were ob-

served (�48-fold reductions in HIV MsRNA [figure 5A] and

�340-fold reductions in intracellular HIV UsRNA [figure 5B]).

The cellular production of HIV-1 RNAs in lymphoid tissue

samples obtained from patients undergoing STI was considered

to be intermediate (figure 5A and 5B).

Because extracellular HIV UsRNA primarily reflected local

production of HIV-1 virions, the average productivity of HIV-

1 virions per infected cell could be calculated. In untreated

patients, a median of 49 virions/infected cell (range, 1–352

virions/infected cell) was observed. The virion productivity of

lymphoid tissue was reduced by �729-fold in patients receiving
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Figure 5. Viral productivity of HIV-1–infected cells in tonsil biopsy specimens. A, Levels of expression of multiply spliced HIV-1 RNA encoding tat
and rev (HIV MsRNA) normalized to HIV-1–infected cells. B, Expression levels of intracellular unspliced HIV RNA (HIV UsRNA) normalized to HIV-1–
infected cells. C, Virion production of HIV-1–infected cells. Productivities were calculated by dividing the no. of copies of HIV RNA by the number of
copies of HIV DNA. In panel C, the no. of copies of extracellular HIV UsRNA was divided by 2, to account for the fact that 1 virion contains 2 copies
of genomic HIV-1 RNA. Closed diamonds, Values calculated from detectable polymerase chain reaction (PCR) measurements; open diamonds, values
calculated using detection limits of PCR-negative specimens. Horizontal lines denote medians, and P values denoting the significance of differences
between groups are shown within each panel. Note that only patients who had levels of plasma viremia 150 copies/mL were included in the group
showing data from patients after 2 weeks of structured treatment interruption (STI). HAART, highly active antiretroviral therapy.

HAART (figure 5C), whereas, again, patients undergoing STIs

showed intermediate productivity.

DISCUSSION

In the present study, analysis of viral transcription patterns in

the lymphatic tissue of HIV-1–infected patients, by use of highly

sensitive PCR-based assays, resulted in 3 major findings:

1. The content of extracellular HIV-1 virions in lymphoid

tissue was correlated with the number of infected cells and the

viral transcriptional activity of infected cells in a given organ

and, as verified by phylogenetic analysis, thus greatly depended

on local productive infection.

2. During STI, increasing transcription of multiply spliced

HIV MsRNA encoding tat and rev was tightly linked to increases

in lymphoid virion content. Thus, simultaneous expression of

HIV MsRNA and virion-encapsidated HIV UsRNA represented

a specific correlate of productively infected cells in lymphatic

tissue.

3. In patients receiving HAART, basal HIV-1 transcription

persisted in lymphoid tissue, but productive infection was vir-

tually abolished, as shown by the profound depletion of HIV

MsRNA and virions.

To understand the interdependence of different viral nucleic

acids in vivo, their correlations in the tonsil biopsy specimens

of patients with viremia were studied. These analyses revealed

high correlations among tonsillar cell-associated HIV-1 nucleic

acids (figure 2B and figure 3B), findings that presumably reflect

the interplay and linkage of virion production in infected cells

and reinfection of new target cells by FDC-entrapped virus [44].

On the other hand, linkage of lymphatic tissue and plasma,

although significantly discernible, was limited to a single sig-

nificant correlation. In particular, no correlation of plasma virus

with extracellular tonsillar HIV UsRNA was observed. This lack

of correlation implies either that the pool of lymphoid virions

was saturated under conditions of ongoing viral replication, as

was previously proposed by Haase et al. [12], or that it may

not be replenished directly from plasma but, rather, primarily

from virions originating in neighboring HIV-1–infected cells

in the same organ. Supporting the latter hypothesis, a recent

study showed locally confined spread of HIV-1 quasi species

within single splenic germinal centers [45].

In agreement with these findings, the phylogenetic analysis

performed, in the present study, on lymphoid DNA, lymphoid

extracellular HIV UsRNA, and also the plasma HIV RNA of 1

untreated patient and 3 patients undergoing STI suggested that

the pool of virus quasi species in the extracellular fraction of

tonsillar HIV UsRNA closely overlapped with provirus quasi

species in the same tissue, whereas the virus pool in plasma

showed significant overall disparity from these lymphoid clus-

ters ( ). Of note, our data complement the previousP � .004

observation that rebounding virus in plasma during STI was

different from the viral population present in the pool of per-

sistently infected cells in peripheral blood [46]. The fact that

the majority of rebounding virus quasi species present in lym-

phoid tissue after cessation of therapy, as represented by ex-

tracellular HIV UsRNA, was monophyletic, whereas the re-

bounding viruses in plasma were more heterogeneous, suggests

that plasma HIV RNA represents a larger virus pool, including
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the progeny of different lymphoid sites and, potentially, also

of other viral reservoirs, such as the central nervous system

[47] and the genital tract [48]. It is likely that these viruses

may consist of a spectrum of virus quasi species derived from

different bursts of replication triggered by activation of latently

infected cells [49].

The concept of local and compartmentalized viral replication

in lymphoid tissue was further supported by longitudinal cor-

relation analysis of tonsil biopsy specimens obtained from pa-

tients before and after 2 weeks of STI. No correlation of ele-

vations in lymphoid extracellular HIV UsRNA with changes in

plasma viremia was observed. However, an outstanding linkage

with increases in HIV MsRNA was observed (figure 3). Ex-

pression of HIV MsRNA is a prerequisite for virus production

of HIV-1–infected cells [19] and may be viewed as a surrogate

marker of productively infected cells [8], with some restrictions

regarding its occurrence at low levels in different types of la-

tently infected cells [8, 21, 26]. In tonsil biopsy specimens

obtained from patients receiving HAART, expression of HIV-

1 particles was almost completely absent. The number of virions

per HIV-1–infected cell, which is an estimate of the average

viral productivity of the infected cells in a given organ, was

reduced by �729-fold, compared with the number in speci-

mens from patients with viremia.

