RAREFACTION INDICES

CLAUDE TRICOT Jr.

§1. Introduction. There are at least two indices used to measure the size of bounded sets of \mathbb{R}^{n} of zero measure-Hausdorff dimension (see [4] for a definition), and the density index [7].

The object of this paper is to consider the relation between these two indices and to set up a general theory of such parameters.

It is interesting to note that they coincide on some more or less "regular" sets; for instance in \mathbb{R}, on the triadic Cantor set, or on any symmetric perfect set with a constant ratio ([4], [7]). To explain further the notion of regularity we first define an "irregularity coefficient" of a set, and then look for rarefaction indices which coincide on so-called regular sets, i.e. those whose coefficient is zero.

By definition, a "rarefaction index" (a term due to E. Borel) is a map α from the set of bounded subsets of \mathbb{R}^{n}, into \mathbb{R}, with the following two properties:
(1) $E \subset E^{\prime}$ implies $\alpha(E) \leqslant \alpha\left(E^{\prime}\right)$ (monotonicity);
(2) $\alpha(E)=\alpha(h(E))$ for any homeomorphism $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the following property:
(*) On each compact set $K \subset \mathbb{R}^{n}$, the ratio

$$
\frac{\log |h(x+\xi)-h(x)|}{\log |\xi|}
$$

converges towards 1 uniformly when the norm of the vector ξ converges towards 0 . (In particular, this condition is satisfied if h is a similarity, or a diffeomorphism.)

For the sake of simplicity, we consider in this paper the bounded borelian subsets of \mathbb{R}; the same methods easily generalize to \mathbb{R}^{n}. We use a net of 2^{n}-meshes, a classical method ([1], [2], [5], [7]) for constructing set coverings. By definition, a 2^{n}-mesh is an interval

$$
\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}[, \quad k \in \mathbb{Z} .\right.
$$

If $x \in \mathbb{R}, n \in \mathbb{N}, x$ belongs to one 2^{n}-mesh, denoted $u_{n}(x)$.
It is known [2] that calculating the Hausdorff dimension using mesh coverings gives the same result as if we use arbitrary intervals. The same holds for the density index [7]; we can take either n-meshes or 2^{n}-meshes.

The only disadvantage of this procedure is the following one: during a calculation or in the statement of a result, some irregularities may appear at the endpoints of
meshes, i.e. at points of

$$
A=\left\{\left.\frac{k}{2^{n}} \right\rvert\, n \in \mathbb{N}, k \in \mathbb{Z}\right\} ;
$$

A is countable and dense in \mathbb{R}. Therefore we will prefer to work in the set $\mathbb{R}-A$, with induced topology, thus avoiding minor difficulties due to A. We remark that, if $E \subset R$, the Hausdorff dimension of E is equal to that of $E-A$.

Hence let \mathscr{B} be the set of bounded non-empty borelian subsets of $\mathbb{R}-A$.
Let \mathscr{M} be the set of finite σ-additive Borel measures [6].
In $\S 2$ we give, with the help of measures of \mathscr{M}, the definition of the irregularity coefficient $r(E)$ of a set E in \mathscr{B}, and that of two important families of sets: "regular" sets, and "almost regular" sets.

In $\S 3$ we define the "regular" rarefaction indices, which take the same values on regular sets, and " σ-stable" ones; the indices which are both regular and σ-stable take the same value on almost regular sets.

An important example of a regular and σ-stable index is the Hausdorff dimension; one way of finding $\operatorname{dim} E$ can be stated as follows:

If E in \mathscr{B}, μ in \mathscr{M} and a in \mathbb{R} are such that $\mu(E)>0$, and that for all x in E,

$$
\varliminf \frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}=a
$$

then $a=\operatorname{dim} E .\left(|u|\right.$ denotes the length of interval u; here $\left|u_{n}(x)\right|=2^{-n}$.)
We show in $\S 4$ that this result, due to Billingsley, can be proved faster than in [1] with the help of results on Hausdorff measures due to Rogers and Taylor [5].
§2. The irregularity coefficient.
Notation. For every E in \mathscr{B}, we denote by $\mathscr{M}(E)$ the set of all measure μ in \mathscr{M} such that
(a) E is included in the support of μ,
(b) $\mu(E)>0$.

