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SUMMARY

New methods and theory have recently been developed to nonparametrically estimate cumu-
lative incidence functions for competing risks survival data subject to current status censoring.
In particular, the limiting distribution of the nonparametric maximum likelihood estimator and
a simplified naive estimator have been established under certain smoothness conditions. In this
paper, we establish the large-sample behaviour of these estimators in two additional models,
namely when the observation time distribution has discrete support and when the observation
times are grouped. These asymptotic results are applied to the construction of confidence inter-
vals in the three different models. The methods are illustrated on two datasets regarding the
cumulative incidence of different types of menopause from a cross-sectional sample of women
in the United States and subtype-specific HIV infection from a sero-prevalence study in injecting
drug users in Thailand.

Some key words: Competing risk; Confidence interval; Current status data; Interval censoring; Nonparametric maxi-
mum likelihood estimator; Survival analysis.

1. INTRODUCTION

Current status data with competing risks arise in cross-sectional studies that assess the current
status of individuals in the sample with respect to an event that can be caused by several
mechanisms. An example is Cycle I of the Health Examination Survey in the United States
(MacMahon & Worcestor, 1966). This study recorded the age and menopausal status of the
female participants, where menopausal status could be pre-menopausal, post-menopausal due
to an operation or post-menopausal due to natural causes. Based on these data, the cumula-
tive incidence of natural and operative menopause can be estimated as a function of age. A
second example is the Bangkok Metropolitan Administration injecting drug users cohort study
(Kitayaporn et al., 1998; Vanichseni et al., 2001). This study recorded the age and HIV status
of injecting drug users, where HIV status could be HIV negative, HIV positive with subtype B,
HIV positive with subtype E or HIV positive with some other subtype. Based on these data, the
subtype-specific cumulative incidence of HIV can be estimated as a function of age.
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New methods and theory have recently been developed to nonparametrically estimate
cumulative incidence functions based on current status data with competing risks. Hudgens et al.
(2001) and Jewell et al. (2003) derived and studied the nonparametric maximum likelihood
approach and also introduced several other estimators, including the so-called naive estimator
of Jewell et al. (2003). Groeneboom et al. (2008b,c) and M.H. Maathuis, in an unpublished 2006
University of Washington PhD thesis, available at http://stat.ethz.ch/∼maathuis/papers, derived
the large-sample behaviour of the maximum likelihood estimator and the naive estimator in a
smooth model that imposes certain smoothness conditions on the cumulative incidence func-
tions and the observation time distribution. In this model, the local rate of convergence of
the maximum likelihood estimator is n1/3 (Groeneboom et al., 2008b, Theorem 4.17), slower
than the usual n1/2 rate. Moreover, its limiting distribution is nonstandard and involves a self-
induced system of slopes of convex minorants of Brownian motion processes plus parabolic drifts
(Groeneboom et al., 2008c, Theorems 1.7 and 1.8). The naive estimator has the same local rate of
convergence as the maximum likelihood estimator, but its limiting distribution is simpler, since
it does not involve a self-induced system (Groeneboom et al., 2008c, Theorem 1.6).

In practice, recorded observation times are often discrete, making the smooth model unsuit-
able. We therefore study the large sample behaviour of the maximum likelihood estimator and
the naive estimator in two additional models: a discrete model in which the observation time dis-
tribution has discrete support, and a grouped model in which the observation times are assumed
to be rounded in the recording process, yielding grouped observation times.

We show that the large sample behaviour of the estimators in the discrete model is fundamen-
tally different from that in the smooth model: the maximum likelihood estimator and the naive
estimator converge locally at rate n1/2, and their limiting distributions are identical and normal.
These results are related to the work of Yu et al. (1998), who studied the asymptotic behaviour
of the maximum likelihood estimator for current status data with discrete observation times in
the absence of competing risks.

The grouped model is related to the work of Woodroofe & Zhang (1999) and Zhang et al.
(2001), who considered the maximum likelihood estimator for a nonincreasing density when the
observations are grouped. We are not aware, however, of any work on the maximum likelihood
estimator for interval censored data with grouped observation times, even though such grouping
frequently occurs in practice. For example, in the menopause data the ages of the women were
grouped in the intervals 25–30, 30–35, 35–36, 36–37, . . . , 58–59 and recorded as the midpoints
of these intervals. The menopausal status, on the other hand, was determined at the exact but
unrecorded time of interview, yielding a mismatch between the recorded status and the recorded
observation time. For example, if a 30·7-year old pre-menopausal woman is interviewed, she
is recorded as pre-menopausal with rounded age 32·5. When ignoring the rounding, as done in
previous analyses of these data, this is taken to mean that she was interviewed at age 32·5 and
that she was pre-menopausal at that age. A correct interpretation of the data is, however, that she
was pre-menopausal at some unknown age in the interval (30, 35]. In particular, the data do not
reveal her menopausal status at age 32·5; in actuality, she might have been post-menopausal at
that age, for example due to an operation.

The grouped model accounts for such grouping of observation times. We show that the likeli-
hood in this model can be written in the same form as in the discrete model, but in terms of dif-
ferent parameters, representing weighted averages of the cumulative incidence functions over the
grouping intervals, where the weights are determined by the observation time distribution. This
similarity with the discrete model implies that the maximum likelihood estimator and the naive
estimator in the grouped model can be computed with existing software, and that their limiting
distributions can be derived as in the discrete model. However, since the likelihood is written



Competing risks current status data 327

in terms of different parameters, the estimates under the grouped model must be interpreted
differently. The ideas incorporated in the grouped model can be easily extended to other forms
of interval censored data.

The asymptotic results in the three models are applied to the construction of confidence inter-
vals, a problem that has received little attention until now. In the discrete and grouped models,
confidence intervals can be constructed by standard methods, for example using the bootstrap
or the limiting distributions derived in this paper. In the smooth model, the nonstandard limiting
behaviour of the estimators makes the construction of confidence intervals less straightforward.
In this case, we advocate using likelihood ratio confidence intervals (Banerjee & Wellner, 2001)
based on the naive estimator.

