
RAREFACTION INDICES

CLAUDE TRICOT Jr.

§1. Introduction. There are at least two indices used to measure the size of
bounded sets of W of zero measure—Hausdorff dimension (see [4] for a definition),
and the density index [7].

The object of this paper is to consider the relation between these two indices and
to set up a general theory of such parameters.

It is interesting to note that they coincide on some more or less "regular" sets; for
instance in U, on the triadic Cantor set, or on any symmetric perfect set with a
constant ratio ([4], [7]). To explain further the notion of regularity we first define an
"irregularity coefficient" of a set, and then look for rarefaction indices which coincide
on so-called regular sets, i.e. those whose coefficient is zero.

By definition, a "rarefaction index" (a term due to E. Borel) is a map a from the
set of bounded subsets of W, into U, with the following two properties:

(1) £ c £' implies a(£) < a(£') (monotonicity);

(2) a(£) = a(/i(£)) for any homeomorphism h: W -> W with the following
property:

(*) On each compact set K <= W, the ratio

log \i\

converges towards 1 uniformly when the norm of the vector £ converges
towards 0. (In particular, this condition is satisfied if h is a similarity, or a
diffeomorphism.)

For the sake of simplicity, we consider in this paper the bounded borelian subsets
of U; the same methods easily generalize to W. We use a net of 2"-meshes, a classical
method ([1], [2], [5], [7]) for constructing set coverings. By definition, a 2"-mesh is
an interval

keZ.

If x e i , neN, x belongs to one 2"-mesh, denoted un(x).
It is known [2] that calculating the Hausdorff dimension using mesh coverings

gives the same result as if we use arbitrary intervals. The same holds for the density
index [7]; we can take either n-meshes or 2"-meshes.

The only disadvantage of this procedure is the following one: during a calculation
or in the statement of a result, some irregularities may appear at the endpoints of
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RAREFACTION INDICES 47

meshes, i.e. at points of

A = \jn ne

A is countable and dense in U. Therefore we will prefer to work in the set U-A, with
induced topology, thus avoiding minor difficulties due to A. We remark that, if
E c R, the Hausdorff dimension of E is equal to that of E — A.

Hence let 3b be the set of bounded non-empty borelian subsets of U — A.
Let Ji be the set of finite c-additive Borel measures [6].
In §2 we give, with the help of measures of M, the definition of the irregularity

coefficient r(E) of a set E in 38, and that of two important families of sets: "regular"
sets, and "almost regular" sets.

In §3 we define the "regular" rarefaction indices, which take the same values on
regular sets, and "c-stable" ones; the indices which are both regular and a-stable take
the same value on almost regular sets.

An important example of a regular and <r-stable index is the Hausdorff
dimension; one way of finding dim £ can be stated as follows:

If E in 3b, ii in M and a in R are such that fi(E) > 0, and that for all x in E,

lim^rf a,
log |MB(X)|

then a = dim E. (\u\ denotes the length of interval u; here \un(x)\ = 2~n.)

We show in §4 that this result, due to Billingsley, can be proved faster than in [1]
with the help of results on Hausdorff measures due to Rogers and Taylor [5].

§2. The irregularity coefficient.
Notation. For every E in 3b, we denote by Jt{E) the set of all measure /i in J{

such that

(a) E is included in the support of \i,

(b) fi(E) > 0.

Property (a) is equivalent to: (VxXVn/x e E & n e N => n(un(xj) > OJ.

If E is in 3b then E <= [a, b], and, if we let w(2", E) denote the number of
2"-meshes which meet E, then

co(2", E) < (b-a)2" + 2.

LEMMA 1. For each E in 3b, for each c > 1, there exists a measure \i in Jt{E\ and
N in N, such that for all x in E, and for all n ^ N,

log /i(un(x))
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4» C. TRICOT

Proof. It suffices to prove this lemma in the case where £ is included in a
1-mesh.

For each n in N, let Fn be a set of a>(2", £) points of £ , so that each 2"-mesh
meeting £ contains one point of Fn.

Let F = \JnFn. To each y of F, let us associate N(y), the smallest integer n such
that y e Fn, and define a measure fx, for all y in £ , by

For each «, there are at most to(2", £) points of F of measure 2~cn, so

and

: £ co(2", £)2"c" < + 0 0 ,

Supp n = F = E,
therefore n e Jt{E).

Let N be the smallest integer such that 1 - c < ° ^

Let x be in £ and let n ^ N, then «n(x) contains a point y of £„, such that
«, so

log 2 - ^ log 2 -

DEFINITION 1. We call "irregularity coefficient" the map r: Si -» / = [0,1], such
that for each E in 8&:

r(£) = 2inf^e > 0\there exist fie in Jt(F), at in U and Ne in N such that for all

log &(»»n ^ ME, for all x in E we have
log k(x)| -a,

This map has its value in / , because by Lemma 1, for each Ein@, for each c > 1,
we can construct a measure \i in Jt{E) such that for all n in N, and for all x in £:

log fi(un(xj) _ 4

log k(x)|

DEFINITION 2. £ in $? is said to fte "regular" ifr(E) = 0.

