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Stratification patterns are formed when a bidisperse mixture of large rough grains
and smaller more mobile particles is poured between parallel plates to form a heap.
At low flow rates discrete avalanches flow down the free surface and are brought to
rest by the propagation of shock waves. Experiments performed in this paper show
that the larger particles are segregated to the top of the avalanche, where the velocity
is greatest, and are transported to the flow front. Here the particles are overrun
but may rise to the free surface again by size segregation to create a recirculating
coarse-grained front. Once the front is established composite images show that there
is a steady regime in which any additional large grains that reach the front are
deposited. This flow is therefore analogous to finger formation in geophysical mass
flows, where the larger less mobile particles are shouldered aside to spontaneously
form static lateral levees rather than being removed by basal deposition in two
dimensions. At the heart of all these phenomena is a dynamic feedback between the
bulk flow and the evolving particle-size distribution within the avalanche. A fully
coupled theory for such segregation—mobility feedback effects is beyond the scope
of this paper. However, it is shown how to derive a simplified uncoupled travelling-
wave solution for the avalanche motion and reconstruct the bulk two-dimensional
flow field using assumed velocity profiles through the avalanche depth. This allows a
simple hyperbolic segregation theory to be used to construct exact solutions for the
particle concentration and for the recirculation within the bulk flow. Depending on
the material composition and the strength of the segregation and deposition, there are
three types of solution. The coarse-particle front grows in length if more large particles
arrive than can be deposited. If there are fewer large grains and if the segregation is
strong enough, a breaking size-segregation wave forms at a unique position behind
the front. It consists of two expansion fans, two shocks and a central ‘eye’ of constant
concentration that are arranged in a ‘lens-like’ structure. Coarse grains just behind
the front are recirculated, while those reaching the head are overrun and deposited.
Upstream of the wave, the size distribution resembles a small-particle ‘sandwich’ with
a raft of rapidly flowing large particles on top and a coarse deposited layer at the
bottom, consistent with the experimental observations made here. If the segregation
is weak, the central eye degenerates, and all the large particles are deposited without
recirculation.
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1. Introduction

Bouldery flow fronts develop in many different kinds of hazardous geophysical mass
movements, including debris flows (Costa & Williams 1984; Pierson 1986; Iverson
2003, 2005), lahars (Vallance 2000), wet snow avalanches (Jomelli & Bertran 2001),
rock slides (Cruden & Hungr 1986; Bertran 2003) and pyroclastic flows (Calder,
Sparks & Gardeweg 2000; Iverson & Vallance 2001). In the high-solids-volume-
fraction regions of these flows, the large particles commonly segregate towards the
surface, where the velocity is greatest, and are transported to the margins where they
accumulate. Once the large grains reach the front they may either be overrun by
the flow front and rise quickly to the surface again by particle-size segregation, to
create a recirculating path (Pierson 1986; Pouliquen, Delour & Savage 1997), or, if
the particles are too large to be overrun, simply be pushed en masse in front of the
flow (Pouliquen & Vallance 1999). In debris flows the mobility is conferred by high
basal pore pressures that reduce the frictional resistance to motion (Iverson 1997).
Since the pore pressure is dissipated much more rapidly amidst the coarse clasts
than in the finer-grained material, the bouldery margins experience much greater
frictional resistance to motion than the flow interior. This can lead to the spontaneous
development of surge waves on steep slopes. On shallower slopes, where the large
particles are able to come to rest, the more resistive bouldery material is shouldered
to the sides to form stationary lateral levees that channelize the finer-grained interior
and enhance the overall run-out distance (Iverson & Vallance 2001; Iverson 2003,
Iverson 2005).

Bouldery lateral levees are a ubiquitous feature of mass flows and granular
avalanches in general. Pouliquen et al. (1997), Pouliquen & Vallance (1999),
Felix & Thomas (2004), Aranson, Malloggi & Clement (2006) and Goujon, Dalloz-
Dubrujeaud & Thomas (2007) have generated a fingering instability in dry granular
flows in the laboratory by pouring a mixture of large irregular and smaller rounded
particles down a rough inclined plane. As the large particles collect at a flow front,
it rapidly deforms and breaks into a series of fingers, with the larger grains at
the head being shouldered aside into slower moving/static lateral levees, in an
analogous manner to debris flows. In all of these flows the evolving particle-size
distribution provides feedback to the bulk motion, with the larger less mobile grains
experiencing greater resistance to motion than the smaller ones. In this paper this
is termed a segregation—mobility feedback. One way of developing mathematical
models that take account of mobility differences between the particles is to couple
a depth-averaged avalanche model (e.g. Grigorian, Eglit & Iakimov 1967; Savage
& Hutter 1989; Iverson 1997; Gray, Wieland & Hutter 1999; Pouliquen 1999a.b;
Wieland, Gray & Hutter 1999; Denlinger & Iverson 2001; Iverson & Denlinger 2001 ;
Gray, Tai & Noelle 2003; Bartelt, Buser & Platzer 2007; Cui, Gray & Johannesson
2007; Gray & Cui 2007) with a model for size segregation (e.g. Savage & Lun
1988; Dolgunin & Ukolov 1995; Gray & Thornton 2005; Gray & Chugunov 2006;
Thornton, Gray & Hogg 2006). The feedback between the two can be achieved by (a)
using a composition-dependent basal friction law (e.g. Pouliquen & Vallance 1999),
(b) modifying the assumed velocity profile through the avalanche depth (e.g. Phillips
et al. 2006; Linares-Guerrero, Goujon & Zenit 2007; Rognon et al. 2007) or (c)
making the deposition dependent on the evolving particle-size distribution. A fully
coupled theory is beyond the scope of this paper, but, motivated by observations
from two-dimensional stratification experiments (Williams 1968; Makse et al. 1997;
Gray & Hutter 1997, 1998; Baxter et al. 1998; Herrmann 1998), the key steps that
are necessary to reconstruct the bulk flow field u from the depth-averaged velocity
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u are illustrated, and exact solutions for the particle-size distribution in the resulting
flow are derived.

1.1. Stratification-pattern experiments

Stratification patterns form when a mixture of larger rougher grains and smaller
smoother grains are poured at low flow rates into a narrow gap between two parallel
plates to build up a heap (Williams 1968; Gray & Hutter 1997, 1998; Makse et al.
1997; Baxter et al. 1998; Herrmann 1998). The pattern consists of alternating bands,
or stripes, of large and small particles that are laid down by avalanches that flow
down the free surface of the heap. If, instead, the larger particles are smoother than
the fine ones, the flow changes completely, and the large particles ‘segregate’ into the
triangular region of the pile that is the farthest from the source (Herrmann 1998). This
provides strong evidence that the segregation—mobility feedback effect controls both
the dynamics of the avalanche and the nature of the deposition. The flow rate is also
important (Gray & Hutter 1997; Baxter et al. 1998; Gray & Tai 1998). This is made
particularly clear in thin rotating drum experiments (Gray & Hutter 1997), where
at slow rotation rates Catherine wheel patterns form, in the intermittent avalanching
regime. At higher rotation rates, in the continuous rolling regime, a radial segregation
pattern develops, except near 50 % fill, where petals form through longer time-scale
wave interactions (Hill, Gioia & Amaravadi 2004; Zuriguel et al. 2006).

A thin hopper, originally made by Gray & Hutter (1997, 1998), has been used
to take a closer look at the dynamics of the flow, using a fast digital camera. A
photograph of the hopper is shown in Gray & Hutter’s (1997) figure 3. It consists
of two perspex plates (70 cm high x 37 cm wide) that are separated by aluminium
spacers along the sidewalls to produce a gap of 3 mm. The base is made of perspex,
and there is an orifice at the centre that allows the hopper to be emptied. The
experiment is continuously fed from a cylindrical hopper, which is balanced on top
of the apparatus near one of the aluminium sidewalls. For the experiments presented
here, the hopper is filled with a 50:50 mix by volume of large white sugar crystals of
size 500-600 um and small dark iron spheres of size 210-420 um. A narrow stream
of grains was then allowed to fall down between the parallel plates to build up a
pile of grains. After a short while a flow develops, in which (i) the incoming grains
gather at the top of the heap and intermittently collapse (ii) sending an avalanche
down the surface of the pile, (iii) until the front hits the base plate or the sidewall,
and (iv) a normal shock wave, or granular bore (e.g. Gray & Hutter 1997; Gray &
Tai 1998; Gray et al. 2003), propagates up through the avalanche (v) bringing all the
grains to rest. The processes (i)—(v) are then repeated, except that the old free surface
becomes the new basal surface for the next avalanche to flow down.

