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From qd to LR, or, how were the qd and LR algorithms discovered?
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Perhaps, the most astonishing idea in eigenvalue computation is Rutishauser’s idea of applying the LR
transform to a matrix for generating a sequence of similar matrices that become more and more triangular.
The same idea is the foundation of the ubiquitous QR algorithm. It is well known that this idea originated
in Rutishauser’s qd algorithm, which precedes the LR algorithm and can be understood as applying LR to
a tridiagonal matrix. But how did Rutishauser discover qd and when did he find the qd–LR connection?
We checked some of the early sources and have come up with an explanation.
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1. Introduction

In the year 2000 the QR algorithm was placed on the list of the top ten algorithms of the 20th century
in the journalComputers in Science and Engineering(see Parlett, 2000). The honour was well merited
as the QR algorithm is the ubiquitous tool for computing eigenvalues of dense matrices. Its predecessor,
the LR algorithm, is now largely forgotten and rarely taught to students. What we wish to say here is
that, from an intellectual viewpoint, it was the LR algorithm that made the seminal contribution, and
QR is an improved stable version of LR. But how could anyone come up with the apparently ridiculous
idea of factoring a square matrixA = A1 into two triangular matrices,A1 = L1R1, and then forming
a new matrixA2 = R1L1. This LR transform requires a lot of arithmetic and creates no zero entries in
the matrix. But, sinceL1, by convention, is lower triangular with ones on the diagonal, it is invertible
andA2 = L−1

1 A1L1 has the same spectrum asA1. Yet it is not at all obvious that, if one is rich enough
and keeps on computingA3, A4, A5, . . . by iterating the LR transform, then slowly but (nearly) surely
the iterates become upper triangular and the diagonal entries converge to eigenvalues. Who would have
thought of such a bizarre process?

It was Heinz Rutishauser who discovered this LR algorithm as a by-product of his qd algorithm. In
The Algebraic Eigenvalue Problemthe eminent numerical analyst J. H. Wilkinson called Rutishauser an
‘algorithmic genius’ (see Wilkinson, 1965, p. vii) and, regarding the LR algorithm, he wrote in the same
book (see Wilkinson, 1965, p. 485) the following: ‘In my opinion its development is the most significant
advance which has been made in connexion with the eigenvalue problem since the advent of automatic
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computers.’ Surely the invention of these two algorithms is evidence of genius. That still leaves open
our question: How did he do it? What follows is our guess as to how it happened.

Our main conclusion is that he found the qd algorithm by studying previous work of Hadamard
(1892), Aitken (1926, 1931) and Lanczos (1950, Chapter VI) and by improving on it. The insight that
was truly impressive was to see that a step of the progressive qd algorithm (see below) can be interpreted
as the LR transform on a tridiagonal matrix. After that it is not hard to see that the tridiagonality of the
matrix is not essential and so the LR transform may be applied to any matrix that permits triangular
factorization.

2. Stiefel’s ‘assignment’ for Rutishauser

When founding the Institute of Applied Mathematics at theEidgen̈ossische Technische Hochschule
(ETH) in Zurich in 1948 Eduard Stiefel hired Heinz Rutishauser, who had just finished his dissertation
in complex analysis, as a research assistant. Rutishauser was hired to help to construct a digital elec-
tronic computer and to explore and develop numerical methods for using it. In 1952 he finished his
Habilitation thesis, in which he developed a compiler, and became aPrivatdozent. After that, around
1953, on Stiefel’s suggestion Rutishauser (1954b) approached the key problem of determining the poles
of the following rational function given by a power series inz−1:

f (z) :=
∞∑

ν=0

sν

zν+1
. (2.1)

The application he had in mind was the following. Assume thatA is anN × N matrix and thatx0 and
y0 are twoN-vectors. Then, forsν := yT