We will see later (Theorem 1) that for regular sets, as can be taken to be constant
in Definition 1.

Let us give some examples of regular sets:
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RAREFACTION INDICES 49

Example 1. Let E - {x} with xeU-A.
With any measure fi on £ , and a = 0, we obtain

lim
log //(«„(*))

— a = 0,
log |MB(X)|

;o r(£) = 0. The same result holds for all finite sets.

Example 2. Let E = I —A: take the Lebesgue measure, and a = 1. E is also a
egular set.

Example 3. Let (fcn)n 6 N be a sequence of M, such that

We can define a symmetrical perfect set E in / — A (see [4]) such that

co(2\ £) = 2",

ind a measure fx on £ such that, for all x in £,

Ai(iijx)) = 2"".

For each m in N with m > k2, there exists n in M such that

fen_! < m ^ kn,

io for all x in £ we have n(um(x)) = fi(ukn(x)) = 2~", and

n logju(uj(x)) « n - 1 n

kn log |um(x)| &„_! /cn_xn —1

So £ is regular if the sequence

:onverges (for example take /cn = In). We will see later that this condition is
lecessary.

THEOREM 1. If E in 0b is regular, then the sequence

'logcu(2\E)s

log 2"
converges.

Proof. For each e > 0, there exist ne in Jt(E), ae'm U, and Ne in N such that:
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50 C. TRICOT

for each 2"-mesh ut meeting E (i — 1,2,..., co{2", E)), we have

If H/iJI denotes the total mass of fie, we have by summing over i:
(1)

(2)

(1) and (2) imply

, log co(2", £) — l o g co(2",

(3) ^-S<lm-y2ri<lm,-O_

As this is true for all e > 0, the theorem is proved.
We write for all E in ®:

d{E) is called "logarithmic density of £" [7].
We have just seen in (3) that the inequality

d(E)-d(E) <

is true for all e > %r(E), so

which will be useful for the sequel.

Our interest in d and d derives from

PROPOSITION 1. d and d are two rarefaction indices, in the sense o/§l.

Proof. The monotonicity property is easy to verify. For property (2) we can
argue as follows.

Let E be in Si, let h be a homeomorphism verifying condition (*). For each
interval u, h(u) is an interval, whose extremities are the images of those of u. E being
bounded, for each E > 0, there exists JV such that if u is a 2"-mesh meeting E, n ^ N,
we have: \h(u)\ < 2~"(1~£), so h(u) is covered by a number of 2"-meshes which is less
than 21+"£.

Therefore to(2", h(E)) ^ (0(2", E) . 2l+m .
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RAREFACTION INDICES 51

From this inequality, and the fact that e is arbitrarily small, we deduce:

d(h(E)) ^ d(E), and d(h(E)) < d(E).

For the reverse inequalities, we use the following result

LEMMA 2. h satisfies (*), if, and only if, h'1 satisfies (*).

It suffices to replace h by h~l and E by h(E) in the previous inequalities to reverse
them. So the proposition is proved.

Proof of Lemma 2. Let K c R b e a compact set. h~l(K) is compact and by
uniform continuity on K, it follows that, for each e' > 0, there, is an n, such that, for
ill x in K and all £ with x + £eK and |£| < n, we have

On the other hand by (*), for all e > 0, there is an e' > 0, such that, for all y in
h~\K) and all £ with y + t; e h'^K) and |£| < e', we have

If we take y = h~\x) and £ =

so

Iog|fcc+0-Ky)l
log |CI

d C = h l(x + £)-h 1(x)

log If I
log \h ~ i(x + f) — h ~ i(x)\

log \h~1(x + £) — h~1(x)\

log If I

e
2'

we have

l

- 1

e

" 2 '

< e,

was to be proved.
To close this section, we define a new class of sets.

DEFINITION 3. An E in 8$ is said to be "almost regular", if for all e > 0, there
zxists a sequence (£„)„ e N in $ such that

E = \jEn, and r(En) ^ £, for all n in M .
n

t is clear that a regular set is almost regular. We give in the next chapter an example
jf an almost regular, but non-regular set (Example 4), and a set that is not almost
•egular (Example 5).

§3. Properties of rarefaction indices.

DEFINITION 4. A rarefaction index a. is said to be "regular", if

a-d = O(r),
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52 C. TRICOT

where 0(r) is a function 0b -* I for which there exist e0 > 0 and K inU+, such that for
all E in 0b with r(E) ^ e0, we have

|O(r)(£)| ^ Kr(E).