The digital camera was used to acquire close-up images of the flow as the
stratification pattern developed. The camera was placed approximately midway
between the source and the downstream wall and about 15 cm above the
base. Figure 1 shows a sequence of images taken as a single avalanche flows
down the free surface of the pile. The initial static deposit is shown in figure 1(a), and
the free surface is located at the top of the uppermost layer of large white particles
and lies at an angle of approximately 36°. In figure 1(c—g) a coarse-particle-rich flow
front propagates down the free surface, at approximately constant speed, and behind
it a steady uniform-thickness flow rapidly establishes itself. Within the interior of
the avalanche the particles are strongly inversely graded, with the large particles on
top of the fine ones, but just behind the flow front there is a mixed region in which
segregation takes place. In figure 1(p—s) a diffuse normal shock propagates up through
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FIGURE 1. A sequence of images (a)—(t) showing how a stratification pattern is built up in
a deposited heap by the passage of a single avalanche. The flow occurs in the narrow gap
between two parallel plates with a spacing of 3 mm; each image is 36.1 mm wide and 38.2 mm
high. The mixture is composed of large rough sugar crystals (white) and smaller more mobile
spherical iron particles, which appear generally darker but have some reflections that give
them a grainy texture. Subsequent avalanches build up further striped layers; an animation
showing the flow and deposition of two avalanches is available with the online version of the

paper.
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FIGUrRe 2. Composite images of the stratification pattern emphasizing the grains close to the
free surface that form the current avalanche. They are derived by darkening the stationary
deposit shown in figure 1(a) and overlaying it on figures 1(g) and 1(t), respectively. (a) The
structure of the coarse-particle-rich flow front and the inversely graded flow behind; (b) The
final emplacement once the shock wave has brought the grains to rest.

the avalanche, bringing the grains to rest and freezing the inversely graded layers into
the deposit to create a static stripe of large and small particles. A longer animation
sequence showing the passage of two avalanches is available with the online version
of the paper.

A new feature of these flows, which has not been previously reported and is
not immediately apparent is the existence of a thin layer of large particles that
are deposited at the base of the avalanche as it propagates downslope. The basal
deposition is made visible by darkening the image of the initial stationary deposit
shown in figure 1(a) and overlaying it on later images of the avalanche. Figure 2(a)
shows the structure of the flow front, with the coarse particles forming part of the
current flow highlighted in white. The head of the flow is entirely composed of
large particles, but further upstream the combination of flow and deposition creates
a particle-size distribution that resembles a small-particle ‘sandwich’, with a raft of
rapidly flowing large particles on top and a coarse carpet of static grains at the
bottom. Figure 2(b) shows the final static deposit after the normal shock wave has
brought the grains to rest. The thickness of the deposited carpet is unaffected by the
passage of the shock, but the upper layer of large grains thickens significantly more
than the layer of the fine ones, indicating that there is strong downslope velocity shear
through the avalanche. The wavelength of the stripes is dominated by avalanching
layer that is brought to rest by the shock.

A particularly interesting observation in figure 2(a) is that the thickness of the layer
of large grains within the avalanche is approximately the same as the thickness of the
freshly deposited layer at the base. This suggests that there is a regime in which all
the large particles that reach the flow front are deposited on the underlying substrate
and hence that the length scale of the coarse-particle-rich flow front is constant.
Travelling-wave solutions in which the avalanche free surface, the basal deposition
and the internal particle-size distribution are steady in a frame moving downslope
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FIGURE 3. A schematic diagram showing the propagation of a granular avalanche down a
rough slope inclined at an angle ¢ to the horizontal. The x-axis is oriented in the downslope
direction, and the z-axis is normal to it. The free surface lies at z = s(x, t), and the base
z = b(x, t) may evolve due to deposition at a rate d close to the flow front. Sufficiently far
upstream the flow is steady and uniform with the friction = tan ¢ balancing the gravitational
acceleration. Close to the front the free surface steepens in order to overcome the increased
resistance to motion, as 4 = tan¢, > tan¢. There is a linear downslope velocity profile
u(x, z, t) through the avalanche depth 4, which drives a bulk recirculation of the flow. Kinetic
sieving and squeeze expulsion cause the large particles to rise towards the free surface, where
the velocity is faster, and they are transported towards the flow front. Once they reach the
margin, they are overrun and either are deposited or rise to the free surface again to create
a recirculating loop. Far upstream the particle-size distribution can resemble a small-particle
sandwich, with an inversely graded avalanche flowing on a normally graded deposit. For sharp
segregation in a bidisperse mixture a sharp segregation shock is located at z = z;.

with the speed of the front ur, as shown in the schematic diagram in figure 3, can
therefore be envisaged. In this paper exact solutions for this case are derived, which
yield important insights into the structure of the particle-size distribution behind a
coarse-particle-rich flow front and the concentration changes as particles are deposited
at the base of the flow. There is also a very interesting analogy between the formation
of two-dimensional stratification patterns and three-dimensional flows in which lateral
levees are formed. In both cases, large rough grains rise to the surface of the flow by
particle-size segregation and then are transported to the flow front by velocity shear,
where they experience more resistance to motion and are deposited. The difference
is that when the sidewalls are not there to suppress the lateral motion, the large
rough grains prefer to be shouldered aside to form the lateral levees, instead of being
deposited at the base and overrun.

1.2. Kinetic sieving and squeeze expulsion

At the heart of these processes is the segregation mechanism itself. Particles of
different sizes, densities and roughnesses are notoriously prone to demixing during
agitation and transport, and there may be competing mechanisms acting all at once.
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Broadly speaking, geologists have found that large clasts rise to the free surface of
a flow through kinetic sieving and squeeze expulsion (Savage & Lun 1988). These
terms describe the processes in which small particles are statistically more likely
to drop down through the gaps that open up beneath them and then lever large
particles upwards. Other processes such as diffusive remixing (Hsiau & Hunt 1993),
convection (Erichs et al. 1995), differential fluid drag (Zhang & Reese 2000), large
inertia ‘intruders’ (Thomas 2000; Mobius et al. 2001) and polydispersity of the grain
size population may complicate this simple picture, and it can be difficult to predict
whether a particle will rise or fall relative to its neighbours. Nevertheless ‘inverse’ or
‘reverse’ grading (Middleton & Hampton 1976) in which the entire grain population
coarsens upwards is common in the field and widely attributed to vertical segregation
within granular flows (e.g. Bagnold 1954).

Despite the importance of particle segregation in geophysical and industrial
applications there have been surprisingly few attempts to model the process even for
idealized bidisperse mixtures of grains. The first theory for dense granular avalanches
was derived by Savage & Lun (1988) from statistical mechanics and information
entropy principles. Using a movable hopper, splitter plates and collection bins, Savage
& Lun (1988) and Vallance & Savage (2000) were able to measure the steady-state
two-dimensional particle-size distribution for a uniform concentration flow out of
a hopper and show that it was in good agreement with predictions of the theory.
There has also been work on dilute systems with models derived from kinetic theory
(e.g. Jenkins & Mancini 1987; Jenkins & Yoon 2001) as well as heuristic arguments
(Dolgunin & Ukolov 1995). These theories include particle-size, particle-density and
diffusive remixing and are more sophisticated than Savage & Lun’s (1988) model.
However, the resulting equations are more complicated to solve, and so far only
one-dimensional problems have been considered.

