
IRREDUCIBLE SUBGROUPS OF ALGEBRAIC GROUPS

by MARTIN W. LIEBECK†

(Department of Mathematics, Imperial College, London SW7 2BZ)

and DONNA M. TESTERMAN‡

(Department of Mathematics, University of Lausanne, Switzerland)

[Received 27 February 2003. Revised 18 July 2003]

Abstract

A closed subgroup of a semisimple algebraic groupG is said to beG-irreducible if it lies in
no proper parabolic subgroup ofG. We prove a number of results concerning such subgroups.
Firstly they have only finitely many overgroups inG; secondly, with some specified exceptions,
there existG-irreducible subgroups of typeA1; and thirdly, we prove an embedding theorem
for G-irreducible subgroups.

1. Introduction

Let G be a semisimple algebraic group over an algebraically closed fieldK of characteristicp � 0.
Following Serre, we define a subgroup� of G to beG-irreducible if � is closed, and lies in no
proper parabolic subgroup ofG. WhenG = SL(V ), this definition coincides with the usual notion
of irreducibility on V . The definition follows the philosophy, developed over the years by Serre,
Tits and others, of generalizing standard notions of representation theory (morphisms� → SL(V ))
to situations where the target group is an arbitrary semisimple algebraic group. For an exposition,
see for example [8, Part II].

In this paper we study the collection of connectedG-irreducible subgroups of semisimple
algebraic groupsG. Our first theorem is a finiteness result, showing that connectedG-irreducible
subgroups are ‘nearly maximal’.

THEOREM 1 Let G be a connected semisimple algebraic group, and let A be a connected
G-irreducible subgroup of G. Then A is contained in only finitely many subgroups of G.

Since connectedG-irreducible subgroups are necessarily semisimple (see Lemma 2.1), the
smallest possibility for such a subgroup isA1. The next result shows thatG-irreducible A1
subgroups usually exist. In large characteristic this is hardly surprising, as maximalA1 subgroups
usually exist; but in low characteristic maximalA1 subgroups do not exist (see [5]), and the result
provides a supply of nearly maximalA1 subgroups.

THEOREM 2 Let G be a simple algebraic group over K . If G = An, assume that p > n or p = 0.
Then G has a G-irreducible subgroup of type A1.
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In the excluded caseG = An, 0 < p � n, it iseasy to see that an irreducible subgroupA1 exists
if and only if all prime factors ofn + 1 are at mostp.

In a subsequent paper [6] we shall use theG-irreducible A1s constructed in the proof of
Theorem 2 to exhibit examples ofepimorphic subgroups of minimal dimension in simple algebraic
groups, as defined in [2]. (A closed subgroupH of the connected algebraic groupG is said to
be epimorphic if any morphism ofG into an algebraic group is determined by its restriction to
H . [2, Theorem 1] has a number of equivalent formulations of this definition: for example,H is
epimorphic if and only if, wheneverV is a rationalG-module andV ↓ H = X ⊕ Y , thenX, Y are
G-invariant.)

Our final theorem concerns the description of conjugacy classes of connectedG-irreducible
subgroups of semisimple algebraic groupsG. WhenG is simple, it has only finitely many classes
of maximal connected subgroups (see [5, Corollary 3]). This is in general not the case for connected
G-irreducible subgroups (see for example Corollary 4.5 below). However, Theorem 3 below shows
that there is a finite collection of conjugacy classes of closed connected subgroups such that every
G-irreducible subgroup is embedded in a specified way in a member of one of these classes. For
the precise statement we require the following definition.

DEFINITION Let X, Y be connected linear algebraic groups overK .

(i) SupposeX is simple. We sayX is a twisted diagonal subgroup ofY if Y = Y1 . . . Yt ,
a commuting product of simple groupsYi of the same type asX , and if each projection
X → Yi/Z(Yi ) is non-trivial and involves a different Frobenius twist.