2. MODELS

2·1. Exact observation times

Consider the usual competing risks setting where an event can be caused by K competing risks,
with K ∈ {1, 2, . . .} fixed. The random variables of interest are (X, Y ), where X ∈ R is the time
of the event of interest, and Y ∈ {1, . . . , K } is the corresponding cause. The goal is to estimate
the cumulative incidence functions F0 = (F01, . . . , F0K ), where F0k(t) = pr(X � t, Y = k) for
k = 1, . . . , K . The cumulative incidence functions are nonnegative, monotone nondecreasing,
and satisfy

∑K
k=1 F0k(t) = pr(X � t) � 1.

The difficulty in estimating the cumulative incidence functions is that we cannot observe
(X, Y ) directly. Rather, we observe the current status of a subject at a single random observation
time C ∈ R. Thus, at time C we observe whether or not the event of interest has occurred, and if
and only if the event has occurred, we also observe the cause Y . We assume that C is independent
of (X, Y ). Let G denote the distribution of C , and let (C, �) denote the observed data, where
� = (�1, . . . , �K+1) is an indicator vector for the status of the subject at time C :

�k = 1{X � C, Y = k} (k = 1, . . . , K ), �K+1 = 1{X > C}. (1)

To make this concrete, consider the HIV data discussed in § 1, where X is the age at HIV infection,
C is the age at screening and there are K = 3 competing risks representing the HIV subtypes:
Y = 1 for subtype B, Y = 2 for subtype E and Y = 3 for other subtypes.

We consider the maximum likelihood estimator for F0 based on n independent and iden-
tically distributed observations of (C, �), denoted by (Ci , �

i ) (i = 1, . . . , n), where �i =
(�i

1, . . . , �
i
K+1). For any K -tuple (x1, . . . , xK ) let x+ = ∑K

k=1 xk and, unless otherwise defined,
let xK+1 = 1 − x+. Moreover, define the set FK = {F = (F1, . . . , FK ) : F1, . . . , FK are cumu-
lative incidence functions and F+(t) � 1 for all t ∈ R}. A maximum likelihood estimator for F0
is defined as any F̂n = (F̂n1, . . . , F̂nK ) ∈FK satisfying ln(F̂n) = maxF∈FK ln(F), where ln(F)

is the loglikelihood

ln(F) = 1

n

n∑
i=1

K+1∑
k=1

�i
k log{Fk(Ci )}, (2)

with the convention 0 log 0 = 0; see also Jewell et al. (2003), equation (1).
We also consider the naive estimator F̃n = (F̃n1, . . . , F̃nK ) of Jewell et al. (2003), whose kth

component is defined as any F̃nk ∈F1 satisfying lnk(F̃nk) = maxFk∈F1 lnk(Fk), where

lnk(Fk) = 1

n

n∑
i=1

[�i
k log{Fk(Ci )} + (1 − �i

k) log{1 − Fk(Ci )}] (3)
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is the marginal loglikelihood for the reduced current status data (Ci , �
i
k) (i = 1, . . . , n), andF1 is

obtained from FK by taking K = 1. Since F̃nk only uses the kth entry of the �-vector, the naive
estimator splits the estimation problem into K well-known univariate current status problems.
Therefore, its computation and asymptotic theory follow straightforwardly from known results
on current status data. But this simplification comes at a cost. For example, F̃n+ need not be
bounded by unity, and the naive estimator has been empirically shown to be less efficient than
the maximum likelihood estimator in the smooth model (Groeneboom et al., 2008c).

The R-package MLEcens provides an efficient and stable method to compute the maximum
likelihood estimator. This algorithm first uses the Height Map Algorithm of Maathuis (2005)
to compute the areas to which the maximum likelihood estimator can possibly assign proba-
bility mass, called maximal intersections. Next, it computes the amounts of mass that must be
assigned to the maximal intersections. This involves solving a high-dimensional convex opti-
mization problem, which is done using the support reduction algorithm of Groeneboom et al.
(2008a). Jewell & Kalbfleisch (2004) describe an alternative algorithm for the computation of
the maximum likelihood estimator, based on the pool adjacent violators algorithm of Ayer et al.
(1955).

The maximum likelihood estimator and the naive estimator are not defined uniquely at all
times. Gentleman & Vandal (2002) defined two types of nonuniqueness for estimators based on
censored data: mixture nonuniqueness and representational nonuniqueness. Mixture nonunique-
ness occurs when the probability masses assigned to the maximal intersections are nonunique.
Representational nonuniqueness refers to the fact that the estimator is indifferent to the distri-
bution of mass within the maximal intersections. The maximum likelihood estimator for current
status data with competing risks is always mixture unique, see Theorem 2.20 in the thesis by
M.H. Maathuis, and mixture uniqueness of the naive estimator follows as a special case of this.
One can account for representational nonuniqueness of the estimators by providing a lower bound
that assigns all mass to the right endpoints of the maximal intersections, and an upper bound that
assigns all mass to the left endpoints of the maximal intersections.

2·2. Exact observation times with discrete support

Section 2·1 does not impose any assumptions on the observation time distribution G, and
hence is valid for both continuous and discrete observation times. However, the formulas can
be simplified when G is discrete. In this case, let G({s}) denote the point mass of G at s, and
let S = {s ∈ R : G({s}) > 0} denote the support of G, where S is countable but possibly infinite.
Defining

Nk(s) = 1

n

n∑
i=1

�i
k1{Ci = s} (k = 1, . . . , K + 1), s ∈ S,

and N (s) = ∑K+1
k=1 Nk(s), the loglikelihood (2) reduces to

ln(F) =
∑
s∈S

K+1∑
k=1

Nk(s) log{Fk(s)}, (4)

and the marginal loglikelihood (3) for the naive estimator becomes

lnk(Fk) =
∑
s∈S

[Nk(s) log{Fk(s)} + {N (s) − Nk(s)} log{1 − Fk(s)}] .

The spaces FK and F1 can also be simplified, as the nonnegativity, monotonicity and bounded-
ness constraints only need to hold at points s ∈ S.
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2·3. Grouped observation times

In many applications, only rounded versions of the observation times are recorded, yielding
grouped observation times. We introduce a new model for this type of data, called the grouped
model. For any interval I on the real line, define G(I ) = ∫

c∈I dG(c). Let I be a countable but
possibly infinite set of mutually exclusive intervals such that G(I ) > 0 for all I ∈ I. For each
I ∈ I, let m(I ) denote a unique point in the interval, for example its midpoint, and let M=
{m(I ) ∈ R : I ∈ I}. For each m ∈M, let I (m) denote the corresponding interval in I.