Property (a) is equivalent to: $(\forall x)(\forall n)\left(x \in E \& n \in \mathbb{N} \Rightarrow \mu\left(u_{n}(x)\right)>0\right)$.
If E is in \mathscr{B} then $E \subset[a, b]$, and, if we let $\omega\left(2^{n}, E\right)$ denote the number of 2^{n}-meshes which meet E, then

$$
\omega\left(2^{n}, E\right) \leqslant(b-a) 2^{n}+2 .
$$

Lemma 1. For each E in \mathscr{B}, for each $c>1$, there exists a measure μ in $\mathscr{M}(E)$, and N in \mathbb{N}, such that for all x in E, and for all $n \geqslant \mathbb{N}$,

$$
1-c \leqslant \frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|} \leqslant c
$$

Proof. It suffices to prove this lemma in the case where E is included in a 1-mesh.

For each n in \mathbb{N}, let F_{n} be a set of $\omega\left(2^{n}, E\right)$ points of E, so that each 2^{n}-mesh meeting E contains one point of F_{n}.

Let $F=\bigcup_{n} F_{n}$. To each y of F, let us associate $N(y)$, the smallest integer n such that $y \in F_{n}$, and define a measure μ, for all y in F, by

$$
\mu(\{y\})=2^{-c N(y)} .
$$

For each n, there are at most $\omega\left(2^{n}, E\right)$ points of F of measure $2^{-c n}$, so

$$
\mu(F) \leqslant \sum_{n=0}^{\infty} \omega\left(2^{n}, E\right) 2^{-c n} \leqslant+\infty,
$$

and

$$
\operatorname{Supp} \mu=\bar{F}=\bar{E},
$$

therefore $\mu \in \mathscr{M}(E)$.
Let N be the smallest integer such that $1-c \leqslant \frac{\log \mu(F)}{\log 2^{-N}}$.
Let x be in E and let $n \geqslant N$, then $u_{n}(x)$ contains a point y of F_{n}, such that $N(y) \leqslant n$, so

$$
1-c \leqslant \frac{\log \mu\left(u_{n}(x)\right)}{\log 2^{-n}} \leqslant \frac{\log \mu(\{y\})}{\log 2^{-n}} \leqslant c .
$$

Definition 1. We call "irregularity coefficient" the map $r: \mathscr{B} \rightarrow I=[0,1]$, such that for each E in \mathscr{B} :
$r(E)=2 \inf \left\{\varepsilon>0 \mid\right.$ there exist μ_{ε} in $\mathscr{M}(E), \quad a_{\varepsilon}$ in \mathbb{R} and N_{ε} in \mathbb{N} such that for all $n \geqslant \mathbb{N}_{\varepsilon}$, for all x in E we have $\left.\left|\frac{\log \mu_{\varepsilon}\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}-a_{\varepsilon}\right| \leqslant \varepsilon\right\}$.

This map has its value in I, because by Lemma 1, for each E in \mathscr{B}, for each $c>1$, we can construct a measure μ in $\mathscr{M}(E)$ such that for all n in \mathbb{N}, and for all x in E :

$$
\left|\frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}-\frac{1}{2}\right| \leqslant c-\frac{1}{2}
$$

Definition 2. $\quad E$ in \mathscr{B} is said to be "regular" if $r(E)=0$.

We will see later (Theorem 1) that for regular sets, a_{ε} can be taken to be constant in Definition 1.

Let us give some examples of regular sets:

Example 1. Let $E=\{x\}$ with $x \in \mathbb{R}-A$.
With any measure μ on E, and $a=0$, we obtain

$$
\lim \left|\frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}-a\right|=0,
$$

;o $r(E)=0$. The same result holds for all finite sets.
Example 2. Let $E=I-A$: take the Lebesgue measure, and $a=1$. E is also a egular set.

