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Abstract

A closed subgroup of a semisimple algebraic gr@us said to beG-irreducible if it lies in

no proper parabolic subgroup &f. We prove a number of results concerning such subgroups.
Firstly they have only finitely many overgroups@®j secondly, with some specified exceptions,
there existG-irreducible subgroups of typ&4; and thirdly, we prove an embedding theorem
for G-irreducible subgroups.

1. Introduction

Let G be a semisimple algebraic group over an algebraically closedKialficharacteristiqp > O.
Following Serre, we define a subgrouipof G to be G-irreducible if T is closed, and lies in no
proper parabolic subgroup &. WhenG = SL (V), this definition coincides with the usual notion
of irreducibility on V. The definition follows the philosophy, developed over the years by Serre,
Tits and others, of generalizing standard notions of representation theory (morphismSL (V))
to situations where the target group is an arbitrary semisimple algebraic group. For an exposition,
see for exampleqd, Part I1].

In this paper we study the collection of connect@drreducible subgroups of semisimple
algebraic group&s. Our first theorem is a finiteness result, showing that connggtédeducible
subgroups are ‘nearly maximal'.

THEOREM1 Let G be a connected semisimple algebraic group, and let A be a connected
G-irreducible subgroup of G. Then A is contained in only finitely many subgroups of G.

Since connecteds-irreducible subgroups are necessarily semisimple (see Lemma 2.1), the
smallest possibility for such a subgroup A5. The next result shows thas-irreducible A;
subgroups usually exist. In large characteristic this is hardly surprising, as makinsalbgroups
usually exist; but in low characteristic maxima} subgroups do not exist (seg), and the result
provides a supply of nearly maximay subgroups.

THEOREM?2 Let G beasimplealgebraic group over K. If G = A,, assumethat p > nor p=0.
Then G has a G-irreducible subgroup of type A;.
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In the excluded casé = A,, 0 < p < n, itiseasy to see that an irreducible subgrd\pexists
if and only if all prime factors ofi + 1 are at mosp.

In a subsequent pape6][we shall use theG-irreducible Ais constructed in the proof of
Theorem 2 to exhibit examples gbimorphic subgroups of minimal dimension in simple algebraic
groups, as defined ir2]. (A closed subgrougH of the connected algebraic gro@ is said to
be epimorphic if any morphism ofG into an algebraic group is determined by its restriction to
H. [2, Theorem 1] has a number of equivalent formulations of this definition: for exartplis,
epimorphic if and only if, wheneveWV is a rationalG-module andv | H = X @ Y, thenX, Y are
G-invariant.)

Our final theorem concerns the description of conjugacy classes of conr@eteelducible
subgroups of semisimple algebraic grotpsWhenG is simple, it has only finitely many classes
of maximal connected subgroups (sBgJorollary 3]). This is in general not the case for connected
G-irreducible subgroups (see for example Corollary 4.5 below). However, Theorem 3 below shows
that there is a finite collection of conjugacy classes of closed connected subgroups such that every
G-irreducible subgroup is embedded in a specified way in a member of one of these classes. For
the precise statement we require the following definition.

DEFINITION Let X, Y be connected linear algebraic groups oKer

(i) SupposeX is simple. We sayX is atwisted diagonal subgroup ofY if Y = Y1...Y;,
a commuting product of simple groupg of the same type aX, and if each projection
X —Y;/Z(Y;) is non-trivial and involves a different Frobenius twist.

(i) More generally, if X is semisimple, sa)X = Xj...X; with eachX; simple, we sayX is
a twisted diagonal subgroup ofY if Y = Zj...Z,, acommuting product of semisimple
subgroupZ;, and, writingX = X/Z(X) = X1...X; andY = Y/Z(Y) = Z;... Z,, each
X; is a twisted diagonal subgroup &f.

THEOREM3 Let G be a connected semisimple algebraic group of rank |. Then thereis a finite set
C of conjugacy classes of connected semisimple subgroups of G, of size depending only on |, with
the following property. If X isany connected G-irreducible subgroup of G, then thereis a subgroup
Y € [JC suchthat X isa twisted diagonal subgroup of Y.