(ii) More generally, if X is semisimple, sayX = X1 . . . Xr with eachXi simple, we sayX is
a twisted diagonal subgroup ofY if Y = Z1 . . . Zr , a commuting product of semisimple
subgroupsZi , and, writing X̄ = X/Z(X) = X̄1 . . . X̄r andȲ = Y/Z(Y ) = Z̄1 . . . Z̄r , each
X̄i is a twisted diagonal subgroup ofZ̄i .

THEOREM 3 Let G be a connected semisimple algebraic group of rank l. Then there is a finite set
C of conjugacy classes of connected semisimple subgroups of G, of size depending only on l, with
the following property. If X is any connected G-irreducible subgroup of G, then there is a subgroup
Y ∈ ⋃

C such that X is a twisted diagonal subgroup of Y .

The above results concern connectedG-irreducible subgroups. Examples of non-connectedG-
irreducible subgroupsX such thatX0 is notG-irreducible are easy to come by: for instance,X =
NG(T ), the normalizer of a maximal torusT is such an example, and there are many others for
which CG(X0) contains a non-trivial torus. However, we have not found any examples for which
CG(X0) contains no non-trivial torus. It may be the case that ifX is a non-connectedG-irreducible
subgroup such thatX0 is not G-irreducible, thenCG(X0) necessarily contains a non-trivial torus;
this is easily seen to be true whenG = An .

NOTATION For G asimple algebraic group overK andλ adominant weight, we denote byVG(λ)

(or just λ) the rational irreducibleK G-module of high weightλ. When p > 0, the irreducible
moduleλ twisted by apr -power field morphism ofG is denoted byλ(pr ). Finally, if V1, . . . , Vk

are X -modules thenV1/ . . . /Vk denotes aG-module having the same composition factors as
V1 ⊕ . . . ⊕ Vk .
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2. Preliminaries

As above, letG be a semisimple connected algebraic group over the algebraically closed fieldK of
characteristicp. We begin with two elementary results concerningG-irreducible subgroups.

LEMMA 2.1 If X is a connected G-irreducible subgroup of G, then X is semisimple, and CG(X) is
finite.

Proof. SupposeC = CG(X)0 �= 1. If C contains a non-trivial torusT , then X � CG(T ), which
lies in a parabolic; otherwiseC is unipotent, soX � NG(C) which lies in a parabolic by [3]. In
either case we have a contradiction, and soCG(X)0 = 1, giving the result.

LEMMA 2.2 Suppose G is classical, with natural module V = VG(λ1). Let X be a semisimple
connected closed subgroup of G. If X is G-irreducible then one of the following holds:

(i) G = An and X is irreducible on V ;

(ii) G = Bn, Cn or Dn and V ↓ X = V1 ⊥ . . . ⊥ Vk with the Vi all non-degenerate, irreducible
and inequivalent as X-modules;

(iii) G = Dn, p = 2, X fixes a non-singular vector v ∈ V , and X is a Gv-irreducible subgroup of
Gv = Bn−1.

Proof. Part (i) is clear, so assumeG = Sp(V ) or SO(V ). Let W be a minimal non-zeroX -invariant
subspace ofV . ThenW is either non-degenerate or totally isotropic. In the first case induction gives
a non-degenerate decomposition as in (ii); note that no two of theVi are equivalent asX -modules
since otherwise, if sayV1 ↓ X ∼= V2 ↓ X via an isometryφ : V1 → V2, thenX fixes the diagonal
totally singular subspace{v + iφ(v) : v ∈ V1} of V1 + V2 (where i2 = −1), hence lies in a
parabolic. Finally, ifW is totally isotropic it can have no non-zero singular vectors (asX does not
lie in a parabolic), so we must haveG = SO(V ) with p = 2 andW = 〈v〉 non-singular, yielding
(iii).

The next result is fairly elementary for classical groupsG, but rests on the full weight of the
memoirs [5,7] for exceptional groups.

PROPOSITION 2.3 [5, Corollary 3]If G is a simple algebraic group then G has only finitely many
conjugacy classes of maximal closed subgroups of positive dimension. The number of conjugacy
classes is bounded in terms of the rank of G.