Example 3. Let $\left(k_{n}\right)_{n \in \mathbb{N}}$ be a sequence of \mathbb{N}, such that

$$
k_{1} \geqslant 2, \quad k_{n+1}-k_{n} \geqslant 2 .
$$

We can define a symmetrical perfect set E in $I-A$ (see [4]) such that

$$
\omega\left(2^{k_{n}}, E\right)=2^{n},
$$

ind a measure μ on E such that, for all x in E,

$$
\mu\left(u_{k_{n}}(x)\right)=2^{-n} .
$$

For each m in \mathbb{N} with $m>k_{2}$, there exists n in \mathbb{N} such that

$$
k_{n-1}<m \leqslant k_{n},
$$

;o for all x in E we have $\mu\left(u_{m}(x)\right)=\mu\left(u_{k_{n}}(x)\right)=2^{-n}$, and

$$
\frac{n}{k_{n}} \leqslant \frac{\log \mu\left(u_{m}(x)\right)}{\log \left|u_{m}(x)\right|} \leqslant \frac{n}{k_{n-1}}=\frac{n-1}{k_{n-1}} \frac{n}{n-1} .
$$

So E is regular if the sequence

$$
\left(\frac{n}{k_{n}}\right)_{n \in \mathbb{N}}
$$

:onverges (for example take $k_{n}=2 n$). We will see later that this condition is lecessary.

Theorem 1. If E in \mathscr{B} is regular, then the sequence

$$
\left(\frac{\log \omega\left(2^{n}, \mathrm{E}\right)}{\log 2^{n}}\right)_{n \in \mathbb{N}}
$$

:onverges.
Proof. For each $\varepsilon>0$, there exist μ_{ε} in $\mathscr{M}(E), a_{\varepsilon}$ in \mathbb{R}, and N_{ε} in \mathbb{N} such that:
for each 2^{n}-mesh u_{i} meeting $E\left(i=1,2, \ldots, \omega\left(2^{n}, E\right)\right)$, we have

$$
2^{-n\left(a_{\varepsilon}+\varepsilon\right)} \leqslant \mu_{\varepsilon}\left(u_{i}\right) \leqslant 2^{-n\left(a_{k}-\varepsilon\right)}
$$

If $\left\|\mu_{\varepsilon}\right\|$ denotes the total mass of μ_{ε}, we have by summing over i :
(1) $\omega\left(2^{n}, E\right) 2^{-n\left(a_{c}+\varepsilon\right)} \leqslant\left\|\mu_{\varepsilon}\right\|$;
(2) $\omega\left(2^{n}, E\right) 2^{-n\left(a_{c}-\varepsilon\right)} \geqslant \mu_{\varepsilon}(E)$.
(1) and (2) imply
(3)

$$
a_{\varepsilon}-\varepsilon \leqslant \underline{\lim } \frac{\log \omega\left(2^{n}, E\right)}{\log 2^{n}} \leqslant \overline{\lim } \frac{\log \omega\left(2^{n}, E\right)}{\log 2^{n}} \leqslant a_{\varepsilon}+\varepsilon
$$

As this is true for all $\varepsilon>0$, the theorem is proved.
We write for all E in \mathscr{B} :

$$
\begin{aligned}
& \underline{d}(E)=\underline{\lim } \frac{\log \omega\left(2^{n}, E\right)}{\log 2^{n}} \\
& \bar{d}(E)=\overline{\lim } \frac{\log \omega\left(2^{n}, E\right)}{\log 2^{n}} .
\end{aligned}
$$

$\bar{d}(E)$ is called "logarithmic density of E " [7].
We have just seen in (3) that the inequality

$$
\bar{d}(E)-\underline{d}(E) \leqslant 2 \varepsilon
$$

is true for all $\varepsilon>\frac{1}{2} r(E)$, so

$$
\bar{d}(E)-\underline{d}(E) \leqslant r(E),
$$

which will be useful for the sequel.
Our interest in \underline{d} and \bar{d} derives from

Proposition 1. \underline{d} and \bar{d} are two rarefaction indices, in the sense of $\S 1$.

Proof. The monotonicity property is easy to verify. For property (2) we can argue as follows.

Let E be in \mathscr{B}, let h be a homeomorphism verifying condition (*). For each interval $u, h(u)$ is an interval, whose extremities are the images of those of u. E being bounded, for each $\varepsilon>0$, there exists N such that if u is a 2^{n}-mesh meeting $E, n \geqslant N$, we have: $|h(u)|<2^{-n(1-\varepsilon)}$, so $h(u)$ is covered by a number of 2^{n}-meshes which is less than $2^{1+n \varepsilon}$.

Therefore $\omega\left(2^{n}, h(E)\right) \leqslant \omega\left(2^{n}, E\right) .2^{1+n e}$.