The above results concern connect&drreducible subgroups. Examples of non-connedted
irreducible subgroupX such thatX? is not G-irreducible are easy to come by: for instan¥e=
Ng(T), the normalizer of a maximal torub is such an example, and there are many others for
which Cg (X9 contains a non-trivial torus. However, we have not found any examples for which
Cgs (X% contains no non-trivial torus. It may be the case that i a non-connecte@-irreducible
subgroup such thax? is not G-irreducible, therCg (X®) necessarily contains a non-trivial torus;
this is easily seen to be true whén= A,.

NOTATION For G asimple algebraic group ovét andx adominant weight, we denote Bys (1)

(or just A) the rational irreducibleK G-module of high weight.. When p > 0, the irreducible
modulex twisted by ap"-power field morphism ofs is denoted byx(pr). Finally, if V1, ..., Wk

are X-modules thenVy/.../Vk denotes aG-module having the same composition factors as
Vid...H W.
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2. Preliminaries

As above, leG be a semisimple connected algebraic group over the algebraically closel fofld
characteristiqp. We begin with two elementary results concerni@girreducible subgroups.

LEMMA 2.1 If X isa connected G-irreducible subgroup of G, then X is semisimple, and Cg (X) is
finite.

Proof. SupposeC = Cg(X)? # 1. If C contains a non-trivial toru¥, then X < Cg(T), which
lies in a parabolic; otherwis€ is unipotent, soX < Ng(C) which lies in a parabolic by3. In
either case we have a contradiction, andCaa X)° = 1, giving the result.

LEMMA 2.2 Suppose G is classical, with natural module V. = Vg (11). Let X be a semisimple
connected closed subgroup of G. If X is G-irreducible then one of the following holds:

(i) G = A,and X isirreducibleon V;

(i) G=By,ChorDhandV | X =V1 L ... L VkwiththeV; all non-degenerate, irreducible
and inequivalent as X-modules;

(i) G = Dy, p = 2, X fixesa non-singular vector v € V, and X isa G,-irreducible subgroup of
GU = Bn_]_.

Proof. Part (i) is clear, so assunm@ = Sp(V) or SO(V). Let W be a minimal non-zerX-invariant
subspace o¥ . ThenW is either non-degenerate or totally isotropic. In the first case induction gives
anon-degenerate decompaosition as in (ii); note that no two oWthere equivalent aX-modules
since otherwise, if say1 | X = V, | X via anisometryp : V1 — Vs, thenX fixes the diagonal
totally singular subspacy + i¢(v) : v € Vi} of Vi + Vo (Wherei2 = —1), hence lies in a
parabolic. Finally, ifW is totally isotropic it can have no non-zero singular vectors{atoes not
lie in a parabolic), so we must ha@& = SO(V) with p = 2 andW = (v) non-singular, yielding
(iii).

The next result is fairly elementary for classical grod@shbut rests on the full weight of the
memoirs p, 7] for exceptional groups.

ProPcsITION 2.3 [5, Corollary 3]If G isa simple algebraic group then G has only finitely many
conjugacy classes of maximal closed subgroups of positive dimension. The number of conjugacy
classesis bounded in terms of the rank of G.

We shall also require a description of the maximal closed connected subgroups of semisimple
algebraic groups. LeB be a semisimple algebraic group, and w@e= G; - - - Gy, acommuting
product of simple factor&;. Define M (G) to be the following set of connected subgroup$of

(1) forj e {1,...,r}, subgroupgIlijG;i) - Mj, with Mj amaximal connected proper subgroup
of Gj, and

(2) forr > 2anddistinctj, k € {1, ..., r} suchthat there is a surjective morphigm Gj — G,
subgroups of the form

Gj k(@) = (IIj£j kGi) - Djk,

whereDj k = {(9, ¢(9)) : g € Gj}, aclosed connected diagonal subgrouggiGy.



50 M. W. LIEBECK AND D. M. TESTERMAN

LEMMA 2.4 The collection M(G) comprises all the maximal closed connected subgroups of the
semisimple group G.

Proof. It is clear that the members 0#1(G) are maximal closed connected subgroupsGof
Conversely, suppose thit is a maximal closed connected subgrougsofFactoring outZ (G), we

may assume that (G) = 1. Letx; be the projection map — G;. If somer; is not surjective,
then M lies in (]_[1-7éi Gj) - m (M), which is contained in a member @¥(G) under (1) of the
definition above. Otherwise, al; are surjective and we easily see ti\tlies in a member of
M(G) under (2) above.

