RAREFACTION INDICES

CLAUDE TRICOT Jr.

§1. Introduction. There are at least two indices used to measure the size of bounded sets of \mathbb{R}^n of zero measure—Hausdorff dimension (see [4] for a definition), and the density index [7].

The object of this paper is to consider the relation between these two indices and to set up a general theory of such parameters.

It is interesting to note that they coincide on some more or less "regular" sets; for instance in \mathbb{R} , on the triadic Cantor set, or on any symmetric perfect set with a constant ratio ([4], [7]). To explain further the notion of regularity we first define an "irregularity coefficient" of a set, and then look for rarefaction indices which coincide on so-called regular sets, *i.e.* those whose coefficient is zero.

By definition, a "rarefaction index" (a term due to E. Borel) is a map α from the set of bounded subsets of \mathbb{R}^n , into \mathbb{R} , with the following two properties:

- (1) $E \subset E'$ implies $\alpha(E) \leq \alpha(E')$ (monotonicity);
- (2) $\alpha(E) = \alpha(h(E))$ for any homeomorphism $h : \mathbb{R}^n \to \mathbb{R}^n$ with the following property:
 - (*) On each compact set $K \subset \mathbb{R}^n$, the ratio

$$\frac{\log|h(x+\xi) - h(x)|}{\log|\xi|}$$

converges towards 1 uniformly when the norm of the vector ξ converges towards 0. (In particular, this condition is satisfied if *h* is a similarity, or a diffeomorphism.)

For the sake of simplicity, we consider in this paper the bounded borelian subsets of \mathbb{R} ; the same methods easily generalize to \mathbb{R}^n . We use a net of 2^n -meshes, a classical method ([1], [2], [5], [7]) for constructing set coverings. By definition, a 2^n -mesh is an interval

$$\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right], \quad k \in \mathbb{Z}.$$

If $x \in \mathbb{R}$, $n \in \mathbb{N}$, x belongs to one 2ⁿ-mesh, denoted $u_n(x)$.

It is known [2] that calculating the Hausdorff dimension using mesh coverings gives the same result as if we use arbitrary intervals. The same holds for the density index [7]; we can take either *n*-meshes or 2^n -meshes.

The only disadvantage of this procedure is the following one: during a calculation or in the statement of a result, some irregularities may appear at the endpoints of

Downloaded from https://www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 09:14:19, subject to the Cambridge Core terms of use , available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S002557930000992X

meshes, i.e. at points of

$$A = \left\{ \frac{k}{2^n} \, \middle| \, n \in \mathbb{N}, \ k \in \mathbb{Z} \right\};$$

A is countable and dense in \mathbb{R} . Therefore we will prefer to work in the set \mathbb{R} -A, with induced topology, thus avoiding minor difficulties due to A. We remark that, if $E \subset R$, the Hausdorff dimension of E is equal to that of E-A.

Hence let \mathscr{B} be the set of bounded non-empty borelian subsets of $\mathbb{R} - A$.

Let \mathcal{M} be the set of finite σ -additive Borel measures [6].

In §2 we give, with the help of measures of \mathcal{M} , the definition of the irregularity coefficient r(E) of a set E in \mathcal{B} , and that of two important families of sets: "regular" sets, and "almost regular" sets.

In §3 we define the "regular" rarefaction indices, which take the same values on regular sets, and " σ -stable" ones; the indices which are both regular and σ -stable take the same value on almost regular sets.

An important example of a regular and σ -stable index is the Hausdorff dimension; one way of finding dim E can be stated as follows:

If E in \mathcal{B} , μ in \mathcal{M} and a in \mathbb{R} are such that $\mu(E) > 0$, and that for all x in E,

$$\underline{\lim} \frac{\log \mu(u_n(x))}{\log |u_n(x)|} = a,$$

then $a = \dim E$. (|u| denotes the length of interval u; here $|u_n(x)| = 2^{-n}$.)

We show in §4 that this result, due to Billingsley, can be proved faster than in [1] with the help of results on Hausdorff measures due to Rogers and Taylor [5].