From this inequality, and the fact that ε is arbitrarily small, we deduce:

$$
\underline{d}(h(E)) \leqslant \underline{d}(E), \quad \text { and } \quad \bar{d}(h(E)) \leqslant \bar{d}(E) .
$$

For the reverse inequalities, we use the following result
Lemma 2. h satisfies $\left({ }^{*}\right)$, if, and only if, h^{-1} satisfies (${ }^{*}$).
It suffices to replace h by h^{-1} and E by $h(E)$ in the previous inequalities to reverse them. So the proposition is proved.

Proof of Lemma 2. Let $K \subset \mathbb{R}$ be a compact set. $h^{-1}(K)$ is compact and by uniform continuity on K, it follows that, for each $\varepsilon^{\prime}>0$, there is an η, such that, for all x in K and all ξ with $x+\xi \in K$ and $|\xi|<\eta$, we have

$$
\left|h^{-1}(x+\xi)-h^{-1}(x)\right|<\varepsilon^{\prime} .
$$

On the other hand by $\left({ }^{*}\right)$, for all $\varepsilon>0$, there is an $\varepsilon^{\prime}>0$, such that, for all y in $h^{-1}(K)$ and all ζ with $y+\zeta \in h^{-1}(K)$ and $|\zeta|<\varepsilon^{\prime}$, we have

$$
\left|\frac{\log |h(y+\zeta)-h(y)|}{\log |\zeta|}-1\right|<\frac{\varepsilon}{2} .
$$

If we take $y=h^{-1}(x)$ and $\zeta=h^{-1}(x+\xi)-h^{-1}(x)$, we have:

$$
\left|\frac{\log |\xi|}{\log \left|h^{-1}(x+\xi)-h^{-1}(x)\right|}-1\right|<\frac{\varepsilon}{2},
$$

so

$$
\left|\frac{\log \left|h^{-1}(x+\xi)-h^{-1}(x)\right|}{\log |\xi|}-1\right|<\varepsilon,
$$

which was to be proved.
To close this section, we define a new class of sets.
Definition 3. An E in \mathscr{B} is said to be "almost regular", if for all $\varepsilon>0$, there exists a sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{B} such that

$$
E=\bigcup_{n} E_{n}, \quad \text { and } \quad r\left(E_{n}\right) \leqslant \varepsilon, \quad \text { for all } n \text { in } \mathbb{N}
$$

it is clear that a regular set is almost regular. We give in the next chapter an example of an almost regular, but non-regular set (Example 4), and a set that is not almost egular (Example 5).
§3. Properties of rarefaction indices.
Definition 4. A rarefaction index α is said to be "regular", if

$$
\alpha-\underline{d}=O(r),
$$

where $O(r)$ is a function $\mathscr{B} \rightarrow I$ for which there exist $\varepsilon_{0}>0$ and K in \mathbb{R}^{+}, such that for all E in \mathscr{B} with $r(E) \leqslant \varepsilon_{0}$, we have

$$
|O(r)(E)| \leqslant K r(E) .
$$

We remark that any regular index can be used for \underline{d} in Definition 4. On regular sets r is zero, so regular indices take the same value on regular sets.

If α is a rarefaction index, and if $\left(E_{n}\right)_{n \in \mathbb{N}}$ is a sequence in \mathscr{B}, we have by monotonicity $\alpha\left(\bigcup_{n} \mathrm{E}_{n}\right) \geqslant \sup _{n} \alpha\left(E_{n}\right)$. Equality does not always hold, as we shall see in a later example. But there exist indices for which equality always holds, whence a new definition.

Definition 5. A rarefaction index is " σ-stable" if, for every sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ with uniformly bounded E_{n},

$$
\alpha\left(\bigcup_{n} E_{n}\right)=\sup _{n} \alpha\left(E_{n}\right) .
$$

For example, the Hausdorff dimension is σ-stable. We will prove in $\S 4$ that it is a rarefaction index.

Remark 1. Clearly there is a natural extension of σ-stable indices to unbounded subsets of $R-A$.