The observation scheme in the grouped model is as follows. As before, the current status
of a subject is assessed at a single random time C ∈ R, where C is independent of (X, Y ). The
difference is that we no longer observe C . Instead, all observation times falling into interval I are
grouped and rounded to m(I ). Thus, the observed data are (D, �), where D = ∑

I∈I m(I )1{C ∈
I } is the rounded version of C , and � is the indicator vector corresponding to the status of the
subject at the exact time C , as defined in (1). We study the maximum likelihood estimator and
the naive estimator based on n independent and identically distributed observations of (D, �),
which we denote by (Di , �

i ) (i = 1, . . . , n).
To derive the likelihood in the grouped model, we compute pr(D = d, � = δ) for d ∈M and

δ ∈ {e1, . . . , eK+1}, where ek is the unit vector in R
K+1 with a 1 at the kth entry. Conditioning

on the exact observation time C yields

pr(D = d, � = δ) =
∫

pr(D = d, � = δ | C = c) dG(c) =
∫

c∈I (d)

pr(� = δ | C = c) dG(c)

=
K+1∏
k=1

{∫
c∈I (d)

F0k(c) dG(c)

}δk

= G{I (d)}
K+1∏
k=1

[H0k{I (d)}]δk , (5)

where

H0k{I (d)} = [G{I (d)}]−1
∫

c∈I (d)

F0k(c) dG(c) (k = 1, . . . , K ),

and H0,K+1{I (d)} = 1 − H0+{I (d)} are weighted averages of F01, . . . , F0,K+1 over I (d) with
weights determined by G. It is convenient to work with these weighted averages, as they must
obey the same constraints as the cumulative incidence functions. More precisely, considering H0k

(k = 1, . . . , K ), as functions that maps m to H0k{I (m)}, the constraints on F01, . . . , F0K imply
that H01, . . . , H0K must be nonnegative and nondecreasing and satisfy H0+{I (m)} � 1 for all
m ∈M. Let HK denote the space of such allowable K -tuples (H1, . . . , HK ).

The term G{I (d)} in the right-hand side of (5) can be dropped from the likelihood, as it does
not depend on F . Hence, a maximum likelihood estimator for H0 = (H01, . . . , H0K ) is defined
as any Ĥn ∈HK satisfying lgroup

n (Ĥn) = maxH∈HK lgroup
n (H), where

lgroup
n (H) = 1

n

n∑
i=1

K+1∑
k=1

�i
k log[Hk{I (Di )}]. (6)

Expression (6) has the same form as (2), but with Fk(Ci ) replaced by the weighted average
Hk{I (Di )}. As in the discrete model, (6) can be simplified further:

lgroup
n (H) =

∑
I∈I

K+1∑
k=1

Mk(I ) log{Hk(I )}, (7)



330 M. H. MAATHUIS AND M. G. HUDGENS

where

Mk(I ) = 1

n

n∑
i=1

�i
k1{Di = m(I )} (k = 1, . . . , K + 1), I ∈ I.

Since the loglikelihood (7) has the same form as (4), and also the constraints on the maxi-
mization problems for the discrete and grouped models are equivalent, the maximum likelihood
estimator in the grouped model can be computed with existing software. Moreover, its asymptotic
theory follows straightforwardly from the theory for the discrete model. The important difference
between the two models is, however, that the resulting estimates must be interpreted differently.
In the discrete model, one estimates the cumulative incidence functions at points s ∈ S. In the
grouped model, the cumulative incidence functions are unidentifiable in general, and one esti-
mates the weighted averages of the cumulative incidence functions over intervals I ∈ I.

The naive estimator H̃n in the grouped model can be derived analogously. Defining M(I ) =∑K+1
k=1 Mk(I ), I ∈ I, the marginal loglikelihood for the kth component is

lgroup
nk (Hk) =

∑
I∈I

[Mk(I ) log{Hk(I )} + {M(I ) − Mk(I )} log{1 − Hk(I )}] ,

and H̃nk ∈H1 is defined by lgroup
nk (H̃nk) = maxHk∈H1 lgroup

nk (Hk).

Remark 1. In general, F0k(m) |= H0k{I (m)}, but equality can occur in special situations. For
example, F0k(m) = H0k{I (m)} if

(i) F0k is constant on I (m), or
(ii) both F0k and G are linear on I (m) and m is the midpoint of I (m), or

(iii) the only mass of G on I (m) consists of a point mass at m.

Condition (iii) shows that the grouped model generalizes the discrete model.

3. LOCAL ASYMPTOTICS OF THE ESTIMATORS

3·1. Strong consistency in the discrete and grouped models

The maximum likelihood estimator and the naive estimator are Hellinger consistent when the
observation times are recorded exactly for any observation time distribution G, see Theorem
4.6 in the thesis by M. H. Maathuis. Using the equivalence between Hellinger distance and total
variation distance, this implies consistency in total variation, see Corollary 4.7 in the thesis by
M. H. Maathuis, which in turn implies strong pointwise consistency at all points s ∈ S in the
discrete model, as stated in Theorem 1.

THEOREM 1. In the discrete model, F̂nk(s) → F0k(s) and F̃nk(s) → F0k(s) almost surely as
n → ∞ for all s ∈ S.

Since the form of the loglikelihood and the constraints on the allowable functions are identical
in the discrete and grouped models, the proofs for the discrete model carry over directly to the
grouped model. This leads to Theorem 2, which we give without proof.

THEOREM 2. In the grouped model, Ĥnk(I ) → H0k(I ) and H̃nk(I ) → H0k(I ) almost surely
as n → ∞ for all I ∈ I.
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3·2. Limiting distributions in the discrete model

Denote the infimum and supremum of S by sinf and ssup, and define

s− = sup{x ∈ S : x < s} for s ∈ S with s |= sinf ,

s+ = inf{x ∈ S : x < s} for s ∈ S with s |= ssup.

Define s ∈ S to be a regular point if F0k(s) = 0 for all k = 1, . . . , K or the following two condi-
tions hold.

Condition 1. If s |= sinf then s− ∈ S and for each k = 1, . . . , K either F0k(s−) < F0k(s) or
F0k(s) = 0.