We shall also require a description of the maximal closed connected subgroups of semisimple
algebraic groups. LetG be a semisimple algebraic group, and writeG = G1 · · · Gr , acommuting
product of simple factorsGi . DefineM(G) to be the following set of connected subgroups ofG:

(1) for j ∈ {1, . . . , r}, subgroups(�i �= j Gi ) · M j , with M j amaximal connected proper subgroup
of G j , and

(2) for r � 2 and distinctj, k ∈ {1, . . . , r} such that there is a surjective morphismφ : G j → Gk ,
subgroups of the form

G j,k(φ) = (�i �= j,k Gi ) · D j,k,

whereD j,k = {(g, φ(g)) : g ∈ G j }, aclosed connected diagonal subgroup ofG j Gk .
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LEMMA 2.4 The collection M(G) comprises all the maximal closed connected subgroups of the
semisimple group G.

Proof. It is clear that the members ofM(G) are maximal closed connected subgroups ofG.
Conversely, suppose thatM is a maximal closed connected subgroup ofG. Factoring outZ(G), we
may assume thatZ(G) = 1. Letπi be the projection mapM → Gi . If someπi is not surjective,
then M lies in (

∏
j �=i G j ) · πi (M), which is contained in a member ofM(G) under (1) of the

definition above. Otherwise, allπi are surjective and we easily see thatM lies in a member of
M(G) under (2) above.

By Proposition 2.3, there are only finitely manyG-classes of subgroups inM(G) under (1) in the
definition above. If the collection of subgroups under (2) is non-empty, then it consists of finitely
manyG-classes ifp = 0, and infinitely many classes ifp > 0, since in this case we can adjust the
morphismφ by an arbitrary field twist.

Write M1(G) for the collection of subgroups ofG under (1), so thatM1(G) consists of finitely
manyG-classes of subgroups.

If H is a proper connectedG-irreducible subgroup ofG, then there is a sequence of subgroups

H = H0 < H1 < · · · < Hs = G

such that for eachi , Hi is semisimple andHi ∈ M(Hi+1). Write M0(G) for the collection of
G-irreducible subgroupsH for which there is such a sequence withHi ∈ M1(Hi+1) for all i . By
Proposition 2.3 again, there are only finitely manyG-classes of subgroups inM0(G).

3. Proof of Theorem 1

Let G be a connected semisimple algebraic group, and letA be a connectedG-irreducible subgroup
of G. Weprove thatA is contained in only finitely many subgroups ofG.

The proof proceeds by induction on dimG. The base case dimG = 3 is obvious. Clearly we
may assume without loss thatZ(G) = 1. Write G = G1 · · · Gr , adirect product of simple groups
Gi , and letπi : G → Gi be thei th projection map.

LEMMA 3.1 If H is a subgroup of G containing A, then H is closed and H0 is semisimple.

Proof. Observe thatAH = 〈Ah : h ∈ H〉 is closed and connected, and henceNH̄ (AH ) is also
closed. This normalizer containsH , hence containsH̄ . Thus AH � H̄0. By Lemma 2.1,H̄0 is
semisimple andCG(A)0 = 1. It follows thatAH = H̄0. Thus H̄0 � H � H̄ . This means thatH
is a union of finitely many cosets of̄H0, hence is closed, as required.

In view of this lemma, it suffices to show that the number of closed connected overgroups ofA
in G is finite. Suppose this is false, so thatA is contained in infinitely many connected subgroups
of G. Weshall obtain a contradiction in a series of lemmas.

By Lemma 2.1,CG(A) and NG(A)/A are finite. Recall the definitions in section 2 of the
collectionsM(G) andM1(G) of maximal connected subgroups ofG.

LEMMA 3.2 There exists M ∈ M(G) such that A lies in infinitely many G-conjugates of M.

Proof. First, if A � M ∈ M(G), then M is semisimple by Lemma 2.1, and by inductionA has
only finitely many overgroups inM . It follows thatA lies in infinitely many members ofM(G).