§2. The irregularity coefficient.

Notation. For every E in \mathscr{B} , we denote by $\mathscr{M}(E)$ the set of all measure μ in \mathscr{M} such that

- (a) E is included in the support of μ ,
- (b) $\mu(E) > 0$.

Property (a) is equivalent to: $(\forall x)(\forall n) (x \in E \& n \in \mathbb{N} \Rightarrow \mu(u_n(x)) > 0)$.

If E is in \mathscr{B} then $E \subset [a, b]$, and, if we let $\omega(2^n, E)$ denote the number of 2^n -meshes which meet E, then

$$\omega(2^n, E) \leq (b-a)2^n + 2.$$

LEMMA 1. For each E in \mathscr{B} , for each c > 1, there exists a measure μ in $\mathscr{M}(E)$, and N in \mathbb{N} , such that for all x in E, and for all $n \ge \mathbb{N}$,

$$1-c \leq \frac{\log \mu(u_n(x))}{\log |u_n(x)|} \leq c.$$

Proof. It suffices to prove this lemma in the case where E is included in a 1-mesh.

For each n in N, let F_n be a set of $\omega(2^n, E)$ points of E, so that each 2^n -mesh meeting E contains one point of F_n .

Let $F = \bigcup_n F_n$. To each y of F, let us associate N(y), the smallest integer n such that $y \in F_n$, and define a measure μ , for all y in F, by

$$\mu(\{y\}) = 2^{-cN(y)}$$

For each *n*, there are at most $\omega(2^n, E)$ points of *F* of measure 2^{-cn} , so

$$\mu(F) \leq \sum_{n=0}^{\infty} \omega(2^n, E) 2^{-cn} \leq +\infty ,$$

and

$$\operatorname{Supp} \mu = \overline{F} = \overline{E},$$

therefore $\mu \in \mathcal{M}(E)$.

Let N be the smallest integer such that $1-c \leq \frac{\log \mu(F)}{\log 2^{-N}}$.

Let x be in E and let $n \ge N$, then $u_n(x)$ contains a point y of F_n , such that $N(y) \le n$, so

$$1-c \leq \frac{\log \mu(u_n(x))}{\log 2^{-n}} \leq \frac{\log \mu(\{y\})}{\log 2^{-n}} \leq c.$$

DEFINITION 1. We call "irregularity coefficient" the map $r: \mathscr{B} \to I = [0, 1]$, such that for each E in \mathscr{B} :

$$r(E) = 2 \inf \left\{ \varepsilon > 0 | \text{there exist } \mu_{\varepsilon} \text{ in } \mathcal{M}(E), \quad a_{\varepsilon} \text{ in } \mathbb{R} \text{ and } N_{\varepsilon} \text{ in } \mathbb{N} \text{ such that for all} \\ n \ge \mathbb{N}_{\varepsilon}, \quad \text{for all } x \text{ in } E \text{ we have } \left| \frac{\log \mu_{\varepsilon}(u_n(x))}{\log |u_n(x)|} - a_{\varepsilon} \right| \le \varepsilon \right\}.$$

This map has its value in *I*, because by Lemma 1, for each *E* in \mathscr{B} , for each c > 1, we can construct a measure μ in $\mathscr{M}(E)$ such that for all *n* in \mathbb{N} , and for all *x* in *E*:

$$\frac{\log \mu(u_n(x))}{\log |u_n(x)|} - \frac{1}{2} \leq c - \frac{1}{2}.$$

DEFINITION 2. E in \mathscr{B} is said to be "regular" if r(E) = 0.

We will see later (Theorem 1) that for regular sets, a_{ε} can be taken to be constant in Definition 1.

Let us give some examples of regular sets:

Example 1. Let $E = \{x\}$ with $x \in \mathbb{R} - A$. With any measure μ on E, and a = 0, we obtain

$$\lim \left| \frac{\log \mu(u_n(x))}{\log |u_n(x)|} - a \right| = 0,$$

to r(E) = 0. The same result holds for all finite sets.