Condition 2. If s |= ssup then s+ ∈ S and for each k = 1, . . . , K either F0k(s) < F0k(s+) or
F0k(s) = 0.

If S is a finite set and s ∈ S \ {sinf , ssup}, then s− and s+ are simply the points directly to the
left and right of s, and Conditions 1 and 2 are equivalent to requiring that for each k = 1, . . . , K
either F0k(s−) < F0k(s) < F0k(s+) or F0k(s) = 0. As a second example, suppose that S is the set
of rational numbers. Then for any point s ∈ S we have s /∈ {sinf , ssup} and s− = s = s+. Hence,
Conditions 1 and 2 are only satisfied if F0k(s) = 0 for all k = 1, . . . , K . Yu et al. (1998) intro-
duced regular points in the current status model without competing risks. Our definition gener-
alizes theirs by allowing for competing risks. Moreover, we allow the parameters to be on the
boundary of the parameter space. For example, s ∈ S can be a regular point when F0k(s) = 0
for some or all of the F0ks, and s = ssup can be a regular point when

∑K
k=1 F0k(s) = 1 or when

F0k(s) = limt→∞ F0k(t) for some of the F0ks.
We now introduce the following simple estimator for F0k(s):

F̆nk(s) = Nk(s)/N (s) (k = 1, . . . , K ), s ∈ S,

where we set 0/0 = 0. This estimator is very simple, in the sense that F̆nk does not obey mono-
tonicity constraints and uses only the kth component of the �-vector. Lemma 1 below states
that F̆n is the maximum likelihood estimator for F0 if the monotonicity constraints on the cumu-
lative incidence functions are discarded. Next, Lemma 2 establishes that for any regular point
s ∈ S, F̂n(s) = F̃n(s) = F̆n(s) with probability tending to one as n → ∞. Hence, at such points
the limiting distributions of F̂n(s) and F̃n(s) equal the limiting distribution of F̆n(s). This yields
asymptotic normality of F̂n(s) and F̃n(s) at regular points, as stated in Theorem 3. All proofs are
deferred to the Appendix.

LEMMA 1. Let F∗
K = {F = (F1, . . . , FK ) : Fk(s) � 0 for k = 1, . . . , K and F+(s) � 1 for all

s ∈ S}. Then ln(F̆n) � ln(F) for all F ∈F∗
K , and ln(F̆n) > ln(F) for all F ∈F∗

K such that
F(s) |= F̆n(s) for some s ∈ S with N (s) > 0.

LEMMA 2. For any regular point s ∈ S in the discrete model, pr{F̂n(s) = F̃n(s) =
F̆n(s)} → 1, as n → ∞.

THEOREM 3. For any regular point s ∈ S in the discrete model,

n1/2{F̂n(s) − F0(s)} = n1/2

⎛
⎜⎝

F̂n1(s) − F01(s)
...

F̂nK (s) − F0K (s)

⎞
⎟⎠



332 M. H. MAATHUIS AND M. G. HUDGENS

is asymptotically normal with zero mean and covariance matrix V (s), where V (s) is a K × K
matrix with entries

{V (s)}k,� = [F0k(s)1{k = �} − F0k(s)F0�(s)] /G({s}), k, � ∈ {1, . . . , K }.
For any finite collection of regular points s1, . . . , sp in S, the stacked vector n1/2{F̂n(s1) −
F0(s1), . . . , F̂n(sp) − F0(sp)} is asymptotically normal with zero mean and block diagonal
covariance matrix with blocks V (s1), . . . , V (sp). Consistent estimators for the elements of V (s),
s ∈ S, are

{V̂n(s)}k,� = [F̂nk(s)1{k = �} − F̂nk(s)F̂n�(s)]/N (s), k, � ∈ {1, . . . , K }.
The same results hold for the naive estimator, that is, when F̂n is replaced by F̃n.

Remark 2. If F0k(s) > 0 for all k = 1, . . . , K and
∑K

k=1 F0k(s) = 1, then the matrix V (s) is
positive-semidefinite with rank K − 1. If F0k(s) = 0 or F0k(s) = 1, then the kth row and the
kth column of V (s) are zero vectors, and the corresponding limiting distributions of F̂nk(s) and
F̃nk(s) should be interpreted as degenerate distributions consisting of a point mass at zero. More
details can be found in the proof of Theorem 3.

3·3. Limiting distributions in the grouped model

Denote the infimum and supremum of M by minf and msup, and define

{m(I )}− = sup{x ∈M : x < m(I )} for I ∈ I with m(I ) |= minf ,

{m(I )}+ = inf{x ∈M : x > m(I )} for I ∈ I with m(I ) |= msup.

If {m(I )}− ∈M let I− = I [{m(I )}−], and if {m(I )}+ ∈M let I+ = I [{m(I )}+]. We say that
I ∈ I is a regular interval if H0k(I ) = 0 for all k = 1, . . . , K or the following two conditions
hold: (i) if m(I ) |= minf then {m(I )}− ∈M and for each k = 1, . . . , K either H0k(I−) < H0k(I )
or H0k(I ) = 0, and (ii) if m(I ) |= msup then {m(I )}+ ∈M and for each k = 1, . . . , K either
H0k(I ) < H0k(I+) or H0k(I ) = 0.

Analogously to F̆n in the discrete model, we define a simple estimator in the grouped model:

H̆nk(I ) = Mk(I )/M(I ) (k = 1, . . . , K ), I ∈ I.

The proofs and results for the discrete model can now be translated directly to the grouped model,
by replacing regular points s ∈ S by regular intervals I ∈ I, F̂n(s) by Ĥn(I ), F̃n(s) by H̃n(I ),
F̆n(s) by H̆n(I ), F0(s) by H0(I ) and Nk(s) by Mk(I ) for k = 1, . . . , K + 1. We therefore only
give the main result in Theorem 4, without proof.

THEOREM 4. For any regular interval I ∈ I in the grouped model,

n1/2{Ĥn(I ) − H0(I )} = n1/2

⎛
⎜⎝

Ĥn1(I ) − H01(I )
...