We remark that any regular index can be used for d in Definition 4. On regular
sets r is zero, so regular indices take the same value on regular sets.

If a is a rarefaction index, and if (£„)„<= N is a sequence in 0b, we have by
monotonicity <x((JnEn) > supn a(£n). Equality does not always hold, as we shall see in
a later example. But there exist indices for which equality always holds, whence a
new definition.

DEFINITION 5. A rarefaction index is "a-stable" if, for every sequence (En)neN with
uniformly bounded £„,

a ( ( j£ j = supa(£n).

For example, the Hausdorff dimension is a-stable. We will prove in §4 that it is a
rarefaction index.

Remark 1. Clearly there is a natural extension of <x-stable indices to unbounded
subsets of R — A.

Remark 2. Each index a gives rise to a cr-stable index a, in the following manner:

Let £ be in 3&. To each decomposition of £ into a countable infinity of sets £„
such that £ = \JnEn, and £„ e ^ , for all n e N, we associate the number supna(£J.
a(£) is defined as the infimum of the set {supna(£n)}, over all decompositions of £.

PROPOSITION 2. Ifcc is a rarefaction index, a. is a a-stable rarefaction index. If a is
regular, so is a.

Proof. The properties (1) a is monotonic, (2) a(£) = a(/i(£)) if h has property (*),
are immediate.

(3) a is c-stable. Let e > 0, and £ = \JnEn. For each n, there exists a sequence
(£„ k)k such that

E = U E-,k, and sup a(EB>Jk)-e s£ <£(£„).
k k

As
a(£) ^ sup a(£Bit),

and e is arbitrarily small, the inequality

a(£) < sup a(£n)
n

follows. The reverse inequality is obvious.
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RAREFACTION INDICES 53

(4) a is regular, if a is. There is an e0 > 0, and a K > 0, such that for all £ with
r(E) < e0, and for all e in ]ir(£), JBQ], there exist \i in M{E), a in IR and JV in N with
the property that for all n ^ JV and for all x in £

and
log 2""

We consider such a set £ , and (£„) a sequence in 0& such that £ = \JnEn. There is
an n0 € N such that /*(£„„) > 0, so \i is in ^ ( £ J , and therefore r(£,J ^ 2e, and
| a ( £ J - a | < KB. SO a ( £ ) - a ( £ J < 2KB, which shows that <x(£)-a(£) < *>(£), and
concludes the proof.

We have seen that regular rarefaction indices coincide on regular sets; this follows
directly from the definitions. If we add the assumption of c-Stability, we have

THEOREM 2. Rarefaction indices which are both regular and a-stable take the same
value on each almost regular set.

Proof. We shall see that if £ is almost regular and a is regular and a-stable, then

For each £ > 0 there exists a sequence (£„) in ^ such that E = (J £„, and
r(£J ^ e, for all n.

As a and d are regular, there exist £0 > 0 and K in R+ such that, when £ < £0 we
have, for all n,

|a(£B) - d(£n)| < K r(En), |£(£„) - d(£n)| ^ K r(En).

So, for such £, and, for all n in N, |a(£n)-d(£B)| < 2KB. 3 and a are a-stable, whence
|a(£)-<?(£)| < 2KB, for all £ > 0, which proves the theorem.

Example 4. The set £ = < - k 6 ^ i is countable. Each subset consisting of a

(A J
single point <-> is regular, and dl <-> I = 0, so d\E) = 0. £ is almost regular.

ir) \ (A J /
On the other hand d(E) = \, see [7]. So £ is non-regular.
Almost regular sets intervene in the following result.

PROPOSITION 3. Let a be a regular and a-stable, and let E in 3S be such that there
exist fi in M{E) and a in U with the following property. For all x in E,

„ log |MB(X)|

Then a = <x(£).
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54 C. TRICOT

Proof. In fact such a set is almost regular: it suffices to set, for each £ > 0,

. r. i ^ I. . lQ8 M"«M)
Ek(e) =

log \uj[x)\
— a

Then ^(fi) c ... c £fc(£), and £ = \JkEk(e). As /*(£) > 0, there exists K such that
n(Ek(ej) > 0 for k ^ K, so tie J?(Ek{e)). Therefore r(Ek(s)) s£ 2E, and £ is almost
regular.

By Theorem 2, we deduce that regular and ff-stable indices take a common value
on £. Finally, this value is precisely a: we have \d(Ek{e)) — a\ < £ for k > K, and by
regularity of a there exist e0 > 0 and L in R+ such that, when s < e0,

\d(Ek(e))-x(Ek(e))\<Le;

so |oe(£t(E)) — a| < ( L + 1 ) E . As a is cr-stable,

|a(£)-a| < (L+1)£ , for each £ > 0 .