We next claim that the overgroups ofA in M(G) represent only finitely manyG-conjugacy
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classes of subgroups. For if not, there must existj, l such thatA lies in subgroupsG j,l(φ) for
morphismsφ involving infinitely many different field twists. Since the high weights of composition
factors ofL(Gl) ↓ A areφ-twists of those ofL(G j ) ↓ A this implies that the highest weight ofA
on L(G) is arbitrarily large, a contradiction. This proves the claim, and the lemma follows.

From now on, letM be the subgroup provided by Lemma 3.2.

LEMMA 3.3 M contains infinitely many G-conjugates of A, no two of which are M-conjugate.

Proof. By the previous lemma,A lies in infinitely many conjugates ofM ; say A lies in distinct
conjugatesMg for g ∈ C , whereC is an infinite subset ofG. Let g, h ∈ C , so Ag−1

and Ah−1
lie

in M ; if these subgroups areM-conjugate, sayAg−1 = Ah−1m with m ∈ M , thenh−1mg ∈ NG(A).
Lettingn1, . . . , nt be coset representatives forA in NG(A), we haveh−1mg = ani for somea ∈ A
and somei . ThusMg = Mhani , so asa ∈ Mh , we haveMg = Mhni .

To summarize: fixg ∈ C ; then if h ∈ C is such thatAg−1
and Ah−1

are M-conjugate, we have

Mh = Mgn−1
i for somei , so there are only finitely many suchh. The lemma follows.

LEMMA 3.4 M ∈ M1(G).

Proof. Suppose not. Then there exist distinctj, k ∈ {1, . . . , r} and a surjective morphism
φ : G j → Gk , such that

M = G j,k(φ) = G0 · D j,k,

whereG0 = �i �= j,k Gi andD j,k = {g · φ(g) : g ∈ G j }.
We may take it thatA � M , so that each element ofA is of the forma = a0 · a j · φ(a j ),

wherea0 ∈ G0, a j ∈ G j . SinceM contains infinitely manyG-conjugates ofA, no two of them
M-conjugate, it follows thatM contains infinitely many conjugates of the formAgk (gk ∈ Gk). If
a ∈ A is as above, thenagk = a0·a j ·φ(a j )

gk , so it follows thatφ(a j )
gk = φ(a j ) for all a j ∈ π j (A).

But this means thatgk ∈ CGk (πk(A)), which is finite; a contradiction.

LEMMA 3.5 There exists M1 ∈ M1(M) such that M1 contains infinitely many G-conjugates of A,
no two of which are M-conjugate.

Proof. By Lemma 3.3,M contains infinitely manyG-conjugates ofA, no two of which areM-
conjugate. Call these conjugatesAgλ (λ ∈ �), where� is an infinite index set. For eachλ ∈ �,
there existsMλ ∈ M(M) containingAgλ . Then infinitely manyMλ are inM1(M), since otherwise
there existj, k such thatAgλ � M j,k(φ) for morphismsφ involving infinitely many different field
twists, which is impossible as in the proof of Lemma 3.2.

Since there are only finitely manyM-classes of subgroups inM1(M), infinitely many of theMλ

lie in a singleM-class of subgroups, with representative sayM1. ThenM1 contains infinitely many
G-conjugatesAgλmλ (mλ ∈ M), no two of which areM-conjugate.

Recall the definition ofM0(G) from section 2. ChooseN ∈ M0(G), minimal subject to
containing infinitely manyG-conjugates ofA, no two of which areN -conjugate.

LEMMA 3.6 There are infinitely many distinct G-conjugates of A lying in M(N ), no two of which
are N-conjugate.
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Proof. Say Agλ (λ ∈ �) are infinitely many conjugates ofA lying in N , no two of them N -
conjugate. If the conclusion of the lemma is false, then for infinitely manyλ, there is a subgroup
Nλ ∈ M(N ) such thatAgλ � Nλ. As in the previous proof, infinitely many of theseNλ are in
M1(N ), of which there are only finitely manyN -classes, so infinitely manyNλ areN -conjugate to
someN1 ∈ M1(N ). But thenN1 contains infinitely manyG-conjugates ofA (namelyAgλnλ for
somenλ ∈ N ), no two of which areN -conjugate, contradicting the minimal choice ofN .