Example 2. Let E = I - A: take the Lebesgue measure, and a = 1. E is also a egular set.

Example 3. Let $(k_n)_{n \in \mathbb{N}}$ be a sequence of \mathbb{N} , such that

$$k_1 \ge 2$$
, $k_{n+1} - k_n \ge 2$.

We can define a symmetrical perfect set E in I - A (see [4]) such that

$$\omega(2^{k_n}, E) = 2^n,$$

and a measure μ on E such that, for all x in E,

$$\mu(u_{k_n}(x)) = 2^{-n}.$$

For each m in N with $m > k_2$, there exists n in N such that

$$k_{n-1} < m \leq k_n$$

so for all x in E we have $\mu(u_m(x)) = \mu(u_{k_n}(x)) = 2^{-n}$, and

$$\frac{n}{k_n} \leq \frac{\log \mu(u_m(x))}{\log |u_m(x)|} \leq \frac{n}{k_{n-1}} = \frac{n-1}{k_{n-1}} \frac{n}{n-1}.$$

So E is regular if the sequence

$$\left(\frac{n}{k_n}\right)_{n \in \mathbb{N}}$$

converges (for example take $k_n = 2n$). We will see later that this condition is necessary.

THEOREM 1. If E in \mathcal{B} is regular, then the sequence

$$\left(\frac{\log \omega(2^n, \mathbf{E})}{\log 2^n}\right)_{n \in \mathbb{N}}$$

converges.

Proof. For each $\varepsilon > 0$, there exist μ_{ε} in $\mathcal{M}(E)$, a_{ε} in \mathbb{R} , and N_{ε} in \mathbb{N} such that:

for each 2ⁿ-mesh u_i meeting E ($i = 1, 2, ..., \omega(2^n, E)$), we have

 $2^{-n(a_{\varepsilon}+\varepsilon)} \leq \mu_{\varepsilon}(u_{i}) \leq 2^{-n(a_{\varepsilon}-\varepsilon)}.$

If $||\mu_{\varepsilon}||$ denotes the total mass of μ_{ε} , we have by summing over *i*:

- (1) $\omega(2^n, E)2^{-n(a_{\varepsilon}+\varepsilon)} \leq ||\mu_{\varepsilon}||;$
- (2) $\omega(2^n, E)2^{-n(a_{\varepsilon}-\varepsilon)} \ge \mu_{\varepsilon}(E).$

(1) and (2) imply

(3) $a_{\varepsilon} - \varepsilon \leq \underline{\lim} \frac{\log \omega(2^n, E)}{\log 2^n} \leq \overline{\lim} \frac{\log \omega(2^n, E)}{\log 2^n} \leq a_{\varepsilon} + \varepsilon.$

As this is true for all $\varepsilon > 0$, the theorem is proved. We write for all E in \mathscr{B} :

$$\underline{d}(E) = \underline{\lim} \frac{\log \omega(2^n, E)}{\log 2^n}$$
$$\overline{d}(E) = \overline{\lim} \frac{\log \omega(2^n, E)}{\log 2^n}$$

 $\overline{d}(E)$ is called "logarithmic density of E" [7].

We have just seen in (3) that the inequality

$$\bar{d}(E) - \underline{d}(E) \leq 2\varepsilon$$

is true for all $\varepsilon > \frac{1}{2}r(E)$, so

 $\bar{d}(E) - \underline{d}(E) \leqslant r(E) \,,$

which will be useful for the sequel.

Our interest in \underline{d} and \overline{d} derives from

PROPOSITION 1. \underline{d} and \overline{d} are two rarefaction indices, in the sense of §1.

Proof. The monotonicity property is easy to verify. For property (2) we can argue as follows.