Remark 2. Each index α gives rise to a σ-stable index $\hat{\alpha}$, in the following manner:
Let E be in \mathscr{B}. To each decomposition of E into a countable infinity of sets E_{n} such that $E=\bigcup_{n} E_{n}$, and $E_{n} \in \mathscr{B}$, for all $n \in \mathbb{N}$, we associate the number $\sup _{n} \alpha\left(E_{n}\right)$. $\hat{\alpha}(E)$ is defined as the infimum of the set $\left\{\sup _{n} \alpha\left(E_{n}\right)\right\}$, over all decompositions of E.

Proposition 2. If α is a rarefaction index, $\hat{\alpha}$ is a σ-stable rarefaction index. If α is regular, so is $\hat{\alpha}$.

Proof. The properties (1) $\hat{\alpha}$ is monotonic, (2) $\hat{\alpha}(E)=\hat{\alpha}(h(E))$ if h has property $\left({ }^{*}\right)$, are immediate.
(3) $\hat{\alpha}$ is σ-stable. Let $\varepsilon>0$, and $E=\bigcup_{n} E_{n}$. For each n, there exists a sequence $\left(E_{n, k}\right)_{k}$ such that

$$
E=\bigcup_{k} E_{n, k}, \quad \text { and } \quad \sup _{k} \alpha\left(E_{n, k}\right)-\varepsilon \leqslant \hat{\alpha}\left(E_{n}\right) .
$$

As

$$
\hat{\alpha}(E) \leqslant \sup _{n, k} \alpha\left(E_{n, k}\right),
$$

and ε is arbitrarily small, the inequality

$$
\hat{\alpha}(E) \leqslant \sup _{n} \alpha\left(E_{n}\right)
$$

follows. The reverse inequality is obvious.
(4) $\hat{\alpha}$ is regular, if α is. There is an $\varepsilon_{0}>0$, and a $K>0$, such that for all E with $r(E)<\varepsilon_{0}$, and for all ε in $\left.] \frac{1}{2} r(E), \frac{1}{2} \varepsilon_{0}\right]$, there exist μ in $\mathscr{M}(E), a$ in \mathbb{R} and N in \mathbb{N} with the property that for all $n \geqslant N$ and for all x in E

$$
\left|\frac{\log \mu\left(u_{n}(x)\right)}{\log 2^{-n}}-a\right| \leqslant \varepsilon \quad \text { and } \quad|\alpha(E)-a| \leqslant K \varepsilon
$$

We consider such a set E, and $\left(E_{n}\right)$ a sequence in \mathscr{B} such that $E=\bigcup_{n} E_{n}$. There is an $n_{0} \in \mathbb{N}$ such that $\mu\left(E_{n_{0}}\right)>0$, so μ is in $\mathscr{M}\left(E_{n_{0}}\right)$, and therefore $r\left(E_{n_{0}}\right) \leqslant 2 \varepsilon$, and $\left|\alpha\left(E_{n_{0}}\right)-a\right| \leqslant K \varepsilon$. So $\alpha(E)-\alpha\left(E_{n_{0}}\right) \leqslant 2 K \varepsilon$, which shows that $\alpha(E)-\hat{\alpha}(E) \leqslant K r(E)$, and concludes the proof.

We have seen that regular rarefaction indices coincide on regular sets; this follows directly from the definitions. If we add the assumption of σ-stability, we have

Theorem 2. Rarefaction indices which are both regular and σ-stable take the same value on each almost regular set.

Proof. We shall see that if E is almost regular and α is regular and σ-stable, then

$$
\alpha=\underline{\hat{d}}
$$

For each $\varepsilon>0$ there exists a sequence $\left(E_{n}\right)$ in \mathscr{B} such that $E=\bigcup E_{n}$, and $r\left(E_{n}\right) \leqslant \varepsilon$, for all n.

As α and $\underline{\hat{d}}$ are regular, there exist $\varepsilon_{0}>0$ and K in \mathbb{R}^{+}such that, when $\varepsilon<\varepsilon_{0}$ we have, for all n,

$$
\left|\alpha\left(E_{n}\right)-\underline{d}\left(E_{n}\right)\right| \leqslant K r\left(E_{n}\right), \quad\left|\underline{d}\left(E_{n}\right)-\underline{d}\left(E_{n}\right)\right| \leqslant K r\left(E_{n}\right) .
$$

So, for such ε, and, for all n in $\mathbb{N},\left|\alpha\left(E_{n}\right)-\underline{\hat{d}}\left(E_{n}\right)\right| \leqslant 2 K \varepsilon$. $\underline{\hat{d}}$ and α are σ-stable, whence $|\alpha(E)-\underline{\hat{d}}(E)| \leqslant 2 K \varepsilon$, for all $\varepsilon>0$, which proves the theorem.

