RAREFACTION INDICES

CLAUDE TRICOT Jr.

§1. Introduction. There are at least two indices used to measure the size of
bounded sets of R" of zero measure—Hausdorff dimension (see [4] for a definition),
and the density index [7].

The object of this paper is to consider the relation between these two indices and
to set up a general theory of such parameters.

It is interesting to note that they coincide on some more or less “regular” sets; for
instance in R, on the triadic Cantor set, or on any symmetric perfect set with a
constant ratio ([4], [7]). To explain further the notion of regularity we first define an
“irregularity coefficient” of a set, and then look for rarefaction indices which coincide
on so-called regular sets, i.e. those whose coefficient is zero.

By definition, a “rarefaction index” (a term due to E. Borel) is a map « from the
set of bounded subsets of R", into R, with the following two properties:

(1) E < E implies o(E) < o(E’) (monotonicity);

(2) oE) = o{WE)) for any homeomorphism h:R" — R" with the following
property:

(*) On each compact set K < R", the ratio

log |h(x + &) — h(x)|
log ¢

converges towards 1 uniformly when the norm of the vector ¢ converges
towards O. (In particular, this condition is satisfied if & is a similarity, or a
diffeomorphism.)

For the sake of simplicity, we consider in this paper the bounded borelian subsets
of R; the same methods easily generalize to R". We use a net of 2"-meshes, a classical
method ([17, [2], [5], [7]) for constructing set coverings. By definition, a 2"-mesh is

an interval
k  k+1
|:'2'; . TI: . keZ.

If xeR, ne N, x belongs to one 2"-mesh, denoted u,(x).

It is known [2] that calculating the Hausdorff dimension using mesh coverings
gives the same result as if we use arbitrary intervals. The same holds for the density
index [7]; we can take either n-meshes or 2"-meshes.

The only disadvantage of this procedure is the following one: during a calculation
or in the statement of a result, some irregularities may appear at the endpoints of
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RAREFACTION INDICES 47

k
A=ty

A is countable and dense in R. Therefore we will prefer to work in the set R-4, with
induced topology, thus avoiding minor difficulties due to 4. We remark that, if
E < R, the Hausdorff dimension of E is equal to that of E— A.

Hence let # be the set of bounded non-empty borelian subsets of R— A.

Let .# be the set of finite o-additive Borel measures [6].

In §2 we give, with the help of measures of .#, the definition of the irregularity
coefficient r(E) of a set E in 4, and that of two important families of sets: “regular”
sets, and “almost regular” sets.

In §3 we define the “regular” rarefaction indices, which take the same values on
regular sets, and “o-stable” ones; the indices which are both regular and o-stable take
the same value on almost regular sets.

An important example of a regular and o-stable index is the Hausdorff
dimension; one way of finding dim E can be stated as follows:

meshes, i.e. at points of

neN, keZ};

IfEin %, uin M and a in R are such that y(E) > 0, and that for all x in E,

log p(uy(x)) _
% Tog Juy ()]

>

then a = dim E. (Ju| denotes the length of interval u; here |u,(x)| = 27")

We show in §4 that this result, due to Billingsley, can be proved faster than in [1]
with the help of results on Hausdorff measures due to Rogers and Taylor [5].

§2. The irregularity coefficient.
Notation. For every E in , we denote by #(E) the set of all measure p in 4
such that

(@) E is included in the support of u,
(b) w(E) > 0.
Property (a) is equivalent to: (Vx)(\'/n)(x eE & neN = uu,x) > 0).

If Eis in # then E c [a,b], and, if we let w(2", E) denote the number of
2"-meshes which meet E, then

2" E) < (b—a)2"+2.

Lemma 1. For each E in 8, for each ¢ > 1, there exists a measure u in #(E), and
N in N, such that for all x in E, and for alln 2 N,

< Jog ) _
log 1,4
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a3 C. TRICOT

Proof. It suffices to prove this lemma in the case where E is included in a
1-mesh.