At this point we can obtain a contradiction. WriteN = N1 · · · Nk , acommuting product of simple
factorsNi . By Lemma 3.6, there are infinitely many distinctG-conjugatesAgλ lying in M(N ), no
two of which areN -conjugate. AsM1(N ) consists of only finitely manyN -classes of subgoups,
infinitely many of theAgλ are inM(N )\M1(N ). Hence there existj, l such that infinitely many
Agλ are of the formN j,l(φλ), whereφλ is a surjective morphismN j → Nl , and no two of these
subgroups areN -conjugate. Then the morphismsφλ must involve infinitely many different field
twists, which is a contradiction as usual, as it implies that the highest weight ofA on L(G) (which
is of course the highest weight of each conjugateAgλ ) is arbitrarily large.

This completes the proof of Theorem 1.

4. Proof of Theorem 2
Let G be a simple algebraic group overK in characteristicp, as in Theorem 2 (so that ifG = An

then p > n or p = 0). We aim to construct aG-irreducible subgroupA ∼= A1.

LEMMA 4.1 The conclusion of Theorem 2 holds if p = 0.

Proof. Supposep = 0. First consider the case whereG is classical. The irreducible representation
of A1 of high weightr embedsA1 in Spr+1 if r is odd, and inSOr+1 if r is even. HenceSLn, Sp2n

and SO2n+1 all have irreducible subgroupsA1. As for the remaining caseG = SO2n , an A1
embedded irreducibly in a subgroupSO2n−1 is G-irreducible.

WhenG is of exceptional type, but notE6, it has a maximal subgroupA1 (see [7]), and this is
obviously G-irreducible; and forG = E6, a maximal A1 in a subgroupF4 is G-irreducible (its
connected centralizer inG is trivial, so it cannot lie in any Levi subgroup).

In view of Lemma 4.1, we assume from now on thatp > 0.

LEMMA 4.2 The conclusion of Theorem 2 holds if G is classical.

Proof. AssumeG is classical. IfG = An = SLn+1 thenp > n by hypothesis, soG has a subgroup
A1 acting irreducibly on the naturaln + 1-dimensionalG-module (with high weightn); clearly this
subgroup does not lie in a parabolic ofG.

Next, if G = Cn = Sp2n , thenG has a subgroup(Sp2)
n = (A1)

n , and we choose a subgroup
A ∼= A1 of this via the embedding 1, 1(p), 1(p2), . . . , 1(pn−1); then A fixes no non-zero totally
isotropic subspace of the natural module, hence lies in no parabolic ofG. Similarly, if G = D2n =
SO4n , thenG has a subgroup(SO4)

n = (A1)
2n , and we chooseA ∼= A1 in this via the embedding

1, 1(p), . . . , 1(p2n−1).
Now let G = D2n+1 = SO4n+2. ThenG has a subgroupSO6 × (SO4)

n−1 ∼= A3 × (A1)
2(n−1),

which contains a subgroup(A1)
2n lying in no parabolic ofG; chooseA ∼= A1 in this (A1)

2n via the
embedding 1, 1(p), . . . , 1(p2n−1) again.

Finally, for G = B2n = SO4n+1, chooseA ∼= A1 in a subgroup(SO4)
n = (A1)

2n via the above
embedding, while forG = B2n+1 = SO4n+3 chooseA in a subgroupSO3 × (SO4)

n ∼= (A1)
2n+1.

This completes the proof.
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Assume from now on thatG is of exceptional type. We choose our subgroupA ∼= A1 as follows.
For G = E8, E7, F4 or G2, there is a maximal rank subgroup(A1)

l (where l = 8, 7, 4 or 2
respectively), and we choose

A < (A1)
l , via embedding 1, 1(p2), 1(p4), . . . , 1(p2(l−1)).