That expression and trapping of HIV-1 virions were hardly

discernible in patients receiving HAART, as measured by the

highly sensitive RT-PCR assay [8] used in the present study,

verifies and extends observations of previous studies that used

in situ hybridization [5, 6, 50]. In addition, the data from the

present study show that residual HIV UsRNA persisting in the

lymphoid tissue of patients receiving HAART is almost exclu-

sively located within cells and therefore cannot be attributed

to the presence of FDC-trapped virions. These findings are in

opposition to the hypothesis that FDC-trapped virions are a

major viral reservoir during HAART [51]. Nevertheless, it can-

not totally be excluded that extracellular particles were present,

at frequencies below the limits of detection of the test used in

the current study, in tonsil biopsy specimens obtained from

patients receiving HAART. Considering that FDC-entrapped

HIV-1 virions in mice have been shown to be highly infectious

in vivo even months after deposition [52], it may be hypoth-

esized that the incomplete viral replication observed in only 6

of 11 biopsy specimens tested may have been initiated by rare

FDC-bound particles present in a minority of lymphoid lo-

cations. However, in our view, it is more plausible that this

stochastic pattern of viral bursts after cessation of therapy was

the result of random activation of latently infected cells [49],

which may have been present in all tested tonsils, as indicated

by persistence of HIV DNA.

Similar to extracellular HIV UsRNA, HIV MsRNA was sig-

nificantly depleted in patients receiving HAART ( ), withP p .01

occasional low-level expression being detectable in 26% of the

biopsy specimens tested. The average HIV MsRNA productivity

of HIV-1–infected cells was reduced 148-fold, compared with

that noted in specimens from patients with viremia. In contrast,

intracellular HIV UsRNA was detected in 86% of the biopsy

specimens obtained from patients receiving HAART, while also

showing a 340-fold decrease in the average productivity per

infected cell.

Thus, the pattern of HIV-1 transcription and viral expression

of HIV-1–infected cells observed in the lymphoid tissue of pa-

tients receiving HAART was profoundly different from that

observed in patients with viremia. Findings of such a repressed

pattern, persistence of intracellular HIV UsRNA at low levels,

minute expression of HIV MsRNA, and almost-complete ab-

sence of extracellular HIV-1 particles were intriguingly remi-

niscent of the findings for the HIV-1–infected PBMCs of pa-

tients receiving HAART for the long term [8]; such PBMCs

were shown to be depleted of productively infected cells,

whereas 2 distinct classes of HIV-1–infected cells persisted (with

1 class expressing solely intracellular HIV UsRNA and a second,

less frequently occurring class also expressing HIV MsRNA at

minute levels). Analogous to these observations in PBMCs [8],

it may be concluded that equivalent classes of HIV-1–infected

cells persist in the lymphoid tissue of patients receiving HAART.

Such cells expressing low levels of viral RNA can be viewed as

latently infected, by use of a definition of viral latency that

encompasses a lack of virion production [53] but, in accordance

with the herpes simplex–paradigm of viral latency, not neces-

sarily absolute viral transcriptional quiescence [54].

In support of this assumption, we observed that, during short

interruptions of HAART, only incomplete and stochastic viral

replication occurred in lymphoid tissue. This implies that dur-

ing antiretroviral therapy, bursts of viral replication in lymphoid

tissue can be expected to be even rarer and may only occur in

a small fraction of the body’s lymphoid organs.

Furthermore, previous reports that used ultrasensitive in situ

hybridization protocols revealed persistence of rare HIV-1–in-

fected cells bearing low levels of intracellular HIV-1 RNA and

absence of cells expressing high levels of viral RNA in the lym-

phoid tissue of patients receiving HAART [5, 6, 50, 55]. How-

ever, in conflict with our view of residual HIV-1 infection in

lymphoid tissue being dominated by latently infected cells,

Hockett et al. [56] reported the viral RNA contents of HIV-1–

infected cells to be high and uniform in lymphoid tissue, re-

gardless of the levels of plasma viremia. The discrepancy be-

tween the findings of Hockett et al. [56] and those of the present

study may be explained by incomplete suppression of viral

replication during the short treatment time (�36 weeks) in the

study by Hockett et al. [56], compared with the longer treat-

ment period (172 weeks) in the present study. Furthermore,

the lower sensitivities of the PCR assays used by Hockett et al.
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[56] (100 copies/PCR), compared with those of the assays used

in the present study (!2 copies/PCR), likely explain the ap-

parent absence of HIV-1–infected cells with low levels of viral

expression in the study by Hockett and colleagues.

In summary, the present study demonstrated that a profound

shift in the transcription pattern of HIV-1–infected cells in

lymphoid tissue in vivo occurred in response to HAART. The

average production of viral RNAs per infected cell was greatly

reduced, and there was a vast depletion in the pool of locally

produced extracellular virions. These observations suggest that

the majority of residual viral RNA in the lymphoid tissue of

patients receiving HAART can be attributed to basal viral tran-

scription in latently infected cells and that it reflects neither

persistence of productively infected cells nor persistence of vi-

rions entrapped in the FDC network. The findings of the pres-

ent study emphasize the impact of latency on persistence of

HIV-1 during HAART. Therefore, novel treatment strategies to

purge the latent viral reservoirs are needed to revisit the aim

of eradicating HIV-1.
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