For each n in N, let F, be a set of w(2", E) points of E, so that each 2"-mesh
meeting E contains one point of F,.

Let F = | J,F,. To each y of F, let us associate N(y), the smallest integer n such
that y € F,, and define a measure y, for all y in F, by

uY) = 270

For each n, there are at most w(2", E) points of F of measure 27", so

WF) < Y o, D27 < +oo,
n=0
and
Suppu=F =E,
therefore u e #(E).
log u(F)
log2=n"
Let x be in E and let n > N, then u,(x) contains a point y of F,, such that
N(y) € n, so

Let N be the smallest integer such that 1 —¢ <

s log p(u,(x)) < log u(iy}) _
log2™" log 27"

DeFiniTION 1. We call “irregularity coefficient” the mapr: # — I = [0, 1], such
that for each E in #:

nE) = 2 inf {s > O|there exist u, in #(E), a,in R and N, in N such that for all
log wfux) __| 8}_

log fu,09l ~ %
This map has its value in I, because by Lemma 1, for each E in 4, for each ¢ > 1,
we can construct a measure y in #(E) such that for all n in N, and for all x in E:

n = N,, forall xinE we have

log p(u,(x))
log [u,(x)

DN

DeriNiTION 2. E in & is said to be “regular” if (E) = 0.

We will see later (Theorem 1) that for regular sets, a, can be taken to be constant
in Definition 1.
Let us give some examples of regular sets:
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RAREFACTION INDICES 49

Example 1. Let E = {x} with xe R—A.
With any measure p on E, and a = 0, we obtain

lim

log p(u,(x)) _
Tog [0 _“’ =0

;0 r(E) = 0. The same result holds for all finite sets.

Example 2. Let E = I —A: take the Lebesgue measure, and a = 1. E is also a
-egular set.

Example 3. Let (k,),.n be a sequence of N, such that
k=22, ki —k,=2.
We can define a symmetrical perfect set E in I — A (see [4]) such that
(2, E) = 2",
ind a measure u on E such that, for all x in E,
ulu (x)) = 27"
For each m in N with m > k,, there exists n in N such that

k,_, <m<k,,

5o for all x in E we have u(u,(x)) = p(u(x)) = 27", and

n<logu(u,,,(x))< n _n=1 n

kn h log Ium(x)l = kn-l - kn-l n—1 .

n
kn neN

onverges (for example take k, = 2n). We will see later that this condition is
1ecessary.

So E is regular if the sequence

THeoOREM 1. If E in 4 is regular, then the sequence
log (2", E)
IOg 2n neN

Proof. For each ¢ > 0, there exist y, in #(E), a, in R, and N, in N such that:

:onverges.
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50 C. TRICOT
for each 2"-mesh u; meeting E (i = 1,2, ..., w(2", E)), we have
2 nlacte) He(ui) g Qe
If || || denotes the total mass of u,, we have by summing over i:

(1) (2", E)277%*9 < {plll;
) w(2", 27" > p(E).

(1) and (2) imply

log «(2", E) <im log w(2", E)

@) a-e<lm log 2" log 2"

< a,+e.

As this is true for all ¢ > 0, the theorem is proved.
We write for all E in 4:

T log (2", E)
d(E) = lim Tog 2
Ty —log w(2", E)
d(E) = lim g2

d(E) is called “logarithmic density of E” [7].
We have just seen in (3) that the inequality

d(E)—-d(E) < 2¢
is true for all ¢ > ir(E), so
d(E)—-d(E) < r(E),
which will be useful for the sequel.

Our interest in d and d derives from

ProrosSITION 1. d and d are two rarefaction indices, in the sense of §1.

Proof. The monotonicity property is easy to verify. For property (2) we can
argue as follows.