Recently a very simple description of particle-size segregation and diffusive remixing
has been developed from two- and three-constituent mixture theory by Gray &
Thornton (2005), Gray & Chugunov (2006) and Thornton et al. (2006). These models
are related to earlier theories for segregation in bidisperse mixtures by Savage & Lun
(1988) and Dolgunin & Ukolov (1995) and are capable of capturing the leading-order
segregation effects in granular avalanches. The model assumes that the bulk flow
is incompressible and has a lithostatic pressure distribution through its depth, so
it is consistent with the assumptions of most depth-averaged avalanche models (e.g.
Grigorian et al. 1967; Savage & Hutter 1989; Iverson 1997; Gray et al. 1999; Pouliquen
1999a,b ; Wieland et al. 1999; Denlinger & Iverson 2001; Iverson & Denlinger 2001;
Gray et al. 2003; Cui et al. 2007; Gray & Cui 2007). The hyperbolic version of the
theory (Gray & Thornton 2005; Thornton et al. 2006) has been used to construct
two-dimensional steady-state and time-dependent exact solutions in uniform shear
flows (Gray, Shearer & Thornton 2006; Shearer, Gray & Thornton 2008), which
exhibit evolving concentration shocks, expansion fans and the formation of sharply
segregated inversely graded layers. The parabolic theory (Gray & Chugunov 2006)
has an extra diffusion term that models the effects of diffusive remixing and smears
out the sharp concentration shocks. It is harder to construct exact solutions for this
case, although it is possible to use a linearizing transformation to obtain a general
solution for one-dimensional time-dependent problems. Here the hyperbolic version
of the theory is adopted for simplicity.

Of particular relevance to this paper is that it is possible to generate continuously
breaking size-segregation waves (Thornton & Gray 2008; Mclntyre et al. 2008) that
travel downstream at constant speed and allow the large and small particles to be


https://doi.org/10.1017/S0022112009006466
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:24:56, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/50022112009006466

394 J. M. N. T. Gray and C. Ancey

: up
Ulens X =

0] X

Xuniform

FIGURE 4. A vertical section through a steadily propagating avalanche showing the particle-size
distribution in a growing coarse-particle front. Greyscale is used to indicate the particle
concentration. The white regions corresponds to all large particles, dark grey to all fine ones
and the lighter greys, at intervals of 0.1 units, to the concentrations in between. For sharp
segregation in a uniform depth shear flow (x < Xyuuiform) the coarse-particle front is connected
to the inversely graded flow behind by a breaking size-segregation wave. This consists of
two expansion fans and two concentration shocks arranged in a lens-like structure (Thornton
& Gray 2008) that propagates downslope with constant speed uj.,,. This is equal to the
depth-averaged velocity over its height and is necessarily less than the speed of the front up.
The coarse front therefore grows linearly with increasing time, L = Lo + (4F — Ujens)t.

recirculated in the flow. Figure 4 shows an extension of Thornton & Gray’s (2008)
solution to the case of a coarse-particle-rich front travelling downslope with constant
speed up. Sufficiently far upstream, the avalanche is of uniform thickness with a
sharply segregated inversely graded concentration shock separating the large particles
above from the fine ones below. These regions are joined by a ‘lens-like’ breaking
size-segregation wave, which consists of two expansion fans and two concentration
shocks that propagate downstream at a speed u., equal to the depth-averaged
velocity through the wave (Thornton & Gray 2008). Since the lens does not extend
through the entire flow depth, u,s is necessarily less than the front velocity up,
and the coarse-particle-rich head grows linearly in time. The solution shown in figure 4
gives the first concrete structure for the particle-size distribution at an avalanche front
and is applicable to uniform-thickness flows in which there is no deposition or lateral
transport. In the case of stratification-pattern experiments shown in figure 1, basal
deposition is vital to produce the small-particle sandwich in the deposit that was
made visible in the composite image in figure 2. It is therefore of interest to solve the
segregation equations in a non-uniform depositing flow.

2. Reconstruction of the bulk motion near the flow front

In §1 it was argued that the evolving particle-size distribution has a strong
segregation—mobility feedback on the motion of the avalanche that causes the larger
rougher particles to deposit on the underlying surface as they reach the flow front.
The strongest evidence for this is the dramatic change between ‘stratification’ and
‘segregation’ patterns in heaps, as the relative roughness and size of the large and small
particles are varied (Herrmann 1998). Given our relatively rudimentary understanding
of particle-size segregation in non-uniform depositing flows, a fully coupled solution
is beyond the scope of this paper. The primary aim here is to solve the segregation
problem in a flow that captures the key qualitative features of the motion observed
in the experiments in §1.1. In particular, a simplified depth-averaged travelling-
wave solution for the velocity # will be constructed that has a well-defined steadily
propagating flow front, near which grains are deposited, and far upstream the flow
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is steady and uniform with no further deposition. Assumed velocity profiles through
the avalanche depth will then be used to reconstruct the bulk velocity field u needed
by the segregation theory. Although this derivation does not solve the fully coupled
problem, it illustrates some important aspects of how full coupling may be achieved.
It also neglects sidewall friction which can have a controlling effect on the thickness
and velocity of steady uniform flows that develop on top of the pile (Jop, Forterre &
Pouliquen 2005, 2006; Jesuthasan, Baliga & Savage 2006; Savage 2008) with flows in
a wide channel differing significantly from those observed in narrow channels.

Our premise in this paper is that the larger rougher grains are deposited near
the flow front because of the greatly enhanced friction that they experience when
they reach it; i.e. the deposition observed in stratification experiments is primarily a
segregation—mobility feedback effect. Static layers may also be deposited in narrow
channels because of sidewall friction (Taberlet et al. 2003, 2004). These flows are
characterized by a steady uniform avalanche that forms on top of a super-stable heap
of grains, which has a much higher angle of repose than one would usually expect.
When the inflow stops, all the particles flow out, provided that the channel angle is
sufficiently high. This is rather different from the deposition observed at low flow rates
in the stratification experiments in § 1.1, since both the initial and final pile surfaces
are already raised to a slightly higher angle of repose by sidewall friction (Grasselli
& Herrmann 1997) and are stable even when no grains are flowing down them. The
introduction of particles of different sizes and roughnesses introduces a rich variety of
behaviour, which is rather different from what happens in steady monodisperse two-
dimensional granular flows down slopes or in very wide three-dimensional channels,
where particle dynamics simulations (Silbert et al. 2001; Silbert, Landry & Grest
2003; GDR MiDi 2004 ; Baran, Ertas & Halsey 2006) and experiments (Deboeuf et al.
2006) show that no static layers develop. There is, however, no inherent contradiction
between the results in the monodisperse and bidisperse systems.

2.1. Governing equations

Let Oxz be a coordinate system inclined at an angle ¢ to the horizontal and aligned
with the free surface of the static heap as shown in figure 3. The x-axis is oriented in
the downslope direction, and the z-axis is normal to the slope, with the free surface
lying at a height z = s(x, f) and the base at z = b(x, ¢). It follows that the avalanche
thickness measured normal to the slope is

h(x,t) =s(x,t)—b(x, t). (2.1)

The avalanche has velocity components u(x, z, t) and w(x, z, t) in the downslope and
normal directions, respectively, and is assumed to be incompressible with a lithostatic
pressure distribution through its depth. The depth-averaged downslope velocity is

u(x,t)=—

s(x,1)
/ u(x, z,t)dz. (2.2)
hJy

(x.1)

Assuming that the flow is shallow the equations can be integrated normal to the slope
to yield depth-averaged mass and momentum balance equations (Gray 2001) that
include the effects of basal deposition,

oh 0

o T achi) =—d, (2.3)

1 b
i(hL‘t)—i-i(Fhﬁz)—i—i —gh®cos¢ | =hgcost tan{—u—a— —ud, (2.4)
ot ox ax \ 2 ox
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where d is deposition rate; g is the coefficient of gravitational acceleration; u is the
basal friction coefficient; and the shape factor F = u2/ii* is assumed to be equal
to unity for simplicity. These equations implicitly assume that the earth-pressure
coefficient, used in some theories, is equal to unity and that the process of deposition
has a neutral effect on the depth-averaged velocity. The non-strictly hyperbolic system
((2.3) and (2.4)) is closely related to the shallow-water equations of fluid mechanics
and has wave speed ,/ghcos¢. It follows that the Froude number can be defined as

Fr=——% (2.5)

Jghcost’
The primary difference from shallow-water flows is the presence of source terms on
the right-hand sides of (2.3) and (2.4). These represent the physical effects of gravity
acceleration, basal friction, changes in topography and deposition of mass. Finally, it
is useful to supplement these equations with the kinematic condition for the evolution
of the basal surface b as mass is deposited. This states that on
ab ab

z=>b(x,1), §+uba_wb=d’ (2.6)

where u, and w, are the velocity components at the base of the avalanche.