Example 4. The set $E=\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\}$ is countable. Each subset consisting of a single point $\left\{\frac{1}{k}\right\}$ is regular, and $d\left(\left\{\frac{1}{k}\right\}\right)=0$, so $\hat{d}(E)=0 . E$ is almost regular.

On the other hand $\underline{d}(E)=\frac{1}{2}$, see [7]. So E is non-regular.
Almost regular sets intervene in the following result.

Proposition 3. Let α be a regular and σ-stable, and let E in \mathscr{B} be such that there exist μ in $\mathscr{M}(E)$ and a in \mathbb{R} with the following property. For all x in E,

$$
\lim _{n} \frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}=a
$$

Then $a=\alpha(E)$.

Proof. In fact such a set is almost regular: it suffices to set, for each $\varepsilon>0$,

$$
E_{k}(\varepsilon)=\left\{\left.x \in E|n \geqslant k \Rightarrow| \frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}-a \right\rvert\, \leqslant \varepsilon\right\}
$$

Then $E_{1}(\varepsilon) \subset \ldots \subset E_{k}(\varepsilon)$, and $E=\bigcup_{k} E_{k}(\varepsilon)$. As $\mu(E)>0$, there exists K such that $\mu\left(E_{k}(\varepsilon)\right)>0$ for $k \geqslant K$, so $\mu \in \mathscr{M}\left(E_{k}(\varepsilon)\right)$. Therefore $r\left(E_{k}(\varepsilon)\right) \leqslant 2 \varepsilon$, and E is almost regular.

By Theorem 2, we deduce that regular and σ-stable indices take a common value on E. Finally, this value is precisely a : we have $\left|d\left(E_{k}(\varepsilon)\right)-a\right| \leqslant \varepsilon$ for $k \geqslant K$, and by regularity of α there exist $\varepsilon_{0}>0$ and L in \mathbb{R}^{+}such that, when $\varepsilon<\varepsilon_{0}$,

$$
\left|\underline{d}\left(E_{k}(\varepsilon)\right)-\alpha\left(E_{k}(\varepsilon)\right)\right|<L \varepsilon
$$

so $\left|\alpha\left(E_{k}(\varepsilon)\right)-a\right|<(L+1) \varepsilon$. As α is σ-stable,

$$
|\alpha(E)-a| \leqslant(L+1) \varepsilon, \quad \text { for each } \varepsilon>0
$$

Example 5 of a set that is not almost regular.
Let E be a symmetrical perfect set as in Example 3, such that the sequence $\left(\frac{n}{k_{n}}\right)_{n \in \mathbb{N}}$ is not convergent. We easily see that

$$
\underline{\hat{d}}(E) \leqslant \underline{d}(E)=\underline{\lim } \frac{n}{k_{n}}, \quad \text { and } \quad \hat{\bar{d}}(E) \leqslant \bar{d}(E)=\varlimsup \frac{n}{k_{n}} .
$$

We will prove that $\hat{\bar{d}}(E) \geqslant \bar{d}(E)$, which implies that $\hat{d}(E) \neq \hat{\vec{d}}(E)$, so that E is not almost regular, by Theorem 2.

Let $\left(E_{n}\right)$ be a sequence of $\mathscr{B}, E=\bigcup_{n} E_{n}$. There exists n_{0} such that $\mu\left(E_{n_{0}}\right)>0$. Now, for all $\varepsilon>0$ and for all N in \mathbb{N}, there is an $n \geqslant N$, such that, for all x in $E_{n o}$,

$$
\frac{\log \mu\left(u_{k_{n}}(x)\right)}{\log \left|u_{k_{n}}(x)\right|} \geqslant \bar{d}(E)-\varepsilon .
$$

Hence

$$
\mu\left(u_{k_{n}}(x)\right) \leqslant 2^{-k_{n}(d(E)-\varepsilon)}
$$

By summing on all $2^{k_{n}}$-meshes meeting $E_{n_{0}}$ we obtain

$$
\omega\left(2^{k_{n}}, E_{n_{0}}\right) 2^{-k_{n}(d(E)-\varepsilon)} \geqslant \mu\left(E_{n_{0}}\right)>0
$$