Let *E* be in \mathscr{B} , let *h* be a homeomorphism verifying condition (*). For each interval *u*, h(u) is an interval, whose extremities are the images of those of *u*. *E* being bounded, for each $\varepsilon > 0$, there exists *N* such that if *u* is a 2^{*n*}-mesh meeting *E*, $n \ge N$, we have: $|h(u)| < 2^{-n(1-\varepsilon)}$, so h(u) is covered by a number of 2^{*n*}-meshes which is less than $2^{1+n\varepsilon}$.

Therefore $\omega(2^n, h(E)) \leq \omega(2^n, E) \cdot 2^{1+n\varepsilon}$.

50

From this inequality, and the fact that ε is arbitrarily small, we deduce:

$$\underline{d}(h(E)) \leq \underline{d}(E)$$
, and $\overline{d}(h(E)) \leq \overline{d}(E)$.

For the reverse inequalities, we use the following result

LEMMA 2. h satisfies (*), if, and only if, h^{-1} satisfies (*).

It suffices to replace h by h^{-1} and E by h(E) in the previous inequalities to reverse them. So the proposition is proved.

Proof of Lemma 2. Let $K \subset \mathbb{R}$ be a compact set. $h^{-1}(K)$ is compact and by uniform continuity on K, it follows that, for each $\varepsilon' > 0$, there is an η , such that, for all x in K and all ξ with $x + \xi \in K$ and $|\xi| < \eta$, we have

$$|h^{-1}(x+\xi)-h^{-1}(x)| < \varepsilon'$$

On the other hand by (*), for all $\varepsilon > 0$, there is an $\varepsilon' > 0$, such that, for all y in $h^{-1}(K)$ and all ζ with $y + \zeta \in h^{-1}(K)$ and $|\zeta| < \varepsilon'$, we have

$$\left|\frac{\log|h(y+\zeta)-h(y)|}{\log|\zeta|}-1\right|<\frac{\varepsilon}{2}.$$

If we take $y = h^{-1}(x)$ and $\zeta = h^{-1}(x + \xi) - h^{-1}(x)$, we have:

$$\left|\frac{\log|\xi|}{\log|h^{-1}(x+\xi)-h^{-1}(x)|}-1\right| < \frac{\varepsilon}{2},$$
$$\left|\frac{\log|h^{-1}(x+\xi)-h^{-1}(x)|}{\log|\xi|}-1\right| < \varepsilon,$$

50

which was to be proved.

To close this section, we define a new class of sets.

DEFINITION 3. An E in \mathscr{B} is said to be "almost regular", if for all $\varepsilon > 0$, there exists a sequence $(E_n)_{n \in \mathbb{N}}$ in \mathscr{B} such that

$$E = \bigcup_{n} E_{n}$$
, and $r(E_{n}) \leq \varepsilon$, for all n in \mathbb{N} .

It is clear that a regular set is almost regular. We give in the next chapter an example of an almost regular, but non-regular set (Example 4), and a set that is not almost regular (Example 5).

§3. Properties of rarefaction indices.

DEFINITION 4. A rarefaction index α is said to be "regular", if

$$\alpha-\underline{d}=O(r)\,,$$

where O(r) is a function $\mathscr{B} \to I$ for which there exist $\varepsilon_0 > 0$ and K in \mathbb{R}^+ , such that for all E in \mathscr{B} with $r(E) \leq \varepsilon_0$, we have

$$|O(r)(E)| \leq Kr(E) \, .$$

We remark that any regular index can be used for \underline{d} in Definition 4. On regular sets r is zero, so regular indices take the same value on regular sets.

If α is a rarefaction index, and if $(E_n)_{n \in \mathbb{N}}$ is a sequence in \mathscr{B} , we have by monotonicity $\alpha(\bigcup_n E_n) \ge \sup_n \alpha(E_n)$. Equality does not always hold, as we shall see in a later example. But there exist indices for which equality always holds, whence a new definition.

DEFINITION 5. A rarefaction index is " σ -stable" if, for every sequence $(E_n)_{n \in \mathbb{N}}$ with uniformly bounded E_n ,

$$\alpha\left(\bigcup_n E_n\right) = \sup_n \alpha(E_n) \, .$$

For example, the Hausdorff dimension is σ -stable. We will prove in §4 that it is a rarefaction index.