Let E be in 4, let h be a homeomorphism verifying condition (*). For each
interval u, h(u) is an interval, whose extremities are the images of those of u. E being
bounded, for each ¢ > 0, there exists N such that if u is a 2"-mesh meeting E,n > N,
we have: |h(u)] < 2779, so h(u) is covered by a number of 2"-meshes which is less
than 2!*",

Therefore w(2", W(E)) < w(2", E). 2'*™.
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RAREFACTION INDICES 51
From this inequality, and the fact that ¢ is arbitrarily small, we deduce:
d(h(E)) < d(E), and d(h(E)) < d(E).
For the reverse inequalities, we use the following result
LemMaA 2.k satisfies (*), if, and only if, h™! satisfies (*).

[t suffices to replace h by h~' and E by h(E) in the previous inequalities to reverse
them. So the proposition is proved.

Proof of Lemma 2. Let K = R be a compact set. h™!(K) is compact and by
uniform continuity on K, it follows that, for each ¢ > 0, there is an #, such that, for
all x in K and all ¢ with x+¢ € K and |¢| < n, we have

=Y x+8—-h"x)| < €.

On the other hand by (*), for all ¢ > 0, there is an ¢ > 0, such that, for all y in
h~Y(K) and all { with y+{eh™*(K) and |{| < &, we have

llog [h(y+{)=h()
| log ||

€
1| < =.

If we take y = h™(x) and { = h™'(x+¢&)—h~!(x), we have:

log [¢] )
log |h~(x+ &) —h~(x)| _1‘ <2
50
log [k~ *(x+ &)=~ () _1, -,
log (€| ’

which was to be proved.
To close this section, we define a new class of sets.

DerINITION 3. An E in # is said to be “almost regular”, if for all ¢ > 0, there
:xists a sequence (E,), .y in # such that

E=\)E,, and rHE)<e, forallninN.

tis clear that a regular set is almost regular. We give in the next chapter an example
o an almost regular, but non-regular set (Example 4), and a set that is not almost
-egular (Example 5).

§3. Properties of rarefaction indices.

DEFINITION 4. A rarefaction index o is said to be “regular”, if

a—d = 0(7’),
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52 C. TRICOT

where O(r) is a function 8 — I for which there exist ¢, > 0 and K in R*, such that for
all E in # with r(E) < &,, we have

|O(r)(E)| < Kr(E).

We remark that any regular index can be used for d in Definition 4. On regular
sets r is zero, so regular indices take the same value on regular sets.

If o is a rarefaction index, and if (E,),.y 1S @ sequence in #, we have by
monotonicity cx(U,,E,,) = sup, «(E,). Equality does not always hold, as we shall see in
a later example. But there exist indices for which equality always holds, whence a
new definition.

DEFINITION 5. A rarefaction index is “o-stable” if, for every sequence (E,), . with
uniformly bounded E,,,

o (U E,,) =sup «(E,).

For example, the Hausdorff dimension is o-stable. We will prove in §4 that it is a
rarefaction index.

Remark 1. Clearly there is a natural extension of g-stable indices to unbounded
subsets of R— A.

Remark 2. Each index o gives rise to a g-stable index &, in the following manner:
Let E be in #. To each decomposition of E into a countable infinity of sets E,
such that E = | JE,, and E, € 8, for all ne N, we associate the number sup,x(E,).

d(E) is defined as the infimum of the set {sup,(E,)}, over all decompositions of E.

ProposITION 2. If o is a rarefaction index, & is a a-stable rarefaction index. If o is
regular, so is 4.

Proof. The properties (1) & is monotonic, (2) &E) = &(h(E)) if h has property (*),
are immediate.

(3) & is o-stable. Let ¢ > 0, and E = | J,E,. For each n, there exists a sequence
(E,. 1)k such that

E = kk)E,,,k , and sup oE, )—¢ < &E,).

As
&(E) < sup «(E, ),
n,k

and ¢ is arbitrarily small, the inequality

&(E) < sup «(E,)

follows. The reverse inequality is obvious.
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RAREFACTION INDICES 53

(4) & is regular, if « is. There is an g, > 0, and a K > 0, such that for all E with
HE) < &, and for all ¢ in 4r(E), 1¢,], there exist u in #(E), ain R and N in N with
the property that for all n > N and for all x in E

log u(u,(x))
log2™"

a’ <¢ and |dE)—da| < Ke.