0Aνx0, the series in (2.1) is the Taylor expansion at∞ of

f (z) := 〈y0, (zI − A)−1x0〉 =
〈
y0,

1
z

(
I − 1

zA
)−1

x0

〉
, (2.2)

which is a proper rational fraction of degreen 6 N whose poles are eigenvalues ofA. This is seen from
the representation

f (z) =
yT

0adj(zI − A)x0

det(zI − A)
, (2.3)

which also reveals that only the numerator depends onx0 andy0 unless some zeros and poles cancel.
This application to the matrix eigenvalue problem was the starting point and the target of Rutishauser’s
investigation. He called the coefficientssν Schwarz constants, but today they are referred to as
momentsin numerical linear algebra and asMarkov parametersin systems and control theory, where
the sequence of moments is theimpulse responseof the linear time-invariant discrete-time single-input
single-output control system given by the state matrixA and the vectorsx0 andy0. So Stiefel’s proposal
for Rutishauser was to determine the eigenvalues ofA given the sequence of moments. Rutishauser
(1954b) wrote the following in his introduction: ‘Following this suggestion the author developed an
algorithm that solves the posed problem.’

We next describe what was previously known about this problem and how Rutishauser came up
with his new solution and new insight. In view of the two dominant quantities involved, he called his
algorithm thequotient-difference algorithmor, briefly, theQD algorithm. Nowadays, the abbreviation
in lower-case letters,qd algorithm, is widely used. It reflects the fact that in English ‘quotient’ and
‘difference’ are written in lower case, and it has the additional advantage of emphasizing that q and d
are not matrices (in contrast, say, to the LR and QR algorithms).



FROM qd TO LR 743

We know now that Stiefel’s proposal was actually a bad one because the problem of determining the
eigenvalues from the moments is typically extremely ill-conditioned. It is well known that the elements
of a symmetric tridiagonal matrix (and the nodes and weights of the corresponding Gauss–Christoffel
quadrature formula) are badly determined by its moments (see, e.g., Gautschi, 1968, 1982). Rutishauser
became aware of this ill-conditioning and a better solution of the matrix eigenvalue problem (see
Rutishauser, 1955a), namely, using the Lanczos (1950) algorithm for reducing the matrix to tridiagonal
form and then applying theprogressive formof his qd algorithm or, what amounts to the same, hisLR
algorithm. This approach may also break down and is, in general, unstable, but there are also situations
were it works well (see Rutishauser, 1963b, 1976, 1990), while ill-conditioning is nearly inescapable
when using moments.

3. Finding the poles off from the moments: Hadamard and Aitken

If f is a proper rational functionq/p of degreen with explicitly known denominator

p(z) = π0zn + π1zn−1 + ∙ ∙ ∙ + πn,

then it follows from the expansion (2.1) that the moments satisfy the difference equation

π0sk+n + π1sk+n−1 + ∙ ∙ ∙ + πnsk = 0 (k > 0). (3.1)

This recursion only depends onp. The numerator polynomialq of degreen−1 matches the firstn terms
of the Laurent series off p, that is,

f (z)p(z) − q(z) = O
(

1

z

)
asz → ∞.

It was known to Daniel Bernoulli (1700–1782) that, ifp has a unique zeroz1 of maximum modulus (and
hence the series (2.1) converges for|z| > |z1|), then the solution{sν} of the difference equation (3.1)
satisfies

lim
ν→∞

sν+1

sν
= z1. (3.2)

This is Bernoulli’s (1732, p. 92) method for finding such a greatest root (see Aitken, 1926) .
König (1884) established more than 150 years later that the analogous result holds for any power

series of an analytic function with a single simple pole on the boundary of the disk of convergence. Soon
after that the French mathematician Jacques Hadamard (1865–1963) in his thesis (see Hadamard, 1892)
solved the problem of findingall the poles off from the moments by a beautiful procedure that is very
ill-suited to computer implementation, however. Now the function just had to be meromorphic in a disk
around the origin and analytic at the origin, where its Taylor series was given. Here we formulate the
results, assuming thatf is analytic at∞ and given by the series (2.1). For simplicity, we further assume
that f is a proper rational function of ordern.