By Proposition 2.3, there are only finitely ma@yclasses of subgroups i (G) under (1) in the
definition above. If the collection of subgroups under (2) is non-empty, then it consists of finitely
many G-classes ifp = 0, and infinitely many classes {f > 0, since in this case we can adjust the
morphismg¢ by an arbitrary field twist.

Write M1(G) for the collection of subgroups @ under (1), so that1(G) consists of finitely
manyG-classes of subgroups.

If H is a proper connecte@-irreducible subgroup dB, then there is a sequence of subgroups

H=Hp<Hi<---<Hs=G

such that for each, H; is semisimple andd; € M(Hiy1). Write M(G) for the collection of
G-irreducible subgroupsi for which there is such a sequence with € M1 (H;11) for alli. By
Proposition 2.3 again, there are only finitely madyclasses of subgroups ig(G).

3. Proof of Theorem 1

Let G be a connected semisimple algebraic group, and et a connecte@-irreducible subgroup
of G. We prove thatA is contained in only finitely many subgroups®f

The proof proceeds by induction on di&n The base case did = 3 is dovious. Clearly we
may assume without loss tha(G) = 1. WriteG = G1 - - - G, adirect product of simple groups
Gj, and letrj : G — G; be theith projection map.

LEMMA 3.1 If H isa subgroup of G containing A, then H is closed and H? is semisimple.

Proof. Observe thaid? = (A" : h € H) is closed and connected, and hemd:ﬁ(AH) is also
closed. This normalizer contairts, hence containgd. Thus AH < HO. By Lemma 2.1,HC is
semisimple an€g (A)? = 1. It follows thatAH = HC. ThusH? < H < H. This means thaH
is a union of finitely many cosets ¢f°, hence is closed, as required.

In view of this lemma, it suffices to show that the number of closed connected overgroéps of
in G is finite. Suppose this is false, so thats contained in infinitely many connected subgroups
of G. We shall obtain a contradiction in a series of lemmas.

By Lemma 2.1,Cg(A) and Ng(A)/A are finite. Recall the definitions in section 2 of the
collectionsM (G) and M1 (G) of maximal connected subgroups®f

LEMMA 3.2 Thereexists M € M(G) such that A liesin infinitely many G-conjugates of M.

Proof. First, if A < M € M(G), thenM is semisimple by Lemma 2.1, and by inductidrhas
only finitely many overgroups i. It follows thatA lies in infinitely many members of1(G).
We next claim that the overgroups & in M(G) represent only finitely mang-conjugacy
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classes of subgroups. For if not, there must ekistsuch thatA lies in subgroup<s; (¢) for
morphismsp involving infinitely many different field twists. Since the high weights of composition
factors ofL(G)) | A areg-twists of those oL (Gj) | A this implies that the highest weight &

on L(G) is arbitrarily large, a contradiction. This proves the claim, and the lemma follows.

From now on, letM be the subgroup provided by Lemma 3.2.
LEMMA 3.3 M contains infinitely many G-conjugates of A, no two of which are M-conjugate.

Proof. By the previous lemmaA lies in infinitely many conjugates dfl; say A lies in distinct
conjugatesM9 for g € C, whereC is an infinite subset o6. Letg, h € C, so AY " and AN lie
in M; if these subgroups aM-conjugate, sad9 ' = A" "M with m € M, thenh~1mg e Ng(A).
Lettingny, ... , n; be coset representatives fain Ng(A), we haveh~'mg = an; for somea € A
and somé. ThusM9 = MM so asa € M", we haveM9 = MM

To summarize: fixg € C; then ifh € C is such thatA9 ' and A" are M-conjugate, we have

Mh = M9 for somei , 0 there are only finitely many sudh The lemma follows.
LEMMA 3.4 M € M1(G).

Proof. Suppose not. Then there exist distingtk € {1,...,r} and a surjective morphism
¢ : Gj — Gk, such that

M = Gj k(@) =Go- Djk,

whereGo = IMi+j kGi andDjx ={g-¢(9) : g € Gj}.