So

$$
\bar{d}\left(E_{n_{0}}\right) \geqslant \overline{\lim } \frac{\log \omega\left(2^{k_{n}}, E_{n_{0}}\right)}{\log 2^{k_{n}}} \geqslant \bar{d}(E)-\varepsilon,
$$

for all $\varepsilon>0$. So $\hat{\vec{d}}(E) \geqslant \bar{d}(E)$.
§4. Hausdorff dimension. The examples of rarefaction indices that we gave in the preceding chapters are $\underline{d}, \bar{d}, \underline{d}, \hat{\bar{d}}$. Another example is the Hausdorff dimension,
denoted dim, which is also a regular rarefaction index. Before proving this, we give some notation.

For each $\rho>0$, let $\Omega(E, \rho)$ be the set of all countable coverings $\mathscr{R}=\left\{u_{i}\right\}$ of E, where each u_{i} is a mesh, and $\left|u_{i}\right| \leqslant \rho$.

Recall that for each $a \in I$ the Hausdorff measure of E is

$$
a-m(E)=\lim _{\rho \rightarrow 0} \inf \left\{\sum\left|u_{i}\right|^{a} \mid\left\{u_{i}\right\} \in \Omega(E, \rho)\right\}
$$

and

$$
\operatorname{dim} E=\inf \{a \in I \mid a-m(E)=0\}=\sup \{a \in I \mid a-m(E)=+\infty\} .
$$

Theorem 3. The function $\operatorname{dim}: \mathscr{B} \rightarrow I$ is a σ-stable and regular rarefaction index.
Proof. (1) The properties of monotonicity, and σ-stabitity, are well known.
(2) Let h be an homeomorphism verifying (${ }^{*}$), with E in \mathscr{B} and a in I. For each $\varepsilon>0$ there exists $\rho>0$ such that for each mesh u meeting E, with $|u|<\rho$ we have $|h(u)|<|u|^{1-\varepsilon}$. If n is the integer such that

$$
2^{-n-1}<|u|^{1-\varepsilon} \leqslant 2^{-n}
$$

the interval $h(u)$ is covered by at most two 2^{n}-meshes, say v_{1} and v_{2}, with $\left|v_{i}\right| \leqslant 2|u|^{1-\varepsilon}$, so that

$$
\left|v_{1}\right|^{a}+\left|v_{2}\right|^{a} \leqslant 2^{1+a}|u|^{a(1-\varepsilon)} .
$$

Let \mathscr{R} be in $\Omega(E, \rho)$, then there exists \mathscr{R}^{\prime} in $\Omega\left(h(E), 2 \rho^{1-\varepsilon}\right)$, such that

$$
\sum_{v \in \mathscr{K}}|v|^{a} \leqslant 2^{1+a} \sum_{u \in \mathscr{H}}|u|^{\mid a(1-\varepsilon)}
$$

As ρ is arbitrarily small, the inequality

$$
a-m(h(E)) \leqslant 2^{1+a} \cdot a(1-\varepsilon)-m(E)
$$

follows, and then $\operatorname{dim} h(E) \leqslant(1 /(1-\varepsilon)) \operatorname{dim} E$, for each $\varepsilon>0$. Hence $\operatorname{dim} h(E) \leqslant \operatorname{dim} E$.

The reverse inequality comes from the fact that h^{-1} satisfies $\left(^{*}\right)$.
(3) dim is regular. It suffices to prove the inequality

$$
|\operatorname{dim} E-\underline{d}(E)| \leqslant r(E)
$$

for each E in \mathscr{B}. Let E be in \mathscr{B} and let $\varepsilon>\frac{1}{2} r(E)$. There exist μ in $\mathscr{M}(E), a$ in \mathbb{R} and N in \mathbb{N} such that, for all $n \geqslant N$ and all x in E,

$$
\left|u_{n}(x)\right|^{a+\varepsilon} \leqslant \mu\left(u_{n}(x)\right) \leqslant\left|u_{n}(x)\right|^{a-\varepsilon}
$$