Remark 1. Clearly there is a natural extension of σ -stable indices to unbounded subsets of R - A.

Remark 2. Each index α gives rise to a σ -stable index $\hat{\alpha}$, in the following manner:

Let E be in \mathscr{B} . To each decomposition of E into a countable infinity of sets E_n such that $E = \bigcup_n E_n$, and $E_n \in \mathscr{B}$, for all $n \in \mathbb{N}$, we associate the number $\sup_n \alpha(E_n)$. $\hat{\alpha}(E)$ is defined as the infimum of the set $\{\sup_n \alpha(E_n)\}$, over all decompositions of E.

PROPOSITION 2. If α is a rarefaction index, $\hat{\alpha}$ is a σ -stable rarefaction index. If α is regular, so is $\hat{\alpha}$.

Proof. The properties (1) $\hat{\alpha}$ is monotonic, (2) $\hat{\alpha}(E) = \hat{\alpha}(h(E))$ if h has property (*), are immediate.

(3) $\hat{\alpha}$ is σ -stable. Let $\varepsilon > 0$, and $E = \bigcup_n E_n$. For each *n*, there exists a sequence $(E_{n,k})_k$ such that

$$E = \bigcup_{k} E_{n,k}, \text{ and } \sup_{k} \alpha(E_{n,k}) - \varepsilon \leq \hat{\alpha}(E_{n}).$$
$$\hat{\alpha}(E) \leq \sup \alpha(E_{n,k}),$$

As

$$\mathfrak{u}(\mathfrak{L}) \subset \mathfrak{sup} \mathfrak{u}(\mathfrak{L}_{n,k})$$

and ε is arbitrarily small, the inequality

$$\hat{\alpha}(E) \leqslant \sup_{n} \alpha(E_{n})$$

follows. The reverse inequality is obvious.

(4) $\hat{\alpha}$ is regular, if α is. There is an $\varepsilon_0 > 0$, and a K > 0, such that for all E with $r(E) < \varepsilon_0$, and for all ε in $]\frac{1}{2}r(E), \frac{1}{2}\varepsilon_0]$, there exist μ in $\mathcal{M}(E)$, a in \mathbb{R} and N in \mathbb{N} with the property that for all $n \ge N$ and for all x in E

$$\frac{\log \mu(u_n(x))}{\log 2^{-n}} - a \leqslant \varepsilon \text{ and } |\alpha(E) - a| \leqslant K\varepsilon.$$

We consider such a set E, and (E_n) a sequence in \mathscr{B} such that $E = \bigcup_n E_n$. There is an $n_0 \in \mathbb{N}$ such that $\mu(E_{n_0}) > 0$, so μ is in $\mathscr{M}(E_{n_0})$, and therefore $r(E_{n_0}) \leq 2\varepsilon$, and $|\alpha(E_{n_0}) - a| \leq K\varepsilon$. So $\alpha(E) - \alpha(E_{n_0}) \leq 2K\varepsilon$, which shows that $\alpha(E) - \hat{\alpha}(E) \leq Kr(E)$, and concludes the proof.

We have seen that regular rarefaction indices coincide on regular sets; this follows directly from the definitions. If we add the assumption of σ -stability, we have

THEOREM 2. Rarefaction indices which are both regular and σ -stable take the same value on each almost regular set.

Proof. We shall see that if E is almost regular and α is regular and σ -stable, then

 $\alpha = \underline{\hat{d}}$.

For each $\varepsilon > 0$ there exists a sequence (E_n) in \mathscr{B} such that $E = \bigcup E_n$, and $r(E_n) \leq \varepsilon$, for all n.