We may take it thatA < M, so that each element oA is of the forma = ag - a; - ¢(q;),
whereag € Gg, aj € Gj. SinceM contains infinitely manyG-conjugates ofA, no two of them
M-conjugate, it follows thaM contains infinitely many conjugates of the ford (gx € Gi). If
a € Aisas above, thea% = ag-aj-¢(aj)%, o itfollows thatp (aj)% = ¢(a;) forallaj € 7j(A).
But this means thadk € Cg, (k(A)), which is finite; a contradiction.

LEMMA 3.5 There exists M1 € M1(M) such that M1 containsinfinitely many G-conjugates of A,
no two of which are M-conjugate.

Proof. By Lemma 3.3,M contains infinitely manyG-conjugates ofA, no two of which areM-
conjugate. Call these conjugatd8 (. € A), whereA is an infinite index set. For eache A,
there existaM, € M (M) containingA% . Then infinitely manyM, are inM1(M), since otherwise
there existj, k such thatA9 < Mj k(¢) for morphismsp involving infinitely many different field
twists, which is impossible as in the proof of Lemma 3.2.

Since there are only finitely many -classes of subgroups i1 (M), infinitely many of theM,,
lie in a singleM-class of subgroups, with representative 8&y ThenM; contains infinitely many
G-conjugatesA%™ (m, € M), no two of which areM-conjugate.

Recall the definition ofM(G) from section 2. Choos& € Mgp(G), minimal subject to
containing infinitely manyG-conjugates ofA, no two of which areN-conjugate.

LEMMA 3.6 There are infinitely many distinct G-conjugates of A lying in M(N), no two of which
are N-conjugate.
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Proof. Say A% (. € A) are infinitely many conjugates oA lying in N, no two of them N-
conjugate. If the conclusion of the lemma is false, then for infinitely nigrithere is a subgroup
Ny € M(N) such thatA% < N,. As in the previous proof, infinitely many of thed¢, are in
M1(N), of which there are only finitely manii-classes, so infinitely manyi, areN-conjugate to
someN; € Mj(N). But thenN; contains infinitely manyG-conjugates ofA (namely A%-™ for
somen; < N), no two of which areN-conjugate, contradicting the minimal choiceNf

At this point we can obtain a contradiction. Wrlte= Nj - - - Nk, acommuting product of simple
factorsN;. By Lemma 3.6, there are infinitely many distir@tconjugatesA% lying in M(N), no
two of which areN-conjugate. AsM1(N) consists of only finitely many-classes of subgoups,
infinitely many of theA%- are in M(N)\M1(N). Hence there exist, | such that infinitely many
AY% are of the formN; | (¢5), whereg;, is a surjective morphistN; — N, and no two of these
subgroups aré\-conjugate. Then the morphismg must involve infinitely many different field
twists, which is a contradiction as usual, as it implies that the highest weighbofL (G) (which
is of course the highest weight of each conjuga®e) is arbitrarily large.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

Let G be a simple algebraic group ovrin characteristiq, as in Theorem 2 (so that i = A,
thenp > nor p = 0). We aim to construct &-irreducible subgrougA = A;.

LEMMA 4.1 The conclusion of Theorem 2 holdsif p = 0.

Proof. Supposep = 0. First consider the case whegeis classical. The irreducible representation
of A; of high weightr embedsA; in Spy 11 if r is odd, and iSO, 11 if r is even. Henc&L,, Spon
and SO,41 all have irreducible subgroup&;. As for the remaining cas& = SOz, an A
embedded irreducibly in a subgro®®,,_1 is G-irreducible.

WhenG is of exceptional type, but ndEg, it has a maximal subgrouf; (see []), and this is
obviously G-irreducible; and folG = Eg, a maximal A; in a subgroupF, is G-irreducible (its
connected centralizer i@ is trivial, so it cannot lie in any Levi subgroup).

In view of Lemma 4.1, we assume from now on tipat 0.
LEMMA 4.2 The conclusion of Theorem 2 holds if G isclassical.