Example 5 of a set that is not almost regular.

Let £ be a symmetrical perfect set as in Example 3, such that the sequence
fn\
I — I is not convergent. We easily see that
\knjn e N

; d(E) = Hm ^-, and d\E) ^ d(E) = lim ^- .

We will prove that l(£) ^ <?(£), which implies that |(£) =f l(£), so that £ is not
almost regular, by Theorem 2.

Let (£„) be a sequence of ^ , £ = ljn£n. There exists n0 such that /i(£no) > 0.
Now, for all e > 0 and for all N in N, there is an n ^ N, such that, for all x in £^,

log MM*.(*))

io?Kwr
Hence

By summing on all 2k"-meshes meeting £no we obtain

<»(2\ £no)2-^(£»-E» ^ /i(£J > 0 .
So

for all e > 0. So

§4. Hausdorff dimension. The examples of rarefaction indices that we gave in the;
preceding chapters are d, d, <?, d. Another example is the Hausdorff dimension,
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RAREFACTION INDICES 55

denoted dim, which is also a regular rarefaction index. Before proving this, we give
some notation.

For each p > 0, let il(E, p) be the set of all countable coverings 0t = {uj of E,
where each ut is a mesh, and |u;| ^ p.

Recall that for each a e I the Hausdorff measure of E is

a-m(E) = lim inf {£ |u,|"| {«,} e Q(£, p)},

and
dim E = inf {a e I\a-m(E) = 0} = sup {a e l\a-m(E) = + 00} .

THEOREM 3. The function dim : ^ —• / is a o-stable and regular rarefaction index.

Proof (1) The properties of monotonicity, and a-stabrh'ty, are well known.
(2) Let h be an homeomorphism verifying (*), with E in 36 and a in I. For each

e > 0 there exists p > 0 such that for each mesh u meeting E, with \u\ < p we have
\h(u)\ < |M|'-E. If n is the integer such that

2""" 1 < |u|'-£ < 2""

the interval h(u) is covered by at most two 2"-meshes, say vx and v2, with
|uj ^ 2|u|'-£, so that

Let ^? be in Q(£, />), then there exists @' in £2(/J(£),
 2^'~EX s u c h that

X M" ^ 2 1 + 0 X Mo(1~£)-

As p is arbitrarily small, the inequality

a-m(h{E)) ^ 21 +f l. a(l -e)-m(£)

follows, and then dim/i(£) < (1/(1 —e)) dim £, for each e > 0. Hence
dim /t(£) < dim £.

The reverse inequality comes from the fact that h~l satisfies (*).

(3) dim is regular. It suffices to prove the inequality

r{E),

for each £ in ^ . Let £ be in ^ and let £ > ^r(£). There exist /J. in Jt(E\ a in U and AT
in 1̂1 such that, for all n ^ iV and all x in £,

Let p < 2~N, and R be in Q(£, p).

Let R = {u,}. Without loss of generality, we may assume that the meshes u, are
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56 C. TRICOT

disjoint, and that each of them contains a point of E, and thus

Summation on i yields

i i«r

Wo + E < M

h ' < I N I ,

«l) < 1"

This is true for each R e Q(E, p), and each p > 0, so

(a + e)-m(£) ^ ||/*||, ( a - e ) -

Therefore a—e ^ d im£ ^ a + e.

The same inequalities are satisfied by d(E) (Th. 1, inequalities (3)), so our assertion is
proved.

Now we can say that dim takes the same values as d on regular sets, and as 3 on
almost regular sets.

Thus Hausdorff dimension verifies the assumption of Prop. 3. But we can prove a
stronger result which seems particular to this index.

PROPOSITION 4. Let E in 38 be such that there exist \i in J({E) and a in U
satisfying

/or a// x in E. Then a = dim E.

Proof This follows from Theorems 2.1 and 2.2 of Billingsley [1]. We can also
apply the results of Rogers and Taylor [5] on Hausdorff measure, to obtain a
different proof, as follows.

(1) Let b > a. We have, for all x in £ ,

log fi(un(x))

hence

If we put h(i) = tb, this last value is called by Rogers and Taylor upper "^-density"
relative to the sequence of mesh nets, denoted JtDhii(x).

So for each k in N, E <= £jf = {x\JtDhfi(x) > k}. There exist real At such that
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RAREFACTION INDICES 57

([5], Lemma 2A). So b-m(E) = 0, and dim E J% b, for each b > a. Hence dim E ^ a.

(2) Let b < a. We now have, if h(t) = tb, then JtDhn(x) = 0, so E n £? = 0. By
Lemma 3 of [5], we deduce that

for some constant X2. So b-m(E) > 0 : dim E ^ a.
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