Hadamard considered the following double sequence ofHankel determinants:

H (ν)
k :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

sν sν+1 ∙ ∙ ∙ sν+k−1

sν+1 sν+2 ∙ ∙ ∙ sν+k
...

...
. . .

...

sν+k−1 sν+k ∙ ∙ ∙ sν+2k−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

(k = 1, 2, . . . , ν = 0, 1, . . .) (3.3)

and, adapted to our situation, established the following main result.
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THEOREM 3.1. (Hadamard, 1892) Assume that the series (2.1) represents a rational function whosen
poles, counted including multiplicity, are ordered so that

|λ1| > |λ2| > ∙ ∙ ∙ > |λn−1| > |λn|. (3.4)

If 1 6 k < n and|λk+1| < Λ < |λk| or if k = n andΛ < |λn|, then

H (ν)
k = constant∙ (λ1 ∙ ∙ ∙ λk)

ν

[
1 +O

(
Λ

|λk|

)ν]
asν → ∞. (3.5)

Assuming simple poles, Henrici (1958) gave a simpler proof of this result. Multiple poles can be
treated with a technique used by Golomb (1943). New proofs of Hadamard’s theorem have also been
a topic in the subsequent qd literature (see Gragg & Householder, 1966; Gragg, 1973; Householder,
1974). Here are some obvious conclusions.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, we have thatH (ν)
n+1 = 0 (∀ ν). Moreover, if

f hasn simple poles, then the following holds:

1. H (ν)
k 6= 0 (k = 1, . . . , n) for large enoughν;

2. if |λk| > |λk+1|, then

H (ν+1)
k

H (ν)
k

→ λ1λ2 ∙ ∙ ∙ λk asν → ∞; (3.6)

3. if |λk−1| > |λk| > |λk+1|, then

q(ν)
k :=

H (ν+1)
k

H (ν)
k

∙
H (ν)

k−1

H (ν+1)
k−1

→ λk asν → ∞. (3.7)

Statement (3.7) persists fork = 1 if we let H (ν)
0 := 1 (∀ ν). In view of the fact thatH (ν)

1 = sν , it
reduces then to Bernoulli’s result (3.2).

Naturally, Hadamard was only interested in exact relationships, not in computation. Thus the moti-
vation for developing an efficient algorithm was missing, though, in fact, he had the key in his hands,
namely, the striking nonlinear relation

(H (ν)
k )2 = H (ν−1)

k H (ν+1)
k − H (ν−1)

k+1 H (ν+1)
k−1 (3.8)

among neighbouring Hankel determinants. It appears in expression (14) in Section 17 of Hadamard’s
(1892, p. 20) thesis, but it is often calledJacobi’s identityfor Hankel determinants (see Henrici, 1974).
Note that it expresses the square ofH (ν)

k as a difference of products of next neighbours.
It was the New Zealander Alexander Craig Aitken (1895–1967), in Scotland, who in 1926 came up

with the now obvious algorithmic conclusion (see Aitken, 1926, 1931). He was unaware of Hadamard’s
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work but rediscovered Theorem 3.1 and knew Jacobi’s identity (3.8), which he considered as a
special case of a ‘theorem of compound determinants’. He realized that it can be used to build up—from
the left or from the top—the triangular table

1

1 H (0)
1

1 H (1)
1 H (0)

2

1 H (2)
1 H (1)

2 H (0)
3

1 H (3)
1 H (2)

2 H (1)
3 H (0)

4

...
...

...
...

...
. . . .

(3.9)

Unfortunately, when one of the determinants vanishes both the horizontal and the vertical recursions
break down.

Another constructive tool that was available when Rutishauser solved Stiefel’s problem was the
Chebyshev (1859) algorithmthat allows us to compute the recurrence coefficients of a set of orthogo-
nal polynomials if the sequence of moments of the underlying weight function is known. Specifically,
we need the first 2m moments to construct recursively the orthogonal polynomials up to degreem.
Neither Stiefel nor Rutishauser seem to ever mention this tool, despite the fact that, in its initial phase,
the Rutishauser qd algorithm serves the same purpose, as we will see. The Chebyshev algorithm was
later revived, analysed and modified by Sack & Donovan (1972), Wheeler (1974) and in a series of
papers by Gautschi (the first of these being Gautschi, 1970), who also came up with the namemodified
Chebyshev algorithmfor the more stable version usingmodified moments.