Proof. AssumeG is classical. IIG = A, = SL11 thenp > n by hypothesis, s& has a subgroup
A; acting irreducibly on the natural+ 1-dimensionalG-module (with high weighh); clearly this
subgroup does not lie in a parabolic®f

Next, if G = C,, = Spon, thenG has a subgroupSp,)" = (A1)", and we choose a subgroup
A = A of this via the embedding, 1™, 1P, ... 1("™: then A fixes no non-zero totally
isotropic subspace of the natural module, hence lies in no parabdlic 8imilarly, if G = Dy =
SOsn, thenG has a subgroupSO4)" = (A1)?", and we choosé = A; in this via the embedding
1,10P, . 2",

Now letG = Donyr1 = SOsns2. ThenG has a subgroupOg x (SO4)" 1 = Az x (A)2"—D,
which contains a subgrou@\;)?" lying in no parabolic ofG; chooseA = A; in this (A1)?" via the
embedding 11, ..., 1P again.

Finally, for G = Bopn = SOun1, chooseA = A; in a subgrougSO4)" = (A1)2" via the above
embedding, while fo6 = Ban1 = SOany3 chooseA in a subgroupSOs x (SO4)" = (A1),
This completes the proof.
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Assume from now on thds is of exceptional type. We choose our subgrdug A; as follows.
For G = Eg, E7, F4 or Gy, there is a maximal rank subgrou(p\l)' (wherel = 8,7,4 or 2
respectively), and we choose

A < (A1), via embedding 11P, 1) 1P,
ForG = Eg with p > 2, there is a maximal rank subgroupy)2, and we choose
A < (A2)3, via embedding 2P, 2P".

Finally, for G = Eg with p = 2, take a subgroup, of G, and a subgrouit, of that, generated by
short root groups irfF4; nowtake A < C4, embedded via the irreducible symplectic 8-dimensional
representation ® 1@ @ 14,

LEMMA 4.3 (i) For G # Eg, L(G)/L(A)) restrictsto A as follows:

G = Eg: 14 distinct 4-fold tensor factors,

G = E7: seven distinct 4-fold tensor factors,

G = F4: one4-fold factor and six distinct 2-fold factors,

G=021®3P) (p#£23:1819/18120 (p=3); 1919 @1® (p=2).

Moreover, L (A)) restrictsto Aas2/2P%) /... /2P if p £ 2, and as1@/1® /... /12" 0
ifp=2

I?n particular, the non-trivial composition factors of L (G) | A areall distinct.

(i) For G = Eg (p # 2), L(G)/L(A3) restrictsto Aas(202P)©2(PH)2: and L(A3) restrictsto
Aas2/2P%) ;200 474" ;4P if p £ 3, and as2/23) /239 /1913 1@ @13 )13 13 /03
if p=3.

F()iii) For G = Eg (p = 2), letting Vo7 = Vg (A1), we have

Vo7 | A= 19 ® 1(4)/1(2) ® 1(8)/1(4) ® 1(8)/1(2)/1(2)/1(4)/1(4)/1(8)/1(8)/03_

Proof. (i) For G = Eg, the restriction ofL(G) to a subsystenD4D4 is given by B, 2.1]: it is
L(D4D4)/A1®A1/A3®A3/14® A4. Now consider the restriction further @ This is embedded as
SO4- S04 in eachD4 factor, so the factor; @ A1 of L(G) | DaDg4 restricts toAEls as a sum of 4-fold
tensor factors, each of dimension 16. The normalN@(A?) acts as the 3-transitive permutation
group AGL3(2) on the eight factors, and the smallest orbit of this on 4-sets has size 14. It follows
thatL(G) | Aif has at least 14 distinct 4-fold tensor factors. SincelbBH- dim Aff = dimG, these
14 modules comprise all the composition factord ¢6)/ L(A?) restricted toAEl*. Part (i) follows
for G = Eg. The other types are handled similarly.

(i) The restrictionL (Eg) | (A2)3 is given by B, 2.1], and (ii) follows easily.

(iii) We have Vo7 | F4 = VE,(14)/0, andVE,(Ag) | C4 = Vc,(A2). HenceVy7 | C4 has
the same composition factors as the wedge-square of the natural 8-dimegjenatule, minus
one trivial composition factor. Now, to get the conclusion, calculate the composition factors of the
Ar-modulen?(1® 1@ @ 1@).