We consider such a set E, and (E,) a sequence in % such that E = | J,E,. There is
an ny € N such that w(E,) > 0, so p is in #(E,), and therefore r(E,) < 2¢, and
l«(E,)—al < Ke. So o(E)~a(E,) < 2Ke, which shows that «(E)—a(E) < Kr(E), and
concludes the proof.

We have seen that regular rarefaction indices coincide on regular sets; this follows
directly from the definitions. If we add the assumption of o-stability, we have

THEOREM 2. Rarefaction indices which are both regular and o-stable take the same
value on each almost regular set.

Proof. We shall see that if E is almost regular and « is regular and o-stable, then

1R

o =

For each & > 0 there exists a sequence (E,) in # such that E = | E,, and
HE,) < &, for all n.

As « and d are regular, there exist &, > 0 and K in R* such that, when ¢ < &, we
have, for all n,

l«(E)~d(E,)| < KHE,), |dE)—dE,) < KHE,).

So, for such ¢, and, for all nin N, |«(E,)— d(E,)| < 2Ke. d and « are o-stable, whence
|«(E)—d(E)| < 2Ke, for all ¢ > 0, which proves the theorem.

Example 4. The set E = {% ‘ ke N} is countable. Each subset consisting of a

1 .
single point {E} is regular, and d({%}) = 0, so d(E) = 0. E is almost regular.

On the other hand d(E) = %, see [7]. So E is non-regular.
Almost regular sets intervene in the following result.

PROPOSITION 3.  Let a be a regular and o-stable, and let E in # be such that there
exist p in M(E) and a in R with the following property. For all x in E,

log p(uy(x)) _
n log |u,(x)]

Then a = ofE).
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54 C. TRICOT

Proof. 1In fact such a set is almost regular: it suffices to set, for each ¢ > 0,

osstel) | )

Efe) =<xe€E|n= k=
) { | Tog 11,00

Then E,(¢) = ... € E¢), and E = UkEk(s). As u(E) > 0, there exists K such that
WEe)) > 0 for k > K, so ue #(E(e). Therefore r(E;(e)) < 2¢, and E is almost
regular.,

By Theorem 2, we deduce that regular and o-stable indices take a common value
on E. Finally, this value is precisely a: we have |d(E(¢))—a| < & for k > K, and by
regularity of « there exist &, > 0 and L in R* such that, when ¢ < ¢,

[d(Ey(e)) — oA Exe)| < Le;
so Jo(E(e)) —a| < (L+1)e. As a is o-stable,
[(E)—a| < (L+1)e, foreache>0.

Example 5 of a set that is not almost regular.
Let E be a symmetrical perfect set as in Example 3, such that the sequence

n . .
<E_> is not convergent. We easily see that
neN

n

and d(E) < d(E) = lim .

- . n
d(B) < d(B) = lim -, a

We will prove that d(E) > d(E), which implies that d(E) #+ d(E), so that E is not
almost regular, by Theorem 2.

Let (E,) be a sequence of &, E = | J,E,. There exists n, such that y(E,) > 0.
Now, for all ¢ > 0 and for all N in N, there is an n > N, such that, for all x in E,,

log p(u(x))

> dE)—¢.
log ju, (9] > &)

Hence
plu, (x)) < 274dEI=0)

By summing on all 2*-meshes meeting E, we obtain

(2%, E,)27@B=9 > y(E ) > 0.
So

__—logw(" E,) _ -
p- —_—— > —e,
d(E,) = lim log 2 d(E)—e¢

for all ¢ > 0. So A(E) > d(E).