4. Rutishauser’s qd algorithm

Rutishauser (1954b) was aware of the work of Hadamard (1892), Aitken (1926, 1931) and Lanczos
(1950) when he worked on Stiefel’s problem. It seems that, in the second half of 1952 or early in
1953, he took Aitken’s work, improved it in a significant way and made the connections to a number of
related topics and applications. The key result was hisqd algorithmon which he published three papers
(Rutishauser, 1954a,b,c) in 1954, the first and most fundamental of which was received by the journal
Zeitschrift f̈ur Ange-wandte Mathematik und Physikin 5 August 1953. The following year he had yet
another seminal article (see Rutishauser, 1955a) on the application of qd to the eigenvalue problem. In
partly revised form, this early work on qd was collected in Rutishauser (1957), which also covered some
additional material, in particular, a short appendix on the LR algorithm. Another appendix contained a
shortened version of Rutishauser (1954c).

A first announcement on the qd algorithm had been made by Stiefel (1953). Of great importance
for the dissemination of the qd algorithm was Henrici’s review article (see Henrici, 1958), the first
publication on qd in English. It appeared in Volume 49 of the Applied Mathematics Series of the Na-
tional Bureau of Standards (NBS). The only two other papers in that 81-page volume are Rutishauser’s
main publication on the LR algorithm (see Rutishauser, 1958) and Stiefel’s paper on kernel polynomi-
als (see Stiefel, 1958), which is also related to cg and qd. The volume was issued on 15 January 1958,
but it seems to have been compiled long before. In fact, the preface is dated 26 June 1956. Moreover,
Rutishauser (1957) cited preprints dated 1956 and 1955 of his and Stiefel’s contributions, respectively,
to the volume.
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Nowhere does Rutishauser clearly state how he found the qd algorithm. He only gives an indication,
not a complete derivation. Henrici (1958) wrote that the qd algorithm ‘by a simple but ingenious mod-
ification of Aitken’s method, entirely bypasses the computation of Hankel determinants’, and that ‘It is
remarkable that in the computation of theqn

k , the determinantsHn
k do not have to be used if a set of

auxiliary quantities is introduced.’
The details were hinted at by Henrici (1958) and worked out by Householder (1970) and Parlett

(1996). First, in view of Hadamard’s Theorem 3.1, in particular, conclusion (3.7), the target of the
computation are the quotientsq(ν)

k . By multiplying Jacobi’s identity (3.8) centred atH (ν+1)
k−1 , namely,

(H (ν+1)
k−1 )2 = H (ν)

k−1H (ν+2)
k−1 − H (ν)

k H (ν+2)
k−2 ,

by

H (ν+1)
k

H (ν+1)
k−1 H (ν)

k H (ν+2)
k−1

,

we can turn the first term on the right-hand side intoq(ν)
k as follows:

H (ν+1)
k−1 H (ν+1)

k

H (ν)
k H (ν+2)

k−1

= q(ν)
k −

H (ν+2)
k−2 H (ν+1)

k

H (ν+1)
k−1 H (ν+2)

k−1

. (4.1)

Likewise, we write down Jacobi’s identity centred atH (ν+1)
k , namely,

(H (ν+1)
k )2 = H (ν)

k H (ν+2)
k − H (ν)

k+1H (ν+2)
k−1 ,

and multiply it by

H (ν+1)
k−1

H (ν)
k H (ν+2)

k−1 H (ν+1)
k

.