LEMMA 4.4 The subgroup A is G-irreducible.

Proof. First assumé& £ Eg. If A < P = QL, aparabolic subgroup with unipotent radic@aland
Levi subgroupL, then the composition factors & on L(Q) are the same as those aiiQ°PP),
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the Lie algebra of the opposite unipotent radical. By the last sentence of Lemma 4.3(i), it follows
that all composition factors of on L(Q) must be trivial, whence from Lemma 4.3(i) we see that
dim Q < 1/2, which is impossible.

Now assumés = Eg with p # 2. If p # 3thenL(G) | A has no trivial composition factors,
so A cannot lie in a parabolic. Now suppoge= 3. By Lemma 4.3(ii),L(G) | A has two
isomorphic 27-dimensional composition factors. Af< QL as above, then these factors must
occur inL(Q) + L(Q°PP), and the only other possible composition factors Q) + L (Q°PP) are
trivial. Hence dimQ must be 27 or 28. There is no such unipotent radic&gn

Finally, assumeés = Eg with p = 2. SupposeA < P = QL, with the parabolicP chosen
minimally. By minimality, A must project irreducibly to any, factor ofL’; since the irreducible
representations o have dimension a power of 2, it follows that the only possible such factors are
A3 and A;. Consequently eithel’ = AzA;, or L’ lies in a subsystenDs. If L’ = AzAj, then
A acts on the natural modules fég, A; as 1® 1@, 1@ respectively, for some powetg g’ of
2. The restrictiorv27 | AzA; is given by B, 2.3], and it follows that,7 | A has a composition
factor 1@ 1@ ® 1@ if q # ¢, and has two composition factorsg 1@ if g = ¢’. This
conflicts with Lemma 4.3(iii). Therefore’ £ AzA;. The remaining possibilities fot’ lie in a
subsystenDs. The irreducible orthogonah;-modules of dimension 10 or less have dimensions 4
and 8, and do not extend the trivial module (s&e3.9]). It follows thatL’ < D4. Observe that
Vo7 | Da = A1/A3/44/0%. Hence itis readily checked that no possible embeddingiof D4 gives
composition factors fok7 | A consistent with Lemma 4.3(jii).

This completes the proof of Theorem 2.

By varying the field twists involved in the definitions #fabove, we obtain the following.

COROLLARY 4.5 Let G be a simple algebraic group in characteristic p > 0, and assume that
G # An. Then G hasinfinitely many conjugacy classes of G-irreducible subgroups of type A;.

5. Proof of Theorem 3

Let G be a connected semisimple algebraic group of dlankhe proof proceeds by induction on
dimG. The base case difd = 3 istrivial. Let X be a connecte-irreducible subgroup o&. By
Lemma 2.1,X is semisimple. WritedG = G1...G; andX = Xj... Xs, commuting products of
simple factorsG; and X;. Without loss we can factor out the finite grodgG), and hence assume
thatZ(G) = 1.

Suppose first thaX projects onto every simple fact@; of G. Say X3 projects onto the factors
Gy, ..., Gt. Identifying the direct produdB; . .. Gy with G1 x ... x G (t factors), and replacing
X by a suitableG-conjugate, we can take

X1 ={(x",...,x"):x e Gy},

where each; = ;g with y; agraph automorphism or 1, amgl a Frobenius morphism or 1. For
eachk let S = {i : gy = gk}, and define a corresponding subgrdiig, < ]'[ies‘ Gj by

G&z{]_[x%:xe(h}.

ieS

Then Xy is a twisted diagonal subgroup 6f] := [I5 Gs. Repeating this construction for each
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simple factorX; of X, we obtain a subgroup?f ...G¢ of G containingX as a twisted diagonal
subgroup. There are only finitely many such subgro@E‘Ss ..G{ in G. Hence if we include the
conjugacy classes of these subgroups in our collectjome have the conclusion of Theorem 3 in
this case.

Now supposeX does not project onto some factor, 9@y, of G. Then there exists a maximal
connected subgroudi of G1 such thatX < MG - - - G,. By Proposition 2.3, up t&1-conjugacy
there are only finitely many possibilities fol;. Since M1G3...G; is a semisimple group of
dimension less than di@, the result now follows by induction.
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