As α and $\underline{\hat{d}}$ are regular, there exist $\varepsilon_0 > 0$ and K in \mathbb{R}^+ such that, when $\varepsilon < \varepsilon_0$ we have, for all n,

$$|\alpha(E_n) - \underline{d}(E_n)| \leq K r(E_n), \qquad |\underline{d}(E_n) - \underline{d}(E_n)| \leq K r(E_n).$$

So, for such ε , and, for all n in \mathbb{N} , $|\alpha(E_n) - \underline{\hat{d}}(E_n)| \leq 2K\varepsilon$. $\underline{\hat{d}}$ and α are σ -stable, whence $|\alpha(E) - \underline{\hat{d}}(E)| \leq 2K\varepsilon$, for all $\varepsilon > 0$, which proves the theorem.

Example 4. The set $E = \left\{ \frac{1}{k} \mid k \in \mathbb{N} \right\}$ is countable. Each subset consisting of a single point $\left\{ \frac{1}{k} \right\}$ is regular, and $d\left(\left\{ \frac{1}{k} \right\} \right) = 0$, so $\hat{d}(E) = 0$. E is almost regular.

On the other hand $\underline{d}(E) = \frac{1}{2}$, see [7]. So E is non-regular. Almost regular sets intervene in the following result.

PROPOSITION 3. Let α be a regular and σ -stable, and let E in \mathscr{B} be such that there exist μ in $\mathscr{M}(E)$ and a in \mathbb{R} with the following property. For all x in E,

$$\lim_{n} \frac{\log \mu(u_n(x))}{\log |u_n(x)|} = a$$

Then $a = \alpha(E)$.

Proof. In fact such a set is almost regular: it suffices to set, for each $\varepsilon > 0$,

$$E_k(\varepsilon) = \left\{ x \in E \mid n \ge k \Rightarrow \frac{\log \mu(u_n(x))}{\log |u_n(x)|} - a \right| \le \varepsilon \right\}.$$

Then $E_1(\varepsilon) \subset ... \subset E_k(\varepsilon)$, and $E = \bigcup_k E_k(\varepsilon)$. As $\mu(E) > 0$, there exists K such that $\mu(E_k(\varepsilon)) > 0$ for $k \ge K$, so $\mu \in \mathcal{M}(E_k(\varepsilon))$. Therefore $r(E_k(\varepsilon)) \le 2\varepsilon$, and E is almost regular.

By Theorem 2, we deduce that regular and σ -stable indices take a common value on *E*. Finally, this value is precisely *a*: we have $|d(E_k(\varepsilon)) - a| \leq \varepsilon$ for $k \geq K$, and by regularity of α there exist $\varepsilon_0 > 0$ and *L* in \mathbb{R}^+ such that, when $\varepsilon < \varepsilon_0$,

$$\left|\underline{d}(E_{k}(\varepsilon)) - \alpha(E_{k}(\varepsilon))\right| < L\varepsilon;$$

so $|\alpha(E_k(\varepsilon)) - a| < (L+1)\varepsilon$. As α is σ -stable,

$$|\alpha(E)-a| \leq (L+1)\varepsilon$$
, for each $\varepsilon > 0$.

Example 5 of a set that is not almost regular.

Let E be a symmetrical perfect set as in Example 3, such that the sequence $\left(\frac{n}{k_n}\right)_{n \in \mathbb{N}}$ is not convergent. We easily see that

$$\underline{\hat{d}}(E) \leq \underline{d}(E) = \underline{\lim} \frac{n}{k_n}$$
, and $\overline{\hat{d}}(E) \leq \overline{d}(E) = \overline{\lim} \frac{n}{k_n}$.

We will prove that $\hat{d}(E) \ge \bar{d}(E)$, which implies that $\underline{\hat{d}}(E) \ne \hat{d}(E)$, so that E is not almost regular, by Theorem 2.