This turns the first term on the right-hand side intoq(ν+1)
k :

H (ν+1)
k−1 H (ν+1)

k

H (ν)
k H (ν+2)

k−1

= q(ν+1)
k −

H (ν+1)
k−1 H (ν)

k+1

H (ν)
k H (ν+1)

k

. (4.2)

Clearly, the left-hand sides of (4.1) and (4.2) are identical and the second terms on the right-hand sides
have the same structure. So, after introducing the auxiliary quantity

e(ν)
k :=

H (ν+1)
k−1 H (ν)

k+1

H (ν)
k H (ν+1)

k

, (4.3)

we can conclude from (4.1) and (4.2) that

q(ν)
k + e(ν)

k = q(ν+1)
k + e(ν+1)

k−1 . (4.4)
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FIG. 1. The qd table of a rational functionf of degreen and manifestations of the two rhombus rules (4.5) and (4.4), namely,

q(0)
2 × e(0)

1 = q(1)
1 × e(1)

1 andq(1)
2 + e(1)

2 = q(2)
2 + e(2)

1 .

This relation can be seen to also hold fork = 1 if we definee(ν)
0 := 0 for all ν. Moreover, under our

assumption off (z) being a proper rational fraction of degreen, one can show thate(ν)
n = 0 for all ν. In

addition, from the definitions (3.7) ofq(ν)
k and (4.3) ofe(ν)

k it is readily verified that

q(ν)
k+1e(ν)

k = q(ν+1)
k e(ν+1)

k . (4.5)

The relations (4.4) and (4.5) are therhombus rulesdefining the qd algorithm.1 Rutishauser (1954b)
suggested writing down the quantitiese(ν)

k andq(ν)
k in a triangular scheme called aqd scheme(also

known as aqd table) (see Fig. 1).2 Recall that, at this time, the simple computations needed to build
up this scheme were normally done on a desk calculator, and so a suitable scheme to write down the
numbers obtained was most useful.

With the ‘initial values’e(ν)
0 = 0 andq(ν)

1 = sν+1/sν , the rhombus rules allow us to build up the qd
scheme from the first column as follows:

e(ν)
k = q(ν+1)

k + e(ν+1)
k−1 − q(ν)

k , q(ν)
k+1 = q(ν+1)

k e(ν+1)
k /e(ν)

k . (4.6)

Alternatively, they can be used to build up the scheme from its top diagonal as follows:

q(ν+1)
k = e(ν+1)

k−1 − e(ν)
k − q(ν)

k , e(ν+1)
k = (q(ν)

k+1/q(ν+1)
k )e(ν)

k . (4.7)

The latter application is called theprogressive qd algorithm. Rutishauser soon noted that, for stability
reasons, this version is much more useful. But it requires some preparatory work to come up with

1According to the footnotes of Henrici (1958) and Rutishauser (1957), the name ‘rhombus rules’ was coined by Stiefel (see
Stiefel, 1955, p. 42 or Stiefel, 1958, p. 18).

2The first example of a qd scheme in Rutishauser (1954b) listed, for eachν, not only the two columns withe(ν)
k andq(ν)

k but

also an additional two columns fors(ν)
k andd(ν)

k := q(ν+1)
k − q(ν)

k . The rhombus rules made these two columns obsolete.
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the right data before it can be started. Rutishauser’s knowledge of the Lanczos algorithm, tridiagonal
matrices and continued fractions enabled him to see ways of how to do that. We present here some of
the details as we think they are important from a historical perspective, but they may be hard to digest
for many readers.

Rutishauser (1954b, Section 8, (19)) knew that the top diagonal of the qd scheme can be computed
with what is now called the Lanczos algorithm and was described in Lanczos (1950) and Rutishauser
(1953), since it reduces the matrix to tridiagonal form, which is directly reflected by the top diagonal of
the qd scheme. He also mentioned that, ifA is symmetric positive definite, then the conjugate gradient
method (see Hestenes & Stiefel, 1952) provides the top diagonal too (see Rutishauser, 1954b, Section 9,
(24)). And in the final summary of Rutishauser (1955a) he listed ‘the methods of C. Lanczos or W.
Givens’ as tools for this preprocessing step. Additionally, for the task of finding the poles of a rational
function f , that is, the zeros of its denominator polynomialp, Rutishauser (1954b, Section 6) pointed
out how to obtain the top diagonal by computing the finite continued fraction off .