2.2. Travelling waves with erosion and deposition

Motivated by the observations of the flow fronts in the stratification experiments in
§ 1.1, a travelling-wave solution is sought for a front propagating downslope with
speed ur. Introducing a front-centred coordinate system (&, 7),

§=x—urpt, T=I, (2.7)
(2.3), (2.4) and (2.6) transform into

.
E(h(u —ur)) =—d, (2.8)
(ﬁ—u,:)gl;-l—gcosggg=gcos§(tan§—u), (2.9)
(up — MF)gg —wp =d, (2.10)

where the depth-averaged momentum balance equation (2.9) has been simplified with
the use of (2.8), and the topography and pressure gradient terms have been combined
to yield a gradient in the free-surface height s.

Assuming that the velocity at the base of the avalanche is zero, ie. u, = 0 and
wy, = 0, (2.10) implies that the deposition rate d = —urdb/0&. This allows the depth-
averaged mass balance equation (2.8) to be integrated subject to the boundary
condition # = b =0 at £ =0, to show that

b= /lh, (2.11)
where

ﬁ—MF

;\’:

(2.12)

Ur
is the non-dimensional velocity difference between the bulk flow and the front.
Equation (2.11) relates the basal topography height b to the avalanche thickness #,
the depth-averaged velocity # and the front speed ur. Equation (2.9) provides the
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only other independent equation to calculate one of the remaining unknowns, and
it is necessary to make another assumption to close the problem. One approach,
which has been used successfully by Doyle et al. (2007) to model collapsing column
experiments (Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Lube et al. 2004;
Balmforth & Kerswell 2005) is to prescribe the deposition rate d. Here, however,
Pouliquen’s (1999b) original hypothesis that the mean velocity is equal to a constant
throughout the avalanche is followed, i.e.

i =14 Aup, VE, (2.13)

where 1 becomes a constant parameter that determines the amount of deposition.
Note this is a model assumption when 4 #* 0, but when there in no deposition
(A = 0) it is imposed by the depth-averaged mass balance equation (2.8). In
the solution presented here, the deposition is uncoupled from the evolving particle-size
distribution and is prescribed by setting the value of /. However, the overall premise
of this paper is that larger rougher particles that reach the flow front are deposited
because of the enhanced frictional resistance to motion that they experience there. It
follows that in a fully coupled theory the deposition rate d would be coupled with
the evolving size distribution and the dynamics of the avalanche front.

Since there are no gradients in u# the depth-averaged momentum balance
equation (2.9) reduces to

as

T =tan¢ — u, (2.14)
which is identical to equation (3) in Pouliquen (1999b) in the absence of deposition. It
describes a simple balance between the free-surface gradient, gravitational acceleration
and basal friction. This is one of the points in the theory where additional effects
could be added to make the bulk flow more realistic. For instance, a fully coupled
model can be created by treating the basal friction u as a volume fraction weighted
average of the friction associated with each of the pure phases (e.g. Pouliquen &
Vallance 1999), and wall friction effects (e.g. Taberlet et al. 2003, 2004; Jop et al.
2005, 2006; Jesuthasan et al. 2006; Savage 2008) could also be added. However,
since so little is known about the nature of the solutions to the particle-size
segregation problem, an uncoupled empirical law for flows down rough inclined planes
(Pouliquen & Forterre 2002) will be used at this stage. The Pouliquen & Forterre
(2002) friction law assumes that for inclination angles below ¢; there is no flow; for
angles in the range ¢; < ¢ < ¢ steady uniform flows develop; and for inclinations
above ¢, the flow is accelerated. It is dependent on the local thickness and Froude
number of the flow,

tan ¢, —tan g

1+ Bh/(LFr)
where the empirical constant 8 = 0.136 and .& is typical length scale for the transition
between ¢; and ¢,. It has the advantage over the exponential form of the friction law

(Pouliquen 1999a.,b) in that it allows an exact solution for the free-surface shape to
be constructed. Defining the parameter

w(h, Fr) =tan¢, + (2.15)

_ tang —tang

= (2.16)
tan{ —tan ¢

and considering what happens in the far field, where ds/0¢ = 0 and where the flow
depth is equal to A, it follows from (2.5) and (2.14)—(2.16) that the depth-averaged
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FIGURE 5. The shape of the avalanche free surface § is plotted as a function of £ using a solid
line for y = 1.5. It is independent of the deposition. The basal topography height b is also

plotted as a function of§ for deposition parameter A = 1, 0.3, 0, —0.2. The dot-dashed curves
correspond to depositing flows, the dashed curve to erosive flows and the solid straight line to
a fixed bed.

velocity

= <ﬂvgco“> w2, (2.17)
Ly "
This has the well-known thickness to three halves velocity scaling (Vallance 1994;
Azanza 1998; Pouliquen 1999a) and is, by assumption, constant throughout the flow.
The front speed ur can then be calculated by (2.13). It is convenient to introduce
non-dimensional coordinates
Soo A
= 5,2, =——— ¢, 2.18
¢ Soo2 g: tan{z—tangls ( )
where s, = (1 + A)h., is the far field free-surface height. Using (2.17) to eliminate i
from (2.15) and the identity § = (1 + /I)h (2.14) reduces to the separable ordinary
differential equation

a1 1
dé 14y 14y

This degenerates to d§/dé = 0 when y = 0 and as y — oo, which if §(0) = 0 implies
that § = 0 everywhere. For finite non-zero y, (2.19) may be integrated exactly subject
to 5(0) = 0, to give the position & in terms of the thickness § € [0, 1]:

. L () (1—5) 1425\ =©
E=(1+y)5+ 3 ll <s+\[+1>+2ﬁatan< 7 ) \/31' (2.20)

The solution is independent of the deposition parameter 4 and is shown in figure 5 for
y = 1.5. The front lies at £ =0and approaches unity as & — —oo. The characteristic
convex shape arises because the basal friction coefficient wu increases from tan¢ to
tan ¢, as the flow thickness decreases from /4., to 0 in (2.15), which must be balanced
by a negative free-surface gradient in (2.14).

(2.19)
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The deposit height b can be non-dimensionalized by (2.18) and expressed in terms
of the free-surface height § by (2.1), to give

/1 A
1+;¥S.

Deposit profiles are illustrated in figure 5 for 2 =1, 0.3, 0 and —0.2 and y = 1.5. In
all cases the majority of the deposition/erosion occurs close to the flow front where
the free-surface gradients are highest, consistent with the experiments in §1.1. For
depositing flows in which A > 0 the depth-averaged velocity # is greater than ur, by
(2.13), implying that there is a net transport of grains towards the front. However,
it is also possible to construct steadily propagating erosive fronts with 4 < 0, and
these may be useful for describing the metastable experiments of Daerr (2001), Ancey
(2002) and Douady et al. (2002), as well as erosive fronts in snow avalanches (Issler
2003).

Z):

(2.21)

2.3. Reconstruction of the two-dimensional bulk flow field

A significant contribution of this paper is to show how the two-dimensional bulk
flow field can be reconstructed from a one-dimensional depth-averaged avalanche
solution, using assumed velocity profiles through the avalanche depth. For simplicity
the downslope velocity is assumed to be linear and satisfies the no-slip condition at
the base:

_(z—0D
u= 2”( h > bsess. (222)
0, 0<z<b,

where the depth-averaged velocity # is constant by (2.13). There is nothing inherently
special about a linear velocity profile, and most of the results generalize easily to
nonlinear velocity profiles (e.g. Thornton & Gray 2008). The shape of the assumed
velocity profile provides a further point at which a more general fully coupled theory
could take account of the local particle-size distribution. Indeed, there are now discrete
numerical simulations of bidisperse disks (Linares-Guerrero et al. 2007; Rognon et al.
2007) and experiments (Phillips et al. 2006) that suggest that the feedback on the flow
profiles may be important in enhancing the run-out of bidisperse avalanches.
The normal velocity w can be reconstructed by integrating the incompressibility

condition,

ou Jdw

9§
through the avalanche depth, subject to the condition that w = 0 on z = b. Using
(2.11) and the fact that # and A are constants, the normal velocity throughout the
avalanche is