For G = E6 with p > 2, there is a maximal rank subgroup(A2)
3, and we choose

A < (A2)
3, via embedding 2, 2(p2), 2(p4).

Finally, for G = E6 with p = 2, take a subgroupF4 of G, and a subgroupC4 of that, generated by
short root groups inF4; now take A < C4, embedded via the irreducible symplectic 8-dimensional
representation 1⊗ 1(2) ⊗ 1(4).

LEMMA 4.3 (i) For G �= E6, L(G)/L(Al
1) restricts to A as follows:

G = E8: 14 distinct 4-fold tensor factors,
G = E7: seven distinct 4-fold tensor factors,
G = F4: one 4-fold factor and six distinct 2-fold factors,
G = G2: 1 ⊗ 3(p2) (p �= 2, 3); 1 ⊗ 1(9)/1 ⊗ 1(27) (p = 3); 1 ⊗ 1(4) ⊗ 1(8) (p = 2).

Moreover, L(Al
1) restricts to A as 2/2(p2)/ . . . /2(p2(l−1)) if p �= 2, and as 1(2)/1(8)/ . . . /1(22l−1)/0l

if p = 2.
In particular, the non-trivial composition factors of L(G) ↓ A are all distinct.
(ii) For G = E6 (p �= 2), L(G)/L(A3

2) restricts to A as (2⊗2(p2)⊗2(p4))2; and L(A3
2) restricts to

A as 2/2(p2)/2(p4)/4/4(p2)/4(p4) if p �= 3, and as 2/2(32)/2(34)/1⊗1(3)/1(32)⊗1(33)/1(34)⊗1(35)/03

if p = 3.
(iii) For G = E6 (p = 2), letting V27 = VG(λ1), we have

V27 ↓ A = 1(2) ⊗ 1(4)/1(2) ⊗ 1(8)/1(4) ⊗ 1(8)/1(2)/1(2)/1(4)/1(4)/1(8)/1(8)/03.

Proof. (i) For G = E8, the restriction ofL(G) to a subsystemD4D4 is given by [4, 2.1]: it is
L(D4D4)/λ1⊗λ1/λ3⊗λ3/λ4⊗λ4. Now consider the restriction further toA8

1. This is embedded as
SO4·SO4 in eachD4 factor, so the factorλ1⊗λ1 of L(G) ↓ D4D4 restricts toA8

1 as a sum of 4-fold
tensor factors, each of dimension 16. The normalizerNG(A8

1) acts as the 3-transitive permutation
group AGL3(2) on the eight factors, and the smallest orbit of this on 4-sets has size 14. It follows
thatL(G) ↓ A8

1 has at least 14 distinct 4-fold tensor factors. Since 14· 16+ dim A8
1 = dimG, these

14 modules comprise all the composition factors ofL(G)/L(A8
1) restricted toA8

1. Part (i) follows
for G = E8. The other types are handled similarly.

(ii) The restrictionL(E6) ↓ (A2)
3 is given by [4, 2.1], and (ii) follows easily.

(iii) We have V27 ↓ F4 = VF4(λ4)/0, andVF4(λ4) ↓ C4 = VC4(λ2). HenceV27 ↓ C4 has
the same composition factors as the wedge-square of the natural 8-dimensionalC4-module, minus
one trivial composition factor. Now, to get the conclusion, calculate the composition factors of the
A1-module∧2(1 ⊗ 1(2) ⊗ 1(4)).

LEMMA 4.4 The subgroup A is G-irreducible.

Proof. First assumeG �= E6. If A < P = QL, aparabolic subgroup with unipotent radicalQ and
Levi subgroupL, then the composition factors ofA on L(Q) are the same as those onL(Qopp),
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the Lie algebra of the opposite unipotent radical. By the last sentence of Lemma 4.3(i), it follows
that all composition factors ofA on L(Q) must be trivial, whence from Lemma 4.3(i) we see that
dim Q � l/2, which is impossible.