ĤnK (I ) − H0K (I )

⎞
⎟⎠

is asymptotically normal with zero mean and covariance matrix U (I ), where U (I ) is a K × K
matrix with entries

{U (I )}k,� = [H0k(I )1{k = �} − H0k(I )H0�(I )] /G(I ), k, � ∈ {1, . . . , K }.
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Moreover, for any finite collection of regular intervals I1, . . . , Ip, the stacked vector
n1/2{Ĥn(I1) − H0(I1), . . . , Ĥn(Ip) − H0(Ip)} is asymptotically normal with mean vector zero
and block diagonal covariance matrix with blocks U (I1), . . . , U (Ip). Consistent estimators for
the elements of U (I ), I ∈ I, are

{Ûn(I )}k,� = [Ĥnk(I )1{k = �} − Ĥnk(I )Ĥn�(I )]/M(I ), k, � ∈ {1, . . . , K }.
The same results hold for the naive estimator, that is, when Ĥn is replaced by H̃n.

As in Theorem 3, a degenerate limiting distribution should be interpreted as point mass at
zero.

3·4. Theoretical motivation for the grouped model

The asymptotic results provide a theoretical motivation for the grouped model, since a con-
tradiction arises with respect to rates of convergence when the grouping of observation times is
ignored. To see this, consider the menopause data and the HIV data, and suppose that the grouping
of observation times is ignored, meaning that the recorded observation times are interpreted as
exact observation times. This assumption was made in previous analyses of the menopause data,
see Krailo & Pike (1983); Jewell et al. (2003); Jewell & Kalbfleisch (2004). Under this assump-
tion, the discrete model is most appropriate for the menopause data, since there are numerous ties
in the recorded observation times, see § 5·2. On the other hand, the smooth model seems most
appropriate for the HIV data, since this dataset contains very few ties in the recorded observation
times, see § 5·3. This would imply that the local rate of convergence of the maximum likelihood
estimator and the naive estimator at the recorded observation times is n1/2 for the menopause
data, while it is n1/3 for the HIV data.

In reality, however, the observation times were continuous in both datasets, and they were
rounded in the recording process. In the menopause data, this rounding was substantial, into
one-year or five-year intervals, while in the HIV data it was minimal, into one-day intervals.
Since rounding implies discarding information, it seems impossible that more rounding, as in
the menopause data, leads to a faster local rate of convergence at the recorded observation times.
This apparent contradiction can be resolved by modelling the grouping of the observation times.
For the grouped model, rounding or grouping of the observation times indeed yields a faster
rate of convergence, but not for the cumulative incidence functions at the recorded observation
times, but for weighted averages of the cumulative incidence functions over the grid cells. These
weighted averages are smooth functionals of the cumulative incidence functions and thus can be
estimated at rate n1/2, see Jewell et al. (2003) and Chapter 7 in the thesis by M. H. Maathuis.

4. CONSTRUCTION OF POINTWISE CONFIDENCE INTERVALS

4·1. Confidence intervals in the discrete and grouped models

In the discrete and grouped models, the large-sample behaviour of the maximum likelihood
estimator and the naive estimator at regular points or intervals is standard, and hence confidence
intervals can be constructed by any standard method, for example using the asymptotic normal
distribution or the bootstrap. For instance, let s ∈ S be a regular point in the discrete model. Then
an asymptotic (1 − α)100% confidence interval for F0k(s) is

F̂nk(s) ± n−1/2z1−α/2[{V̂n(s)}k,k]1/2,

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. Similarly, considering
a regular interval I ∈ I in the grouped model, an asymptotic (1 − α)100% confidence interval
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for H0k(I ) is
Ĥnk(I ) ± n−1/2z1−α/2[{Ûn(I )}k,k]1/2. (8)

4·2. Confidence intervals in the smooth model

In the smooth model, the large-sample behaviour of the maximum likelihood estimator and
the naive estimator is nonstandard, making the construction of confidence intervals less straight-
forward. In principle, one can construct confidence intervals using the limiting distribution of
the maximum likelihood estimator, but this approach entails several difficulties. First, the limit-
ing distribution involves parameters from the underlying distributions that need to be estimated.
Moreover, Theorems 1.7 and 1.8 of Groeneboom et al. (2008c) suggest that these parameters
cannot be separated from the limiting distribution, in the sense that it seems impossible to write
the limiting distribution as cZ , where c is a constant depending on the underlying distribution
and Z is a universal limit. Hence, one would need to simulate the limiting distribution on a case
by case basis. Conducting such simulations is nontrivial, see Groeneboom & Wellner (2001).

One might also consider the nonparametric bootstrap to construct confidence intervals based
on the maximum likelihood estimator or the naive estimator. However, it is likely that the boot-
strap is inconsistent in this setting, given recent results of Kosorok (2008) and Sen et al. (2010)
on inconsistency of the bootstrap for the closely related Grenander estimator.

Subsampling (Politis & Romano, 1994), a variant of the bootstrap, can be applied to con-
struct asymptotically valid confidence intervals for the cumulative incidence functions based on
the maximum likelihood estimator or the naive estimator. A drawback of subsampling is that it
requires a tuning parameter, the subsample size, which is difficult to choose in practice.

Finally, one can consider likelihood ratio confidence intervals based on the naive estimator.
Although the naive estimator has been shown empirically to be less efficient than the maximum
likelihood estimator (Groeneboom et al., 2008c, Fig. 3), it has the advantage that its large sample
behaviour is simpler. For a fixed failure cause, the limiting distribution of the naive estimator is
identical to the limiting distribution of the maximum likelihood estimator for current status data
without competing risks (Groeneboom et al., 2008c, Theorem 1.6). Hence, the likelihood ratio
theory of Banerjee & Wellner (2001) applies, and confidence intervals can be constructed by
inverting likelihood ratio tests (Banerjee & Wellner, 2005). These confidence intervals have the
appealing property that they do not require estimation of parameters from the underlying distri-
bution, nor any tuning parameters. Simulation studies by Banerjee & Wellner (2005) showed that
for current status data without competing risks, likelihood ratio based confidence intervals are
typically preferable over confidence intervals based on the limiting distribution or subsampling.
In the smooth model, we therefore recommend using likelihood ratio confidence intervals based
on the naive estimator.