=0, (2.23)

udh ,
w— h2d§( b*), b<z<s, (224)
0, 0<z<b.
In the moving coordinate system the particle path z = z,(&) is given by
d¢ dz,
N il 22
g U o= (2.25)
Since the velocity field is steady, time may be eliminated to give
dz, w
—£ = . 2.26
d.‘;‘_ uUu—Uur ( )
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Following Gray & Thornton (2005) and Thornton & Gray (2008), a depth-integrated
velocity coordinate

w=/0 w(, 7)) —updZ (2.27)

is introduced to transform the normal coordinate z. If v,(§) is the particle path
z = z,(&), expressed in depth-integrated velocity coordinates, then differentiating
(2.27) with respect to &, using Leibniz’s rule (Abramowitz & Stegun 1970) and the
incompressibility condition (2.23), yields the relation

dy, ~ dz,
@—(u ur dé’ w

The particle path equation (2.26) in depth-integrated velocity coordinates therefore
reduces to the trivial ordinary differential equation

dy,
dg
That is each particle path v, is equal to a constant value ¥, determined at the inflow

as & — —oo. For the linear velocity field the coordinate v can be calculated explicitly
by substituting (2.22) into (2.27) and integrating to give

(2.28)

=0 = Y,=1v,. (2.29)

u 2 1212
1!/2 E(Z —KZh+/Lh), b<z<s, (230)
—Urz, 0<z<b,
where « is a function of the deposition parameter A:
1
= ) . . 1
K =2+ T (2.31)
The depth-integrated velocity coordinate  is in fact the streamfunction, since
d ad
%=u—u;, ;Sﬁ:—w, 0<z<ys, (2.32)

and therefore automatically satisfies the incompressibility condition (2.23). The
streamfunction coordinates (&, ) are very useful for constructing exact solutions
to the segregation equation in §3, and it is important to understand some of their
properties. The streamfunction v is zero along the avalanche free surface z = s and
the chute surface z = 0. For fixed 4, it decreases to a local minimum at z,, = «h/2
and has a global minimum at z,; = «xh. /2 as § — —oo. Introducing non-dimensional
variables

u=urll, w=ur(tant, —tans))d, v = s, uri, (2.33)
which reflect the shallowness of the spatial non-dimensionalization in (2.18), the non-
dimensional streamfunction becomes

14+ 1 ~ N N
A T _sh 4 7R, b<<s,

V=2 h (2.34)

-2, 0<z<b.

In streamfunction coordinates, the no-mean-flow line z,, = «xh/2 is

U, = (A2 — k2 /4)3, (2.35)
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FIGURE 6. The particle paths at a depositional flow front given by parameters y = 1.5 and
A =0.3. The free surface and basal deposition interface are shown with solid black lines, and
the hatched region is empty. The material above the no-mean-flow line Z,, (grey dashed line)
moves towards the front, and that below it move backwards. Particles starting below 25, = far

upstream are recirculated (dotted lines), while those starting above Z3, (dot-dashed curves)
are deposited (grey circles) and move back along the black dashed lines. Above the main figure
is a compressed image showing the solution in a more realistic aspect ratio.

and the basal deposition surface b can be expressed as
A

N

by (2.21) and (2.34). These are shown in figure 6. The no-mean-flow line qu marks the

local minimum of ¥ for fixed § and divides the ¥ coordinate system into upper and
lower domains. In the upper domain the bulk flow is from left to right, towards the
front, While in the lower domain, the flow is from right to left, away from the front.
The non-dimensional height of a point (S w) can be found by iterating for § € [0, 1]
using (2.20), computing the equivalent avalanche thickness h=3 §/(1+7) and then using

vy = (2.36)

h 49
Plerfee—ars -2 ) 5, <2<
2 (14 A)h
i=1 w (2.37)
Ple—fe—ars 2 ) b<i<a,
2 (1+ A)h
-y, 0<%2<b
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Since there are two values of 2 for each value of ¥, it is important to keep track of
which domain the solution is in, when mapping it back into physical space.

If a partlcle enters the avalanche at a helght % as € > —oo, and the avalanche
thickness in the far field is A, then, since ¥ is constant along a particle path, (2.34)
implies that the particle will exit at height

Zoit = ko — 2 (2.38)

as &€ > —owo again, provided that it stays within the flowing layer. Equation (2.38)
allows us to determine some important limiting values. Firstly, the inflow and exit
heights are the same at z;, = = xh.,/2. Moreover, the exit helght is equal to the deposit

height 1330 in the far field if Z;, is equal to o, = (K — A)hao, which is the height at
which the velocity is equal to twice the front speed, it,, = 2iir, as &€ — —co. Particles
are therefore recirculated within the flow, provided Z; < Z;, < z3,, . Each flow path
may be parameterized by defining the height z,, € [Z;,, ze,\,,] and solvmg the quadratic
equation (2.34) for the associated avalanche thickness,

[(1+ )z, + o] — \/[(1 + kzZ, + U2 —4(1 + A20232
- 2+ D2 ,

where V., is determined by substituting Z;, and h.. into (2.34). From (2.1), (2.11) and
(2.18), the corresponding free-surface height

§, = (14 Wh,, (2.40)
and from (2.20) its spatial position is given explicitly by

In ( (1_\/;’”)2 >+2ﬁatan<l+2\/g> _n]'

(2.39)

(1+y)

Sp+ /5, +1 V3 J3

(2.41)

The recirculating flow paths are shown as dotted lines in figure 6. Particles enter
from the left in [Z;, 25, ] and are transported around in a series of arcs that exit in

[)fzo@, zZy]. Equation (2.26) 1mphes that each arc has an infinite gradient as it crosses
the no-net-transport line z,, = ich /2, which is where i = . Particle paths that start
at a height z;, > 23, are deposited during the flow, and their deposit height Z4, can
be determined by setting h= z/4 in (2.34) to show that

Zdep = — Voo (2.42)

The particle paths in the flowing region can therefore be parameterized by z, €

[Zin, Zaep) and using (2.39)—(2.41) to determine the corresponding position ép as before.
These paths are shown as dot-dashed curves in figure 6. Once the particles are
deposited they move upstream relative to the moving front, and (2.34) implies that
they stay at their initial deposition height, Z,,, given by (2.42). These correspond to
the straight dashed lines in figure 6.

3. Particle-size segregation at a depositional flow front

A very simple approach to modelling particle-size segregation in granular
avalanches is adopted (Gray & Thornton 2005; Thornton et al. 2006), which assumes
that there is an idealized bidisperse distribution of large and small particles, that there
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is no diffusive remixing and that there are no density effects. In this case the theory
reduces to a single scaler hyperbolic equation for the volume fraction of small particles
¢ € [0, 1] per unit granular volume. The volume fraction of large particles per unit
granular volume is 1 — ¢, and the solids volume fraction v is assumed to be uniform
throughout the avalanche. Particle-size segregation in granular avalanches is driven
by a combination of kinetic sieving and squeeze expulsion, and their net effect is
accounted for by considering the momentum balance components of each constituent
normal to the slope. The model rests on the observation that the large particles
support more of the overburden pressure, as the small particles percolate through
the interstices, but once segregation has ceased they must both support the overlying
grains. Assuming that normal accelerations are small, the normal components of the
large- and small-particle non-dimensional velocities are

W' =W+ S, (3.1)
W =w—S.(1 —¢), (3.2)

where the subscripts I’ and ‘s’ are for ‘large’ and ‘small’, respectively. The non-
dimensional segregation number

q

= ir(tant, — tangy)’ .
implied by the scalings (2.18) and (2.33), is the ratio of a typical time scale for
downstream transport s, /(ur(tan g, —tan¢;)) to a typical time scale for segregation
S»/q, where g is the mean segregation velocity. These equations imply that the large
particles will go up until there are no more fine ones to go down and that the small
particles will go down until there are no more big particles to go up. The downstream
velocity is assumed to be unaffected by the segregation, i.e. i’ = it* = ii. When (3.2) is
substituted into the small-particle mass balance equation (e.g. see Gray & Thornton
2005, equation (2.2)) it yields the conservative form of the hyperbolic segregation

equation
ap 9

RN _
T gE @)+ S5(9) — (S —9) =0, (3.4)

Using the bulk incompressibility equation (2.23) and assuming S, is constant in the
flowing avalanche, (3.4) reduces to

dp 0 09 0 B
y—kua—i—#wa—%—&a—zw(l—(b))—o. (3.5)

The final term on the left-hand side accounts for the effects of segregation. When
it is zero, (3.5) reduces to an equation for a ‘passive’ tracer, and the small-particle
concentration ¢ is simply swept along with the bulk flow. Segregation shuts off when
¢ equals either zero or unity, so there is no further sorting once either the large or the
small particles have separated out into a pure phase. The concentration ¢ therefore
automatically stays in the range [0, 1].