Now assumeG = E6 with p �= 2. If p �= 3 thenL(G) ↓ A has no trivial composition factors,
so A cannot lie in a parabolic. Now supposep = 3. By Lemma 4.3(ii),L(G) ↓ A has two
isomorphic 27-dimensional composition factors. IfA < QL as above, then these factors must
occur inL(Q) + L(Qopp), and the only other possible composition factors inL(Q) + L(Qopp) are
trivial. Hence dimQ must be 27 or 28. There is no such unipotent radical inE6.

Finally, assumeG = E6 with p = 2. SupposeA < P = QL, with the parabolicP chosen
minimally. By minimality, A must project irreducibly to anyAr factor ofL ′; since the irreducible
representations ofA have dimension a power of 2, it follows that the only possible such factors are
A3 and A1. Consequently eitherL ′ = A3A1, or L ′ lies in a subsystemD5. If L ′ = A3A1, then
A acts on the natural modules forA3, A1 as 1⊗ 1(q), 1(q ′) respectively, for some powersq, q ′ of
2. The restrictionV27 ↓ A3A1 is given by [4, 2.3], and it follows thatV27 ↓ A has a composition
factor 1⊗ 1(q) ⊗ 1(q ′) if q �= q ′, and has two composition factors 1⊗ 1(q) if q = q ′. This
conflicts with Lemma 4.3(iii). ThereforeL ′ �= A3A1. The remaining possibilities forL ′ lie in a
subsystemD5. The irreducible orthogonalA1-modules of dimension 10 or less have dimensions 4
and 8, and do not extend the trivial module (see [1, 3.9]). It follows thatL ′ � D4. Observe that
V27 ↓ D4 = λ1/λ3/λ4/03. Hence it is readily checked that no possible embedding ofA in D4 gives
composition factors forV27 ↓ A consistent with Lemma 4.3(iii).

This completes the proof of Theorem 2.

By varying the field twists involved in the definitions ofA above, we obtain the following.

COROLLARY 4.5 Let G be a simple algebraic group in characteristic p > 0, and assume that
G �= An. Then G has infinitely many conjugacy classes of G-irreducible subgroups of type A1.

5. Proof of Theorem 3

Let G be a connected semisimple algebraic group of rankl. The proof proceeds by induction on
dimG. The base case dimG = 3 is trivial. Let X be a connectedG-irreducible subgroup ofG. By
Lemma 2.1,X is semisimple. WriteG = G1 . . . Gr and X = X1 . . . Xs , commuting products of
simple factorsGi andXi . Without loss we can factor out the finite groupZ(G), and hence assume
that Z(G) = 1.

Suppose first thatX projects onto every simple factorGi of G. SayX1 projects onto the factors
G1, . . . , Gt . Identifying the direct productG1 . . . Gt with G1 × . . . × G1 (t factors), and replacing
X by a suitableG-conjugate, we can take

X1 = {(xτ1, . . . , xτt ) : x ∈ G1},
where eachτi = γi qi with γi a graph automorphism or 1, andqi a Frobenius morphism or 1. For
eachk let Sk = {i : qi = qk}, and define a corresponding subgroupGSk �

∏
i∈Sk

Gi by

GSk =
{∏

i∈Sk

xγi : x ∈ G1

}
.

Then X1 is a twisted diagonal subgroup ofG+
1 := ∏

Sk
GSk . Repeating this construction for each
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simple factorXi of X , we obtain a subgroupG+
1 . . . G+

s of G containingX as a twisted diagonal
subgroup. There are only finitely many such subgroupsG+

1 . . . G+
s in G. Hence if we include the

conjugacy classes of these subgroups in our collectionC, we have the conclusion of Theorem 3 in
this case.

Now supposeX does not project onto some factor, sayG1, of G. Then there exists a maximal
connected subgroupM1 of G1 such thatX � M1G2 · · · Gr . By Proposition 2.3, up toG1-conjugacy
there are only finitely many possibilities forM1. Since M1G2 . . . Gr is a semisimple group of
dimension less than dimG, the result now follows by induction.
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