5. EXAMPLES

5·1. Simulation

It is not clear how well the asymptotic distributions of § 3·2 and § 3·3 approximate the finite
sample behaviour of the estimators, especially for grids that are dense relative to n. We there-
fore conducted a simulation study, using the following discrete model: pr(Y = 1) = 0·6, pr(Y =
2) = 0·4, X | Y = 1 ∼ Ga(5, 3), and X | Y = 2 ∼ Ga(9, 2) where Ga(a, b) denotes a Gamma dis-
tribution with shape parameter a and scale parameter b. The distribution of C was taken to be
uniform on one of the following grids: (i) {10, 20, 30}, called gap 10, (ii) {6, 8, . . . , 34}, called
gap 2, (iii) {5·5, 6·0, . . . , 35·0}, called gap 0·5 and (iv) {5·1, 5·2, . . . , 35·0}, called gap 0·1. For
each of the four resulting models, 1000 datasets of sample size n = 1000 were simulated. For
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each dataset we computed symmetric 95% asymptotic confidence intervals for the cumulative
incidence functions at the points t0 = (10, 20, 30), based on the normal distribution and the boot-
strap, using both the maximum likelihood estimator and the naive estimator.

The results for F01 are shown in Fig. 1. The results for F02 are similar, and are therefore
omitted. Confidence intervals based on the maximum likelihood estimator behave very similarly
to confidence intervals based on the naive estimator, while there is a large difference between
normal and bootstrap based confidence intervals for the denser grids. The increase in width
of the normal based confidence intervals for the denser grids is caused by the decrease of
nG({t0}), which can be viewed as the expected effective sample size for the simple estimator
F̆n at t0. As a result, the variance of the asymptotic normal distribution increases by a factor
of 5 or 6 between each pair of successive grids. The empirical variance of the estimators, on
the other hand, increases somewhat for the denser grids, but not by much, due to the stabilizing
effect of the monotonization that takes place in the maximum likelihood estimator and the naive
estimator. As a result, the normal based confidence intervals give substantial overcoverage. This
breakdown of the normal limit is already apparent for the larger time-points in the relatively
coarse grid, gap 2, which has an average of 67 observation times per grid point. The bootstrap
variance was found to be a better approximation of the empirical variance of the estimators,
suggesting the use of bootstrap intervals over asymptotic normal intervals in practice. However,
the undercoverage of the bootstrap intervals at t0 = 10 becomes more substantial as the grids
become denser. This points to inconsistency of the bootstrap for very dense grids, which is in
line with the theory discussed in § 4·2.

5·2. Menopause data

We consider data on 2423 women in the age range 25–59 years from Cycle I of the Health
Examination Survey of the National Center for Health Statistics (MacMahon & Worcestor,
1966). Among other things, these women were asked to report: their current age; whether
they were pre- or postmenopausal; and if they were postmenopausal, the age and cause of
menopause, where the cause could be natural or operative. Since MacMahon & Worcestor
(1966) found marked terminal digit clustering in the reported ages of menopause, Krailo & Pike
(1983) excluded these from the analysis. The remaining information can be viewed as cur-
rent status data with competing risks. Nonparametric estimates of the cumulative incidences of
the two types of menopause were computed by Jewell et al. (2003) and Jewell & Kalbfleisch
(2004) under the assumption that the recorded ages of the women at the time of the interview
were exact. However, this was not the case. Instead, the ages were grouped into the intervals
25–30, 30–35, 35–36, 36–37 . . . , 58–59 and recorded as the midpoints of these intervals, yield-
ing 26 age groups with a minimum of 45 and an average of 93 observations per age group. This
is comparable to gap 2 in our simulation study, see § 5·1.

We add to the previous analyses of these data in two ways: we use the grouped model, which
is clearly appropriate for these data, and we provide confidence intervals. Figure 2 shows the
maximum likelihood estimator and the naive estimator for the weighted averages of the cumula-
tive incidence functions, together with 95% normal and bootstrap confidence intervals based on
the maximum likelihood estimator. As in our simulation study, the confidence intervals based on
the normal distribution are wider than those based on the bootstrap.

5·3. HIV data

The Bangkok Metropolitan Administration injecting drug users cohort study
(Kitayaporn et al., 1998; Vanichseni et al., 2001) was established in 1995 to better understand
HIV transmission and to assess the feasibility of conducting a phase III HIV vaccine efficacy
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Fig. 1. Simulation: Coverage (a)–(d) and average width (e)–(h) of the four 95% confidence intervals
for F01(t0) as a function of t0, corresponding to grids gap 10 {(a) and (e)}, gap 2 {(b) and (f)}, gap
0·5 {(c) and (g)}, and gap 0·1 {(d) and (h)}. The confidence intervals were based on the normal distri-
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Fig. 2. Menopause data. The maximum likelihood estimator Ĥn (◦) and the naive estimator
H̃n (×) for the weighted averages of the cumulative incidence of (a) operative and (b) nat-
ural menopause over the age groups. The estimators are plotted at the midpoints of the age
groups which are indicated by the dotted vertical lines. The two solid vertical line segments
in each age group are 95% asymptotic confidence intervals based on the maximum like-
lihood estimator: the left line segment is based on the normal approximation (8) and the
right line segment is a symmetric bootstrap confidence interval based on 1000 bootstrap

samples.
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trial in an injecting drug users population in Bangkok. We consider data on 1366 injecting drug
users in this study who were screened from May to December 1996 and who were under 35 years
of age. Among this group, 393 were HIV positive, with 114 infected with subtype B, 238 infected
with subtype E, 5 infected by another or mixed subtype and 36 infected with missing subtype.
The subjects with other, mixed or missing subtypes were grouped in a remainder category. All
ages were recorded in days, leading to a small number of ties: among the 1366 subjects, there
were 1212 distinct ages, and the mean number of observations per distinct age was 1·13. In light
of this, we analyse these data using the smooth model. Figure 3 shows the maximum likelihood
estimator and the naive estimator for the subtype-specific cumulative incidence of HIV, together
with 95% likelihood ratio confidence intervals based on the naive estimator.