3.1. Characteristics, jump conditions and particle paths

The stratification experiments shown in figures 1 and 2 suggest that there are
depositional solutions in which the the length of the coarse-particle-rich flow front
remains constant. In order to investigate such solutions, it is convenient to introduce
a change of variables,

Z
$ =i E—%—ag, w=/a(s,z'>—apdzc (3.6)
0
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to transform (3.5) into a frame moving downslope at the front speed 7iy = 1 and to
map the 2-coordinate into the streamfunction coordinate v, described in §2.3. For
steady solutions in the travelling frame, d¢/3% = 0, which allows a factor u — iir to
be cancelled, to leave a quasi-linear equation for the small-particle concentration ¢:

i) 3 B
9% Srﬁw(l —¢))=0. (3.7)

This can be solved by the method of characteristics. For a characteristic starting at
(&5, ¥,) the concentration is equal to the constant ¢, along the line

V=V, + 8,20, — 1)(E —&,). (3.8)

When the characteristics intersect discontinuous concentration shocks are formed.
A limiting argument (e.g. Chadwick 1999) can be used to derive the concentration
jump condition from (3.4), which holds at the discontinuity. If 2 = %(%, 7) is the shock
surface, propagating with speed ¥, in the direction of the unit normal #, then the
shock must satisfy

(@ - a—0,)1 = [S¢(1 — )k al, (39)
where the jump bracket [ /]| = ft— f~ is the difference of the enclosed quantity on the
forward ‘4 and rearward ‘—’ sides of the discontinuity, and k is the unit vector normal
to the slope. For the case of a steady travelling wave in the frame moving with the
front, the velocity &t = (it — fi, W), the unit normal # = (—dZ/d&, 1)/(1 + (dz/d&)*)'/?
and the normal propagation speed ¥, = 0, which implies that the shock condition is

L adz _
(=) — = S(p+ + b —1). (3.10)
d§
By switching to the streamfunction coordinates (2.27) this reduces to
dy
= =S(pT +¢ —1). 3.11
FE (2 ) (3.11)

There is an interesting correspondence between the shock condition (3.11) and the
paths of the large and small particles. The velocity components defined in (3.1) and
(3.2) imply that these satisfy the three equations

dé dz’

TA — =1 Sr y

AE g~ WS
Since the velocities are independent of time

iz b+S¢ d¥ D—S(1—9¢)

9 51— (3.12)
dz

=ﬁ—ﬁp,

A a—ap° dE a—dr
which on transformation into streamfunction coordinates implies that the large- and
small-particle paths are governed by

(3.13)

dy!

—= = 90, 14
e S, (3.14)
dy

v _ — r 1— N .1

3 S(1—¢) (3.15)

respectively. The equation for the large-particle path (3.14) is identical to the equation
for a shock (3.11) when ¢* = 1, while the small-particle path equation (3.15) is
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equivalent to the shock equation (3.11) when ¢ = 0. Tracking large particles is
therefore equivalent to solving for a shock with small particles on the forward side,
and tracking small particles is equivalent to solving for a shock with large particles
on the other side. This cross-correspondence proves useful later on, as the solution
involves a particle path that turns into a shock at an unknown location.

3.2. Structure of the breaking size-segregation wave at the flow front

In the far field the flowing part of the avalanche is assumed to be inversely graded,
so that all the large particles lie above the small ones. Putting ¢* =0 and ¢~ = 1 in
the shock condition (3.11) yields the trivial ordinary differential equation dyr [dé =0.
The incoming concentration jump therefore lies along the particle path v =, in the
upper domain. It is immediately apparent that if there are more large particles being
transported towards the flow front than can be deposited into the stationary layer,
then the front will grow with increasing time, as in figure 4. A necessary condition
for breaking size-segregation waves, which travel at the same speed as the front i,
is that

5> 2%, (3.16)

500

where 27 is the height of the /, path as & — —c0, and the height 25, marks the
transition between recirculating (dotted) and depositing (dot-dashed/dashed) bulk-
particle paths in figure 6. The inequality (3.16) imposes an important restriction on
the composition of the mixture and the total amount of deposition in the flow. The
global concentration of small particles @ can be calculated by integrating the mass
flux of the fine ones @i between b and § at the inflow and dividing by the bulk mass
flux hii. Using (2.21) and (2.31) and the inequality (3.16) it follows that @ satisfies the

inequality
. N
| Y N 2P — by 1
D= wlpdZ = =5— | > —— 3.17
hit /b ¢ ( h., ) (14 2)? G170

for all the incoming large particles to be deposited. In particular, if there is no
deposition, 4 = 0, then there are no flow compositions that support a travelling-wave
solution with the same speed as the front.

Assuming that the inequality (3.16) is satisfied it is possible to construct solutions
in which the ¥, particle path intersects the basal deposition surface. The complete
structure of the solution is illustrated schematlcally in ﬁgure 7 and has many
similarities with the lens-like solution shown in figure 4. There is an expansion fan
centred at point A, which lies on the no-mean-flow line v = 1//,” This expands into
the upper domain of material moving towards the flow front, and the concentration

within the fan is
1 v —
p==-1+4+—"%—"1], 3.18)

where (€4, 17/A) is the position of point A in streamfunction coordinates. The leading
¢ = 1 characteristic AB is given by the line

U=+ 56 -8, (3.19)
and this intersects the inversely graded layer U =, at point B
%=&+ﬂ§ﬂu (3.20)
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FIGURE 7. A diagram showing the position of the breaking size-segregation wave relative to
the flow front. The large particles are separated from the small grains below, by a shock
that lies along the ¥/ = v, particle path in the upper domain. The upper expansion fan is
centred at point A (thin solid lines) above the no-mean-flow line z = Z,, (grey dashed line).
The ¢ = 1 characteristic AB intersects the v, particle path at point B, and a shock BC is
generated. As the shock reaches the no-mean-flow line at point C it forms a lower expansion
fan (thin solid lines) below Z,,. The ¢ = 0 characteristic CD intersects with the ¥, particle
path in the lower domain at point D, and the large-particle path generated from D meets up
again with the centred expansion at point A. At the centre of the breaking wave is an eye of
constant concentration, in which the characteristics form closed lozenge-shaped curves (thin
lines). There is a unique position for the breaking size-segregation wave, which requires that
the large-particle path DA just touches the basal deposition interface z = b at a tangent point
T (black circle). The large-particle path TA is also a shock. A good approximation for the
positions of both D and T is the point (ém,-,,, Zmin), Where the particle path v, intersects with b.