However, soon he discovered a better way to find the zeros of a polynomial. In fact, in a footnote that
Rutishauser (1954a) added when proofreading, it is mentioned that Alston Householder pointed out to
him that Aitken (1931) had also presented a progressive algorithm, and this was for an extension of the
scheme he had introduced in Aitken (1926): the triangular table (3.9) of Hankel matrices can be extended
upwards so that it can be started from a horizontal row that is readily computed from the coefficients
of a given polynomialp whose zeros have to be determined. In the sequel Rutishauser used a formula
of Wronski (1811) that relates the power series of a function with one of its reciprocal to show that
his progressive qd algorithm can be applied in an analogue extension of his qd scheme. Again, the first
rows ofq-values ande-values can then be easily computed from the coefficients of the given polynomial
p (see Rutishauser, 1956a, 1957, Section 6). Recall that, in contrast, the original qd algorithm would
require us to compute the Laurent series of 1/p.

In the case of a proper rational fractionf of exact degreen, as in (2.2),e(ν)
n = 0 holds for allν,

and thus the table is not defined beyond thenth e-column. Assuming that all the poles off have
different moduli, Rutishauser (1954b) could readily conclude from Aitken’s work (see Aitken, 1926)
that

lim
ν→∞

q(ν)
k = λk,

lim
ν→∞

e(ν)
k = 0





(k = 1, 2, . . . , n). (4.8)

This behaviour means that the original qd algorithm (4.6) for building up the table from its first column
is a computational disaster as the first formula of (4.6) inevitably leads to the cancellation of leading
digits. In contrast, the progressive form (4.7) is a version that is still of importance. It avoids the highly
ill-conditioned computation of the table from the moments (see, e.g., Gautschi, 1968, 1982).

Rutishauser (1954b) also gave the generalization of (4.8) to meromorphic functions, referring for its
proof to Hadamard (‘The proof of the proposition can be easily deduced from the above mentioned work
of Hadamard (1892, §§14–21)’). Among the two conclusions drawn from this generalization, but given
without proof, there is one later referred to by Henrici (1974) asRutishauser’s rule, which covers the
case of poles with equal modulus. With tools from functional analysis, this rule was first fully proved by
Stewart (1971). A direct but complicated proof requiring an additional assumption was given by Henrici
(1974, pp. 642–650), who later in Part II of Henrici (1983) admitted that his earlier proof in Henrici
(1958) was erroneous and promoted a new direct and simple proof due to his student Seewald (1982).
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There is another very elegant derivation of the rhombus rules and the qd algorithm that is based
on various ways to expandf (z) into a continued fraction. This derivation was given in the original
paper Rutishauser (1954b) and in Rutishauser (1957), but, according to footnotes in both papers, it was
suggested by Stiefel and was not the way the rules were discovered. (However, Henrici (1977, p. 527)
guessed that the continued-fraction-based derivation was the original one.)

5. From qd to LR

In none of Rutishauser’s (1954a,b,c, 1955a) early qd papers was there any hint of the LR algorithm.
(The last of these four papers, on finding eigenvalues with the qd algorithm, was received on 19 July
1954.) What follows is the high point of the drama of the discovery of LR.

Consider the tridiagonal matrices

Tν :=















q(ν)
1 1

e(ν)
1 q(ν)

1 e(ν)
1 + q(ν)

2 1

e(ν)
2 q(ν)

2 e(ν)
2 + q(ν)

3
. . .

. . .
. . . 1

e(ν)
n−1q(ν)

n−1 e(ν)
n−1 + q(ν)

n















. (5.1)

Note thatTν has the simple LU (in German, LR) decomposition

Tν = L νRν (5.2)

with

L ν =














1

e(ν)
1 1

e(ν)
2

. . .

. . .
. . .

e(ν)
n−1 1














, Rν =














q(ν)
1 1

q(ν)
2 1

q(ν)
3

. . .