Let (E_n) be a sequence of \mathscr{B} , $E = \bigcup_n E_n$. There exists n_0 such that $\mu(E_{n_0}) > 0$. Now, for all $\varepsilon > 0$ and for all N in \mathbb{N} , there is an $n \ge N$, such that, for all x in E_{n_0} ,

$$\frac{\log \mu(u_{k_n}(x))}{\log |u_{k_n}(x)|} \ge \bar{d}(E) - \varepsilon \,.$$

Hence

$$\mu(u_{k_n}(x)) \leq 2^{-k_n(d(E)-\varepsilon)}.$$

By summing on all 2^{k_n} -meshes meeting E_{n_0} we obtain

$$\omega(2^{k_n}, E_{n_0}) 2^{-k_n(\tilde{d}(E)-\varepsilon)} \ge \mu(E_{n_0}) > 0$$
.

So

$$\bar{d}(E_{n_0}) \geq \overline{\lim} \frac{\log \omega(2^{k_n}, E_{n_0})}{\log 2^{k_n}} \geq \bar{d}(E) - \varepsilon,$$

for all $\varepsilon > 0$. So $\hat{d}(E) \ge \hat{d}(E)$.

§4. Hausdorff dimension. The examples of rarefaction indices that we gave in the preceding chapters are \underline{d} , \overline{d} , $\underline{\hat{d}}$, \hat{d} . Another example is the Hausdorff dimension,

denoted dim, which is also a regular rarefaction index. Before proving this, we give some notation.

For each $\rho > 0$, let $\Omega(E, \rho)$ be the set of all countable coverings $\mathscr{R} = \{u_i\}$ of E, where each u_i is a mesh, and $|u_i| \leq \rho$.

Recall that for each $a \in I$ the Hausdorff measure of E is

$$a-m(E) = \lim_{a \to 0} \inf \{ \sum |u_i|^a | \{u_i\} \in \Omega(E, \rho) \},\$$

and

dim
$$E = \inf \{a \in I | a - m(E) = 0\} = \sup \{a \in I | a - m(E) = +\infty\}$$
.

THEOREM 3. The function dim : $\mathcal{B} \to I$ is a σ -stable and regular rarefaction index.

Proof. (1) The properties of monotonicity, and σ -stability, are well known.

(2) Let h be an homeomorphism verifying (*), with E in \mathscr{B} and a in I. For each $\varepsilon > 0$ there exists $\rho > 0$ such that for each mesh u meeting E, with $|u| < \rho$ we have $|h(u)| < |u|^{1-\varepsilon}$. If n is the integer such that

$$2^{-n-1} < |u|^{1-\varepsilon} \leq 2^{-n}$$

the interval h(u) is covered by at most two 2ⁿ-meshes, say v_1 and v_2 , with $|v_i| \leq 2|u|^{1-\epsilon}$, so that

$$|v_1|^a + |v_2|^a \leq 2^{1+a} |u|^{a(1-\varepsilon)}.$$

Let \mathscr{R} be in $\Omega(E, \rho)$, then there exists \mathscr{R}' in $\Omega(h(E), 2\rho^{1-\varepsilon})$, such that

$$\sum_{v \in \mathscr{H}} |v|^a \leq 2^{1+a} \sum_{u \in \mathscr{H}} |u|^{a(1-\varepsilon)}$$

As ρ is arbitrarily small, the inequality

$$a-m(h(E)) \leq 2^{1+a} \cdot a(1-\varepsilon)-m(E)$$

follows, and then dim $h(E) \leq (1/(1-\varepsilon)) \dim E$, for each $\varepsilon > 0$. Hence dim $h(E) \leq \dim E$.

The reverse inequality comes from the fact that h^{-1} satisfies (*).

(3) dim is regular. It suffices to prove the inequality

$$|\dim E - \underline{d}(E)| \leq r(E)$$
,

for each E in \mathscr{B} . Let E be in \mathscr{B} and let $\varepsilon > \frac{1}{2}r(E)$. There exist μ in $\mathscr{M}(E)$, a in \mathbb{R} and N in \mathbb{N} such that, for all $n \ge N$ and all x in E,

$$|u_n(x)|^{a+\varepsilon} \leq \mu(u_n(x)) \leq |u_n(x)|^{a-\varepsilon}$$

Let $\rho < 2^{-N}$, and R be in $\Omega(E, \rho)$.