6. OBSERVATION TIME DISTRIBUTION OR GROUPING DEPENDENT ON n

There are interesting connections between our work and a 2011 unpublished technical report
by Tang, Banerjee and Kosorok, available at http://www.stat.lsa.umich.edu/∼moulib/informa-
tion.html, who studied current status data without competing risks when the observation time
distribution depends on the sample size n. More precisely, let X be a random event time with
distribution F0 and let C (n) be a random observation time with distribution G(n), where G(n) is a
discrete distribution on an equidistant grid with spacings n−γ for some γ ∈ (0, 1). Without loss
of generality, assume this grid is on [0, 1]. Consider the nonparametric maximum likelihood esti-
mator F̂n for F0 based on n independent and identically distributed observations of (C (n), �(n)),
where �(n) = 1{X � C (n)}. Let t0 ∈ (0, 1) be a time-point of interest, and let tn be the largest
support point of G(n) smaller than t0. Assuming F0 satisfies certain smoothness conditions in
a neighbourhood of t0, Tang, Banerjee and Kosorok found that the limiting distribution of the
maximum likelihood estimator depends crucially on γ . For γ < 1/3 the limiting distribution of
n(1−γ )/2{F̂n(tn) − F0(tn)} is normal with zero mean and variance F0(t0){1 − F0(t0)}. Hence,
for such sparse grids, the maximum likelihood estimator behaves as in the discrete model, up
to a different rate of convergence. For γ > 1/3, on the other hand, the limiting distribution of
n1/3{F̂n(t0) − F0(t0)} is determined by the slope of the convex minorant of a Brownian motion
process plus parabolic drift, showing that the maximum likelihood estimator behaves as in the
smooth model. The case γ = 1/3 forms the boundary between these two scenarios and yields a
new limiting distribution.

Combining our work with that of Tang, Banerjee and Kosorok yields two extensions. First,
consider a grouped model for current status data without competing risks, where the grouping
intervals depend on n. More precisely, let X be an event time with distribution F0, let C be an
observation time with distribution G, and let � = 1{X � C}. Assume the support of G is [0, 1],
and let In be the set of intervals formed by the grid cells of an equidistant grid on [0, 1] with
spacings n−γ for some γ ∈ (0, 1). Assume that the observation time C is rounded to the midpoint
of the interval in which it falls, and denote this rounded observation time by D(n). One can
now consider the nonparametric maximum likelihood estimator for F0 based on n independent
and identically distributed copies of (D(n), �). Since the likelihood in this grouped model can
be written in exactly the same form as the likelihood in the discrete model, and since also the
constraints on the two optimization problems are equivalent, the work of Tang, Banerjee and
Kosorok should carry over to this model, with the only difference that everything should be
written in terms of weighted averages of F0 over the grid cells. Second, consider the discrete
model for current status data with competing risks, where the support of G depends on n. Then
the results of Tang, Banerjee and Kosorok should carry over to the naive estimator F̃nk , since
this estimator can be viewed as a maximum likelihood estimator based on reduced current status
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Fig. 3. HIV data. The maximum likelihood estimator F̂n (dashed) and the naive estimator
F̃n (solid) for the cumulative incidence of HIV subtypes (a) B and (b) E as a function of
age, using the smooth model. The solid vertical lines represent 95% pointwise confidence
intervals at times 16, . . . , 34, based on the likelihood ratio method for the naive estimator.

data without competing risks. The same holds for the naive estimator H̃nk in the grouped model
when the grouping intervals depend on n.
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APPENDIX

Proof of Lemma 1. Due to the absence of monotonicity constraints on F∗
K , the maximizer of

ln(F) over F∗
K can be determined separately for each s ∈ S. Thus, fix s ∈ S, and define ln(F, s) =∑K+1

k=1 Nk(s) log{Fk(s)}. Moreover, define K = {k ∈ {1, . . . , K + 1} : Nk(s) > 0} and KC = {1, . . . , K +
1} \ K. First, suppose K = ∅. Then ln(F, s) = 0 for any choice of Fk(s) (k = 1, . . . , K ), and hence F̆n(s)
is a maximizer of ln(F, s). Next, suppose K |= ∅, or equivalently, N (s) > 0. Then any maximizer of
ln(F, s) subject to the constraint F+(s) � 1 must set Fk(s) = 0 for k ∈KC . Hence, for k ∈KC the max-
imizer is unique and equals F̆nk(s). If |K| = 1, then ln(F, s) contains only one nonzero term, and it
is clear that the corresponding Fk(s) should be set to 1, which equals F̆nk(s). If |K| > 1, we define
k∗ = maxK. Then Nk∗(s) = N (s) − ∑

k∈K\{k∗} Nk(s) and any maximizer of ln(F, s) over F∗
K must sat-

isfy Fk∗(s) = 1 − ∑
k∈K\{k∗} Fk(s). Hence, we can write ln(F, s) = ∑

k∈K\{k∗} Nk(s) log{Fk(s)} + {N (s) −∑
k∈K\{k∗} Nk(s)} log{1 − ∑

k∈K\{k∗} Fk(s)}. This function is strictly concave in Fk(s) for k ∈K \ {k∗}.
The unique maximizer can be determined by solving ∂ln(F, s)/∂ Fk(s) = 0 for k ∈K \ {k∗}, which yields
F̆nk(s), k ∈K. �

Proof of Lemma 2. Let s ∈ S be a regular point in the discrete model. We first consider
the maximum likelihood estimator for the so-called basic case, where s /∈ {sinf , ssup}. Let
K+ = {k ∈ {1, . . . , K } : F0k(s)> 0}. For k ∈ {1, . . . , K } \ K+, we have Nk(s) = 0. Hence, the corre-
sponding Fk(s)s do not contribute to the likelihood and we directly obtain that the corresponding
estimators satisfy F̂nk(s) = F̆nk(s) = 0. So we are done if K+ = ∅. Otherwise, we are left to show
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pr[
⋂

k∈K+{F̂nk(s) = F̆nk(s)}] → 1 as n → ∞. Define the events

An(s) =
⋂

k∈K+
{F̂nk(s−) < F̂nk(s) < F̂nk(s+)}, Bn(s) =

⋂
k∈K+∪{K+1}

{Nk(s) > 0}.