Since there are no more small particles above Uy to percolate downwards, a shock
BC is generated between the expansion fan (3.18) on one side and a pure phase of
large particles on the other. The shock condition (3.11) yields the linear ordinary
differential equation

W_l(v=va_ g (3.21)
ds 2\ §—¢&
This can be solved subject to condition that it starts from (Ep, Y1) to give
b= — S — B0+ 20/ — D/, 6 — ). (3.22)

The upper shock BC starts at (53, ) and propagates downwards, reaching the no-
mean-flow line at (&c, ¥rc). Below ¢ = t/ru, the flow direction, and hence the time-like
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direction for the characteristics, reverses. Theorem 3.1 of Shearer et al. (2008) implies
that the continuation of the shock in the lower domain does not satisfy the Lax
entropy condition, and instead it breaks into a fan centred at (¢c, ¥¢) in which the

concentration
1 s
p=1(1- Ve ) (3.23)
2 Sr (SC - S)
The lead ¢ = 0 characteristic CD lies along the line
U =+ S,(c— ) (3.24)
and intersects the ¥ = v/, particle path again at point D,
Ep ==§c-—4%5i§i£9. (3.25)

For steady states the breaking segregation wave recirculates large particles on the
Yp particle path. Part of the path DA also forms a shock across which the small
particles separate out, but since the equations for this shock and particle path are
identical, it is not necessary to determine the location of the transition until later. The
large-particle path equation (3.14) within the fan (3.23) becomes

dyp 1 ¥ — V¢
— =S5 -—=]. 3.26
d¢ 2( $C—§> (326

This can be solved subject to the condition that it starts at (Ep, ¥1) to show that

b= ve—SiEe —8)+ 2/ I — De/S, e — B). (3.27)

This intersects the no-mean-flow line fh = @MF again at (§A, @A). The continuation
of the shock into the upper domain is unstable by the Lax entropy condition
(Shearer et al. 2008), and it forms an expansion fan centred at (£4, ¥4), consistent
with our original assumption in (3.18). The combination of the two expansion fans
and two shock waves forms a structure that Thornton & Gray (2008) termed a
breaking size-segregation wave or ‘lens’. There is an interesting new feature in this
case. Since {4 # Y¥c, there is an additional central ‘eye’ of constant concentration,

! Y — v
eye == | 1 + —F—5— |, 3.28
Poe =3 ( Sr(sc—fA)> (328

that is bounded above and below by the characteristics

A

VT = Va + Qbeye — DS E — En), (3.29)
bt = e = 24ee — 1)S,(Ec — ). (3.30)
By subtracting (3.29) from (3.30) and using (3.28), it is easy to show that ) enper
is equal to Qfé;’e”” for all values of &. In streamfunction coordinates, the upper and
lower boundaries of the central eye are therefore identical, except that one is located
in the upper domain, and the other is in the lower one. Within the central eye the
characteristics form closed lozenge-shaped curves as shown in figure 7.
A contour plot of the small-particle concentration is illustrated in figure 8. This
shows that there are higher concentrations of large particles at the bottom left of the
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FIGURE 8. A contour plot of the small-particle concentration ¢ as a function of (€, 2) for the
bulk flow illustrated in figure 6. White regions correspond to large particles and dark grey
to pure fine, and there is a continuous scale in between (inset). The large and small particles

enter from the top left and are separated by a shock along 1/A/L = —0.193. This value of is

related to the composition of the mixture and corresponds to a height z7° = 0.858 as R—
The non-dimensional segregation number S, = 0.1. The central eye of the breaking wave is
indicated by the dot-dashed line, and above the main figure is a compressed image showing
the solution in a more realistic aspect ratio.

lens, and it becomes increasingly dominated by small particles towards the top right.
Above the main part of figure 8 is a compressed version, which shows the solution in
a more realistic aspect ratio. This has many features in common with the photo of the
stratification experiment in figure 2(a). There is a flow front that is entirely composed
of large particles, which propagates downslope at constant speed. Coarse grains that
are sheared, by the bulk flow, towards the front pass over the top of the breaking
size-segregation wave, are overrun and then deposited to form a stationary layer at
the base. Upstream of the breaking wave, the avalanche concentration distribution
resembles a small-particle sandwich, with a layer of rapidly flowing large particles at
the top and a layer of deposited coarse grains at the bottom. Just as in the experiment,
the upper and lower large-particle layers are almost the same thickness as they
move towards and away from the moving front. The upper layer is slightly thinner,
due to mass balance. Hyperbolic segregation theory is therefore able to capture the
gross features of the particle-size distribution in the experimental avalanche. However,
sharp shocks may be smoothed by diffusive remixing (Gray & Chugunov 2006), and
the discreteness of the physical system obscures the fine mathematical structure of the
breaking wave in figure 2(a). There may also be other effects such as unsteadiness,
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out-of-plane motion, polydispersity and variations in the segregation rate S, and/or
the solids volume fraction v that complicate this still further. Nevertheless some
form of breaking wave must exist, in order to join the coarse-particle front with the
inversely graded flow behind and recirculate the large particles. Discrete numerical
simulations may be able to give some further insights here, but, to date, existing
computations have been done using bidisperse disks on relatively short smooth beds
(e.g. Linares-Guerrero et al. 2007), and they have not been looking explicitly for these
types of structures.

3.3. Location of the breaking size-segregation wave

It will now be shown that, in a two-dimensional depositing flow, there is a unique
position for the breaking size-segregation wave described in §3.2. There are two
constraints on the position of the wave. If it lies too far upstream, the bottom of the
wave intersects the basal deposition surface, violating the assumption that S, is equal
to a non-zero constant, while if it is too far downstream, not enough large particles
are deposited, and some of them are drawn into the lens driving a time-dependent
readjustment. For a steadily travelling wave to exist, the v, large-particle path must
just touch the deposition surface, v, ; i.e. there is a unique tangency point (&7, ¥7) on
the particle path (3.27) at which

V(Er) = UEr), (3.31)
_d (3.32)
|, d§

where 1, is the function of § given in (2.36). Although it is easy to state the conditions
(3.31) and (3.32), there is no closed form solution, and instead one must iterate for its
position. The simplest way to do this is to iterate for the free-surface height Sc, where
the lower expansion fan is located. This has the advantage that once Sc is known, the
fan position (SC, Zc) can be recovered explicitly by (2.20) and (2.37). Figure 9 shows
a close-up diagram of the base of the lens and the constructions necessary to find
Sc. A useful lower bound for §c is the free-surface height at which the bulk-particle
path ¥, reaches its maximum downstream distance. This occurs when it intersects
the no-mean-flow line 1//uF, and the corresponding free-surface height and position
are given by

A

A _ WL 2 _ Eya A _ K A
sma.x - A‘2 _ K‘2/4’ Smax - S(S'nax)’ Zmax - 2(1 + }v)sma)C' (3‘33)

A good first estimate for the position of the tangency point is where the v/, bulk-
particle path intersects the basal deposition interface at

R 14+ 2 A A R VA
Smin = _7WL7 %_min = E(Smin)7 Zmin = 1+ 4 > Smin- (334)

A
Projecting the ¢ = 0 characteristic curve (3. 24) which passes through (ém,n, &L)
back onto the zero-mean- -flow line gives the minimum position of (Ec, wc) which
is termed (Ec,mn, ow,n) This can be found by iterating for the free-surface height
gC,,,,-,l € [Smm’ smax] Wlth

UL — S:(EGc,,) — Emin) = (V2 — K2 /4)5c,, . (3.35)
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FIGURE 9. A close-up diagram of the intersection between the breaking size-segregation wave
(thick solid line) and the basal deposition surface 2 = b. The lower expansion fan is centred
at point C and lies on the (grey dashed) no-mean-flow line Z = Z,,. The lower part of the
wave is bounded by the ¢ = 0 characteristic curve CE. This intersects the @L particle path
(dash-dotted line) at point D and the basal surface at point E. An iteration must be performed
to find the é‘-coordinate of the fan, éc. Since point E cannot be less than ém,«n, éc cannot be
less than SEC,,,,-,,, where éc,ni,, is the projection (dotted line) of the ¢ = 0 characteristic curve that
passes through émm back up to the no-mean-flow line. An upper bound for éc is determined by
the maximum downstream distance §max of the 1?/L particle path. Point C must be located so
that the large-particle path emanating from point D just touches the basal deposition surface
2=bhat point T. The tangent point T lies between points E and F, where F is the projection
of a shock starting at E.