Let $R = \{u_i\}$. Without loss of generality, we may assume that the meshes u_i are

disjoint, and that each of them contains a point of E, and thus

$$|u_i|^{a+\varepsilon} \leq \mu(u_i) \leq |u_i|^{a-\varepsilon}.$$

Summation on *i* yields

$$\sum |u_i|^{a+\varepsilon} \leq ||\mu||, \qquad \sum |u_i|^{a-\varepsilon} \geq \mu(E).$$

This is true for each $R \in \Omega(E, \rho)$, and each $\rho > 0$, so

$$(a+\varepsilon)-m(E) \leq ||\mu||, \quad (a-\varepsilon)-m(E) \geq \mu(E).$$

Therefore $a - \varepsilon \leq \dim E \leq a + \varepsilon$.

The same inequalities are satisfied by $\underline{d}(E)$ (Th. 1, inequalities (3)), so our assertion is proved.

Now we can say that dim takes the same values as \underline{d} on regular sets, and as $\underline{\hat{d}}$ on almost regular sets.

Thus Hausdorff dimension verifies the assumption of Prop. 3. But we can prove a stronger result which seems particular to this index.

PROPOSITION 4. Let E in \mathscr{B} be such that there exist μ in $\mathscr{M}(E)$ and a in \mathbb{R} satisfying

$$\underline{\lim_{n}} \frac{\log \mu(u_n(x))}{\log |u_n(x)|} = a,$$

for all x in E. Then $a = \dim E$.

Proof. This follows from Theorems 2.1 and 2.2 of Billingsley [1]. We can also apply the results of Rogers and Taylor [5] on Hausdorff measure, to obtain a different proof, as follows.

(1) Let b > a. We have, for all x in E,

$$\underline{\lim_{n}} \frac{\log \mu(u_n(x))}{\log |u_n(x)|^b} < 1,$$

hence

$$\overline{\lim_{n}} \frac{\mu(u_n(x))}{|u_n(x)|^b} = +\infty.$$

If we put $h(t) = t^b$, this last value is called by Rogers and Taylor upper "h-density" relative to the sequence of mesh nets, denoted $\mathcal{M}\bar{D}_h\mu(x)$.

So for each k in \mathbb{N} , $E \subset E_k^* = \{x | \mathcal{M}\bar{D}_h \mu(x) > k\}$. There exist real λ_1 such that

$$b-m(E_k^*) \leqslant \frac{\lambda_1 \|\mu\|}{k}$$

56

([5], Lemma 2A). So b-m(E) = 0, and dim $E \leq b$, for each b > a. Hence dim $E \leq a$.

(2) Let b < a. We now have, if $h(t) = t^b$, then $\mathcal{M}\overline{D}_h\mu(x) = 0$, so $E \cap E_k^* = 0$. By Lemma 3 of [5], we deduce that

$$b-m(E) \geq \frac{\mu(E)}{k\lambda_2},$$

for some constant λ_2 . So b-m(E) > 0: dim $E \ge a$.

References

1. P. Billingsley. "Hausdorff dimension in probability theory II", Illinois J. Math., 5 (1961), 291-298.

2. P. Billingsley. Ergodic theory and information (J. Wiley, 1965).

3. F. Hausdorff. "Dimension und äusseres Mass", Math. Ann., vol. 79 (1919), 157-179.

4. J.-P. Kahane and R. Salem. Ensembles parfaits et séries trigonométriques (Hermann, Paris, 1963).

5. C. A. Rogers and S. J. Taylor. "Functions continuous and singular with respect to a Hausdorff measure", Mathematika, 8 (1961), 1-31.

6. C. A. Rogers. Hausdorff measures (Cambridge University Press, 1970).

7. C. Tricot. Sur la notion de densité (Cahiers du Département d'économétrie, Genève, 1973).

Université de Genève, 2-4, rue du Lièvre, Case postale 124, 1211 Genève 24, Switzerland.

28A75: MEASURE AND INTEGRATION; Other geometric measure theory.

Received on the 1st of April, 1979.