. . . 1

q(ν)
n














. (5.3)

At some historic moment in the second half of 1954, Rutishauser must have made the remarkable
observation that his rhombus rules (4.4) and (4.5) for the qd table could be interpreted as computing
this triangular factorizationTν = L νRν and then forming a new tridiagonal matrixTν+1 by multiplying
together the two factors in reverse order. In fact,

RνL ν =















e(ν)
1 + q(ν)

1 1

e(ν)
1 q(ν)

2 e(ν)
2 + q(ν)

2 1

e(ν)
2 q(ν)

3 e(ν)
3 + q(ν)

3
. . .

. . .
. . . 1

e(ν)
n−1q(ν)

n q(ν)
n















. (5.4)
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In view of e(ν)
n = 0 and the rhombus rules (4.4) and (4.5), this product equals exactlyTν+1 as defined

by (5.1) withν replaced byν + 1. Thus

RνL ν = Tν+1 (if e(ν)
n = 0). (5.5)

So the progressive qd algorithm can be viewed as performing the steps

Tν = L νRν ; RνL ν = Tν+1. (5.6)

Such a step fromTν to Tν+1 is called anLR transformation. Since

Tν+1 = L−1
ν TνL ν, (5.7)

the tridiagonal matrices are similar. If all the poles have distinct moduli then we know from Hadamard’s
theorem or from the qd algorithm thatL ν → I asν → ∞, and so, in the long run,Rν will contain the
eigenvalues in its diagonal. If there are poles that are multiple or have the same modulus then we can
still apply an adaptation of what Henrici called Rutishauser’s rule.

That moment in 1954 was the birth of the LR algorithm, first only in its form for tridiagonal matrices,
which is equivalent to the qd algorithm for finite J-fractions and S-fractions. But it must have taken
Rutishauser only a few minutes to see that the tridiagonal form is not necessary and that one could as
well start from a full matrix. From this point of view, the LR algorithm is a natural generalization of the
qd algorithm. However, for a full matrix the LR algorithm is costly. But it has the most welcome feature
of conserving the bandwidth of a banded matrix, in particular, of a tridiagonal one. So Rutishauser ended
up with a most elegant and intriguing algorithm, but its most important use was for the tridiagonal case,
where it is identical with the progressive qd algorithm. And Rutishauser knew that, for nearly any pair
of starting vectors, the reduction to tridiagonal matrices could be achieved with the Lanczos algorithm.
The reduction of a symmetric matrix to tridiagonal form by orthogonal Givens (1953) rotations was
introduced around the same time but was no alternative for the general case.

Rutishauser realized from the beginning that fast convergence requires shifting the spectrum ap-
propriately since he had analysed convergence and introduced spectral shifts for the progressive qd
algorithm before (see Rutishauser (1954a, Section 7) or Rutishauser (1957, Chapter 2, Section 8) and
Rutishauser (1955a, Section 4) or Rutishauser (1957, Chapter 3, Section 4)). So, in practice, (5.6) is
replaced by

Tν − δν I = L νRν ; RνL ν + δν I = Tν+1, (5.8)

whereδν is the shift parameter.
Rutishauser’s (1955b) first publication on the LR algorithm was, in 1955, a two-page note in French

in theComptes Rendus, the primary journal for research announcement in mathematics of the time. In
the following year, according to Rutishauser (1957), he produced a mimeographed 51-page preprint
in English, entitled ‘Report on the solution of eigenvalue problems with the LR–transformation’ (see
Rutishauser, 1956b),3 but it was two years later that this article was properly published by the National
Bureau of Standards (see Rutishauser, 1958) in the volume that also contained Henrici’s (1958) review
of the qd algorithm. Only then did the qd and LR algorithms make their appearance for the English
speaking world, except for those few people who had received the LR preprint before. Rutishauser
(1957) included a five-page appendix on the LR transformation in this substantial report, which compiled
and updated most of his previous work on qd but was still in German.