§4. Hausdorff dimension. The examples of rarefaction indices that we gave in the
preceding chapters are d, d, d, d. Another example is the Hausdorff dimension,
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RAREFACTION INDICES 55
denoted dim, which is also a regular rarefaction index. Before proving this, we give
some notation.

For each p > 0, let Q(E, p) be the set of all countable coverings # = {u;} of E,

where each u; is a mesh, and |y < p.
Recall that for each a e I the Hausdorff measure of E is

a-m(E) = lim inf ) |u|*|{u;} € UE, p)} ,
p—>0

and
dim E = inf {a e I|a-m(E) = 0} = sup {a € I|a-m(E) = + oo} .

TuEOREM 3. The function dim : 8 — I is a o-stable and regular rarefaction index.

Proof. (1) The properties of monotonicity, and o-stabitity, are well known.

(2) Let h be an homeomorphism verifying (*), with E in £ and « in I. For each
¢ > 0 there exists p > 0 such that for each mesh u meeting E, with |u| < p we have
|h(u)| < |u|'~%. If n is the integer such that

2—n—1 < |u|1—e < 2—n

the interval h(u) is covered by at most two 2"-meshes, say v, and v,, with
lv)] < 2[uf' ", so that

o3 ]* + |o,|" < 20 ¥ w9
Let 2 be in Q(E, p), then there exists & in Q(h(E), 2p' %), such that

Z |U|" s 21+n Z |u|a(1—e)'

veR weR
As p is arbitrarily small, the inequality
a-m(h(E)) < 2'*°. a(1 —&)-m(E)
follows, and then dimh(E) < (1/1—¢)dimE, for each &> 0. Hence
dim A(E) < dim E.
The reverse inequality comes from the fact that h~! satisfies (*).
(3) dim is regular. It suffices to prove the inequality

ldim E —d(E)| < n(E),

for each E in #. Let E be in # and let ¢ > ir(E). There exist yin .#(E),ain Rand N
in N such that, for all n = N and all x in E,

() < (%)) < ()17
Let p < 27", and R be in Q(E, p).

Let R = {u;}. Without loss of generality, we may assume that the meshes u; are
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56 C. TRICOT
disjoint, and that each of them contains a point of E, and thus
u“ T < pluy) < Jug* 0.
Summation on i yields
Dlwl < lll, Y il > WE).
This is true for each R e E, p), and each p > 0, so
(a+e)—m(E) < lull, (a—&)—m(E) = W(E).

Therefore a—¢ < dim E < a+e.
The same inequalities are satisfied by d(E) (Th. 1, inequalities (3)), so our assertion is
proved.

Now we can say that dim takes the same values as d on regular sets, and as d on
almost regular sets.

Thus Hausdorff dimension verifies the assumption of Prop. 3. But we can prove a
stronger result which seems particular to this index.

ProrosiTioN 4. Let E in & be such that there exist p in H(E) and a in R
satisfying

log p(u,(x))
“n log |u,(x)|

k4

Jor all x in E. Then a = dim E.

Proof. This follows from Theorems 2.1 and 2.2 of Billingsley [1]. We can also
apply the results of Rogers and Taylor [§] on Hausdorff measure, to obtain a
different proof, as follows.

(1) Let b > a. We have, for all x in E,

log pu(u,(x))
“n log |u(x))

b

hence

— plu,(x))
S

If we put h(t) = t°, this last value is called by Rogers and Taylor upper “h-density”
relative to the sequence of mesh nets, denoted .#D, u(x).
So for each k in N, E = E}¥ = {x|.#D,u(x) > k}. There exist real A, such that

Agllpll

- ¥ <
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RAREFACTION INDICES 57
([5], Lemma 2A). So b-m(E) = 0, and dim E < b, for each b > g. Hence dim E <

(2) Let b < a. We now have, if h(t) = t*, then .#D,u(x) = 0,s0 E n E¥ = 0. By
Lemma 3 of [5], we deduce that

b-m(E) > ’,‘((f)
2

for some constant 4,. So b-m(E) > 0:dimE > a
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