The assumptions on s imply F0k(s−) < F0k(s) < F0k(s+) for k ∈K+. By combining this with the con-
sistency of F̂n in Theorem 1, it follows that pr{An(s)} → 1 as n → ∞. Moreover, the law of large
numbers, G({s}) > 0, F0k(s) > 0 for k ∈K+ and F0+(s) < 1 imply pr{Bn(s)} → 1 as n → ∞. Hence,
pr{An(s) ∩ Bn(s)} → 1 as n → ∞, and the proof for the basic case can be completed by showing that the
event {An(s) ∩ Bn(s)} implies

⋂
k∈K+{F̂nk(s) = F̆nk(s)}. We do this using contraposition. Thus, suppose

{An(s) ∩ Bn(s)} holds. This implies k∗ = K + 1 in the proof of Lemma 1, and it follows that F̆nk(s),
k ∈K+, is the unique solution of ∂ln(F)/∂ Fk(s) = 0, k ∈K+. Now assume there is a j ∈K+ such that
F̂nj (s) |= F̆nj (s). Then there must be a k̄ ∈K+ such that ∂ln(F)/∂ Fk̄(s)|F̂n(s)

|= 0. Let σ ∈ {−1,+1} be the

sign of ∂ln(F)/∂ Fk̄(s)|F̂n(s)
, and define F̂new

n (s) = F̂n(s) + γ σek̄ , where ek is the unit vector in R
K with a 1

at the kth entry. Then for γ > 0 sufficiently small, replacing F̂n(s) by F̂new
n (s) increases the loglikelihood.

Moreover, this replacement does not violate the constraints of FK , as for γ > 0 sufficiently small we have
F̂nk̄(s−) < F̂new

nk̄
(s) < F̂nk̄(s+) and F̂new

n+ (s) < F̂n+(s+) � 1. This shows that F̂n cannot be the maximum
likelihood estimator, which is a contradiction.

If s |= sinf and s = ssup, we distinguish two cases. If F0+(s) < 1, the proof of the basic case goes
through with the only change that An(s) = ⋂

k∈K+{F̂nk(s−) < F̂nk(s)} ∩ {F̂n+(s) < 1}. If F0+(s) = 1, then
NK+1(s) = 0 and 1 − F+(s) does not contribute to the loglikelihood. Hence, the maximum likelihood
estimator must satisfy F̂n+(s) = 1 and this equals F̆n+(s) if N (s) > 0. If K = 1, this implies pr{F̂n(s) =
F̆n(s)} → 1 as n → ∞, so that we are done. If K > 1, we use the proof for the basic case with the
following changes. We define An(s) = ⋂

k∈K+{F̂nk(s−) < F̂nk(s)} and Bn(s) = ⋂
k∈K+{Nk(s) > 0}. As

before, we have pr{An(s) ∩ Bn(s)} → 1 as n → ∞. We will therefore show that {An(s) ∩ Bn(s)} implies⋂
k∈K+{F̂nk(s) = F̆nk(s)}, using contraposition. Thus, assume {An(s) ∩ Bn(s)} holds. This implies k∗ =

maxK+ in the proof of Lemma 1, meaning that F̆nk , k ∈K+, are found by solving ∂ln(F)/∂ Fk(s) =
0 for k ∈K+ \ {k∗} and setting F̆nk∗(s) = 1 − ∑

k∈K+\{k∗} F̆nk(s). Assume F̂nk(s) |= F̆nk(s) for some

k ∈K+. Then there must be a k̄ ∈K+ \ {k∗} such ∂ln(F)/∂ Fk̄(s)|F̂n(s)
|= 0. Define σ as the sign of

∂ln(F)/∂ Fk̄(s)|F̂n(s)
, and define F̂new

n (s) = F̂n(s) + γ σek̄ − γ σek∗ . Then for γ > 0 sufficiently small,

replacing F̂n(s) by F̂new
n (s) increases the loglikelihood. Moreover, this replacement does not violate the

constraints of FK , as for γ > 0 sufficiently small we have F̂nk̄(s−) < F̂new
nk̄

(s), F̂nk∗(s−) < F̂new
nk∗ (s) and

F̂new
n+ (s) = F̂n+(s) = 1. Hence, F̂n cannot be the maximum likelihood estimator, again a contradiction.

The proof for the maximum likelihood estimator is completed by considering two remaining special
cases. If s = sinf and s |= ssup, then the proof for the basic case goes through with the only change that
An(s) = ⋂

k∈K+{0 < F̂nk(s) < F̂nk(s+)}. If s = sinf = ssup, then |S| = 1 and monotonicity constraints do not
play any role in the maximum likelihood estimator, so that F̂n = F̆n follows immediately.

The proof for the naive estimator follows directly from the proof for the maximum likelihood estima-
tor by taking K = 1. To see this, let k ∈ {1, . . . , K } and recall that the naive estimator is the maximum
likelihood estimator for the reduced current status data (�i

k, Ci ) (i = 1, . . . , n). Hence, the proof for the
maximum likelihood estimator implies pr{F̃nk(s) = F̆ red

nk (s)} → 1 as n → ∞, where F̆ red
nk is the simple esti-

mator based on the reduced data. The proof is completed by observing that F̆ red
nk = F̆nk . �

Proof of Theorem 3. Because of Lemma 2, it is sufficient to derive the limiting distribution of F̆n . Let
k ∈ {1, . . . , K } and s ∈ S. Since pr{N (s) > 0} → 1 as n → ∞, we can assume N (s) > 0. We first consider
the case 0 < F0k(s) < 1. Then

n1/2{F̆nk(s) − F0k(s)} = N (s)−1n1/2{Nk(s) − F0k(s)N (s)}

= N (s)−1n−1/2
n∑

i=1

{�i
k − F0k(s)}1{Ci = s},
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and the result follows from N (s) →p G({s}), the multivariate central limit theorem, and Slutsky’s lemma,
e.g., Van der Vaart (1998, Lemma 2.8(iii)).

If F0k(s) = 0, then Nk(s) = 0 and hence F̆nk(s) = 0 = F0k(s) always. Similarly, if F0k(s) = 1, we have
Nk(s) = N (s) and hence F̆nk(s) = 1 = F0k(s) whenever N (s) > 0. These results are in agreement with the
theorem, since in these cases {V (s)}k,k = 0, leading to a degenerate limiting distribution that should be
interpreted as a point mass at zero. It can be easily verified that the off-diagonal elements {V (s)}k, j = 0
for j ∈ {1, . . . , K }, j |= k, are also correct in these cases. �
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