3According to the 1956 annual report of the Institute for Applied Mathematics, this report was sent in that year to people
interested in the subject.
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6. LR abandoned

What remains a puzzle is the following. LR is much more general than qd. Despite this, Rutishauser
attached much more importance to qd than to LR. For example, in 1968, 10 years after the National
Bureau of Standards volume, Rutishauser wrote an updated script of some of his research on qd with no
mention of LR (see Rutishauser, 1968). We now give our perspective on the puzzle.

A few comments are in order to put Rutishauser’s work in perspective. Firstly, starting around 1955,
his main preoccupation for more than a decade was the development of the Algol60 programming
language (see Backuset al., 1960, 1963), the description of its usage for basic problems of numerical
analysis (see Rutishauser, 1967) and the creation of open-source high-quality programming libraries
(see Rutishauser, 1961; Wilkinson & Reinsch, 1971). At the same time, he published a large number of
papers on various topics in numerical analysis. Secondly, although the discovery of LR is considered to
be one of the most significant moments in matrix computations, nevertheless, LR was quickly eclipsed
by Francis’s (1961, 1962) QR algorithm shortly after its introduction. Francis’s original papers on QR
explicitly reveal the primal importance of LR for the development of QR, which was, correctly, seen as a
backward stable variation of LR. Strangely enough, Rutishauser (1963a) presented at the IFIP Congress
in 1962 a paper entitled ‘Numerical experiments with the QD–transformation of J.G.F. Francis’. We do
not know whether the ‘QD’ in the title was a misprint or an intention (recall that he usually wrote qd
in capitals). In any case one can hardly deny that Rutishauser (1976, 1990) somehow disliked the QR
algorithm—there was no room for it in his lectures.

Our quotation above shows that Wilkinson, among others, appreciated the depth and originality of
the LR algorithm. In order to understand Rutishauser’s neglect of his amazing discovery, let us consider
what might have deterred him.

(A) Today we take it for granted that a given full matrix would be transformed into a more compact
banded form that would be invariant under LR. The Hessenberg form is one option. There is no
evidence in Rutishauser (1958) that he gave this any thought. Yet, without it, the cost of each
step is prohibitive.

(B) The LR factorization had a bad reputation. Row pivoting, at least, would be needed. We know
that a PLR algorithm (P for permutation) is a viable option, particularly on the Hessenberg form.
However, there is no evidence in Rutishauser (1958) that he contemplated it. More generally,
permutations for stability would usually spoil the bandwidth.

(C) The ‘implicit L’ property of triangular reduction to Hessenberg form was not part of the intel-
lectual landscape. It says that, ifH = L−1AL is unreduced Hessenberg, then all quantities are
determined byA and the first column ofL . However, an implicit LR transform on a general
matrix is not possible.

(D) Rutishauser suggested an ingenious but expensive shift strategy for LR on a full matrix. How-
ever, even with this improvement, the early stages would have been prohibitive. What a contrast
to the qd algorithm for which he had an analysis of two effective shift strategies, namely, to use
either the lastq-value or a more expensive but cubically convergent variant.

The features mentioned above are familiar to the numerical linear algebra community now because of
their role in making a success of the QR algorithm. In his explicit shift LR algorithm, Rutishauser would
have been keenly aware of the possible loss of information in subtracting the shift from the diagonal
entries. The stable descendant of LR, namely, QR, came so quickly on the heels of the (much delayed)
presentation of the LR algorithm to the English speaking community that there was no time for these
four features to be developed in the context of LR.
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We think that the intellectual successor to Rutishauser’s LR algorithm was Kublanovskaja’s (1961)
QR algorithm. This was one of the four backward stable algorithms for a general full matrix presented
by her. We must emphasize that, in contrast, the implicit version of the QR algorithm presented by
Francis (1961, 1962), right from the start, was a novel contribution in the same league as Rutishauser’s
idea of reversing the order of factors. The reason that Francis deserves the credit for the success of QR
is that several crucial features were never mentioned by Kublanovskaja, namely, the following:

(1) the invariance of the Hessenberg form;

(2) clever shift strategies for complex eigenvalues of real matrices;

(3) the implicit implementation of shifts.
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