Let $\rho<2^{-N}$, and R be in $\Omega(E, \rho)$.
Let $R=\left\{u_{i}\right\}$. Without loss of generality, we may assume that the meshes u_{i} are
disjoint, and that each of them contains a point of E, and thus

$$
\left|u_{i}\right|^{a+\varepsilon} \leqslant \mu\left(u_{i}\right) \leqslant\left|u_{i}\right|^{a-\varepsilon} .
$$

Summation on i yields

$$
\sum\left|u_{i}\right|^{a+\varepsilon} \leqslant\|\mu\|, \quad \sum\left|u_{i}\right|^{a-\varepsilon} \geqslant \mu(E) .
$$

This is true for each $R \in \Omega(E, \rho)$, and each $\rho>0$, so

$$
(a+\varepsilon)-m(E) \leqslant\|\mu\|, \quad(a-\varepsilon)-m(E) \geqslant \mu(E) .
$$

Therefore $a-\varepsilon \leqslant \operatorname{dim} E \leqslant a+\varepsilon$.

The same inequalities are satisfied by $\underline{d}(E)$ (Th. 1, inequalities (3)), so our assertion is proved.

Now we can say that dim takes the same values as \underline{d} on regular sets, and as $\underline{\hat{d}}$ on almost regular sets.

Thus Hausdorff dimension verifies the assumption of Prop. 3. But we can prove a stronger result which seems particular to this index.

Proposition 4. Let E in \mathscr{B} be such that there exist μ in $\mathscr{M}(E)$ and a in \mathbb{R} satisfying

$$
\varliminf_{n} \frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|}=a,
$$

for all x in E. Then $a=\operatorname{dim} E$.
Proof. This follows from Theorems 2.1 and 2.2 of Billingsley [1]. We can also apply the results of Rogers and Taylor [5] on Hausdorff measure, to obtain a different proof, as follows.
(1) Let $b>a$. We have, for all x in E,

$$
\frac{\lim }{n} \frac{\log \mu\left(u_{n}(x)\right)}{\log \left|u_{n}(x)\right|^{b}}<1,
$$

hence

$$
\varlimsup_{n} \frac{\mu\left(u_{n}(x)\right)}{\left|u_{n}(x)\right|^{b}}=+\infty .
$$

If we put $h(t)=t^{b}$, this last value is called by Rogers and Taylor upper " h-density" relative to the sequence of mesh nets, denoted $\mathscr{M} \bar{D}_{h} \mu(x)$.

So for each k in $\mathbb{N}, E \subset E_{k}^{*}=\left\{x \mid \mathcal{M}_{\bar{D}} \mu(x)>k\right\}$. There exist real λ_{1} such that

$$
b-m\left(E_{k}^{*}\right) \leqslant \frac{\lambda_{1}\|\mu\|}{k}
$$

([5], Lemma 2A). So $b-m(E)=0$, and $\operatorname{dim} E \leqslant b$, for each $b>a$. Hence $\operatorname{dim} E \leqslant a$.
(2) Let $b<a$. We now have, if $h(t)=t^{b}$, then $\mathscr{M} \bar{D}_{h} \mu(x)=0$, so $E \cap E_{k}^{*}=0$. By Lemma 3 of [5], we deduce that

$$
b-m(E) \geqslant \frac{\mu(E)}{k \lambda_{2}},
$$

for some constant λ_{2}. So $b-m(E)>0: \operatorname{dim} E \geqslant a$.

References

1. P. Billingsley. "Hausdorff dimension in probability theory II", Illinois J. Math., 5 (1961), 291-298.
2. P. Billingsley. Ergodic theory and information (J. Wiley, 1965).
3. F. Hausdorff. "Dimension und äusseres Mass", Math. Ann., vol. 79 (1919), 157-179.
4. J.-P. Kahane and R. Salem. Ensembles parfaits et séries trigonométriques (Hermann, Paris, 1963).
5. C. A. Rogers and S. J. Taylor. "Functions continuous and singular with respect to a Hausdorff measure", Mathematika, 8 (1961), 1-31.
6. C. A. Rogers. Hausdorff measures (Cambridge University Press, 1970).
7. C. Tricot. Sur la notion de densité (Cahiers du Département d'économétrie, Genève, 1973).

Université de Genève,
2-4, rue du Lièvre,
Case postale 124 ,
1211 Genève 24 ,
Switzerland.
28A75: MEASURE AND INTEGRATION; Other geometric measure theory.

Received on the 1st of April, 1979.