The free-surface height §c therefore lies in the range [s,u., Sc,, ], and the iteration
proceeds as follows: First construct point E at which the ¢ = 0 characteristic intersects
the basal topography by iterating for Sz € [Spin, Smax] USING

et $,Ge —8Ge)) = -85 = P

(3.36)

This is an upper bound for the tangent. A lower bound is given by point F, where the
large-particle path starting at (§g, ¥g) would have intersected the basal topography,
if S, # 0 in the deposition region. This can be found by iterating for §z € (sg, 1] with

e = S,(e —EGr) + 2/ Te = Jey/ e —EGr) =~ = . (337)

The tangent Sy therefore lies in the range [Sg, Sr]. Substituting (2.36), (3.26) and
(3.31) into the tangency condition (3.32) yields an equation that can be used to iterate
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FIGURE 10. A contour plot of the equivalent free-surface height §c at which the lower
expansion fan is located, as a function of the non-dimensional segregation number S, and the
particle path of the incoming shock ,. There are no steadily recirculating and depositing
solutions for paths vy, below @ﬁr There is also a spandrel-shaped region in the top left-hand
corner, where the segregation is not strong enough for the particles to recirculate, and they
are steadily deposited instead. The curves are constructed for a bulk flow profile y = 1.5 and
deposition strength 4 = 0.3.

for 57,

— ¥(57) 22 CE
fc - S(ST) 1+ dé 37
using the exact expression (2.19) for the free-surface gradient. The overall iteration
for 5¢ converges when the large-particle path (3.27) and the basal topography (2.36)

are equal at the tangency point §7; that is when the intersection condition (3.31) is
satisfied

s+ =0, (3.38)

I/fc—Sr(fc—57)‘|‘2\/¢L—1/fc\/5r(§c—ST) lj—/l
where & = £(§7). The algorithm described above is complicated but guarantees
convergence for all valid parameter values. Figure 10 shows the equivalent free-surface
height §¢ of the lower expansion fan, as a function of the non-dimensional segregation
number S, and the incoming inversely graded shock path wL in streamfunction
coordinates. The location of the lower expansion is relatively insensitive to the value
of S, but varies strongly with ¥;. If there are relatively few large particles, ¥, is

close to zero; §¢ is small; and the breaking size-segregation wave is close to the flow
front. As the number of larger particles increases, ¥; becomes increasingly negative,

=V, (3.39)
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FIGURE 11. A contour plot of the breaking size-segregation wave width & — &4, as a function
of the non-dimensional segregation number S, and the particle path of the incoming shock
Y. All other quantities are the same as figure 10.

and the free-surface height 5¢ rises towards umty, implying that the lens is located
further upstream. In the limit lﬂL — %W, 5S¢ — 1, and the lens position é;‘c tends

to minus infinity. For ¢, < glfzw there are no steady solutions, and the size of the
large-particle-rich front grows indefinitely. The existence and location of the breaking
size-segregation wave are therefore strongly linked to the composition of the flow and
the amount of deposition taking place.

Once §¢c has been determined, it is relatively easy to iterate for the equivalent
free-surface helght 54 € (5¢, 1] of the upper fan. Evaluating (3.22) at - and (3.27)
at £, and summing yields an expression for the lens width that can be used in the
iteration

2
e—bi= g (Vin—de+ =) (340)

A contour plot showing how the lens width varies with S, and V¥, is shown in
figure 11. Within the region in which solutions exist, the lens width decreases with
increasing segregation number S, and with decreasing numbers of incoming large
particles.

3.4. Steadily depositing solutions

In figures 10 and 11 there is a spandrel-shaped region, in the top left corner, where
there are no steady recirculating solutions. This is because when ¢ = 1//L, (3.28) and
(3.40) imply that the concentration in the central eye

Peye = 1, (3.41)
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FIGURE 12. A close-up diagram showing that in the limit of low segregation number S, there
is a second type of solution, in which all the large particles are deposited, and there is no
recirculation. The large particles are separated from the small grains by a shock that lies along
the be particle path in the upper domain. When this crosses the no-mean-flow line Z,, it

breaks to form an expansion fan centred at (Epax, ¥1), and all the characteristics ¢ € [0, 1]
emanating from it intersect the basal interface between points E and G (thin solid lines). There

is a discontinuous jump in S, at the deposition surface b, which implies that the deposition
concentration ¢ is greater than the incoming concentration ¢~ for ¢~ € (0, 1). In the narrow
deposition region between ¢ = 0 and ¢+ = 1 there is therefore a discontinuity in ¢ at the
basal interface, and the contours on either side do not match up.

and the structure of the breaking size-segregation wave degenerates. Physically, the
segregation is not strong enough to cause the large particles to recirculate, and they
are all deposited instead. Figure 12 shows a schematic diagram of the solution in this
case. The incoming particles are assumed to be inversely graded with all the large
ones above the ¥, particle path. This propagates stably in the top domain but breaks
as it crosses the no-mean-flow line v,,, and there is a single centred expansion fan at
(émax, lAﬂL) in which the concentration

! V=
=_|1-—r_ 3.42
¢ 2 < Sr(%_max - E)) ( )

ranges from zero to unity. Provided the segregation is sufficiently weak, all the
characteristics initiated at the expansion fan intersect the basal deposition surface b,
and the incoming large particles are deposited without recirculation.

The transition between the steadily recirculating and depositing solutions and the
solutions that just steadily deposit, occurs when the ¢ = 1 characteristic emanating
from the fan at (§,.x, %) just touches the deposition surface; that is when the
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characteristic
wchur = v/L - Sr(%-max - é) (343)
is equal and tangent to the basal surface
Venar(37) = Vo(57), (3.44)
dv/cAhar _ L‘/ﬁ? , (345)
di | e

at the equivalent free-surface height 5§ of the tangency point. Substituting (2.19),
(2.36) and (3.43) into the tangency condition (3.45) and solving for 5, implies that

_ |1 M1 +y) A
v [V (z+(1+z)(1+y)s, 1)} : (3.46)

This is real, provided that the segregation number S, is less than or equal to

yA

St = 3.47
r I+y)1+4) (3.47)
For a given inversely graded shock height v, the critical value of the segregation
number at which the solution switches from steadily recirculating and depositing to
steadily depositing is found by iterating for S € [0, $™**] using condition (3.44), i.e.

Y}
1+ 4
where £, = & (57). The curve S, = S (v, ) determines the boundary of the spandrel
shaped region in the upper left-hand corner of figures 10 and 11. If S, > S, then

the solution is the steadily propagating breaking size-segregation wave illustrated in
figures 7 and 9, while if S, < S there is steady deposition as shown in figure 12.

IpL - Srcrit(émax - éf) = 57, (3.48)

3.5. Particle concentration in the deposition region
At the basal deposition surface, the velocity is continuous, but there is a discontinuity
in §,, since S, = 0 below Z = b. The segregation jump condition (3.9) with ity = 1
implies that the concentration on the deposition ‘4’ side of b is equal to

¢T =9 +Cd (1 —97)), (3.49)
where ¢~ is the incoming concentration and
C =—5,/(3b/3k) > 0. (3.50)

The deposition concentration ¢ is therefore greater than or equal to the incoming
concentration ¢ . Physically this is because on the rearward side of the discontinuity
there is a flux of material due to transport and segregation, while on the forward
side there is only transport. From (3.49) it is clear that when ¢~ = 0, ¢™ = 0 and
when ¢~ = 1, ¢ = 1. However, for the recirculating and depositing solutions there
is a short section between points E and T in figure 9, where the fan (3.23) intersects
the basal topography, and it is not immediately clear that ¢* necessarily lies in the
range [0, 1]. Using the large-particle path equation (3.26) the concentration ¢~ can
be expressed in terms of the streamfunction gradient, i.e.

1 ¥ — Ve 19y
= |[1l—-—— = ——. 3.51
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It follows from the tangency condition (3.32) that at point T the concentration

1oy, 1 9b 1
_ 2 295 L 3.52
or S, 0 |, S, 08| C (3:52)

For the recirculating and depositing solutions C > 1. The incoming concentration ¢~
between points T and E therefore decreases from 1/C to zero. By definition 1 —¢~ > 0
and by the above argument 1 — C¢~ = 0, so the product is also greater than zero:

(1—¢ )1 —-Co7)=0. (3.53)

Expanding out the terms and rearranging implies that the deposition concentration
¢* is always less than or equal to unity

dT=¢p +Cop (1 —¢p )< 1. (3.54)

Moreover, substituting the incoming concentration (3.50) at the tangency point T into
the jump condition (3.47) implies that the deposition concentration is precisely unity,

o =1, (3.55)

and at point E the deposition concentration is zero. There is therefore a narrow region
between points E and T, where the deposition concentration monotonically increases
from zero to unity. In the steady solution illustrated in figure 8 the narrow region
lies between the layer of pure coarse deposited grains and pure fine ones, upstream
of the breaking wave, but it is so thin that it is barely visible and could easily be
misinterpreted as a shock. The case C = 1 corresponds to the critical situation, where
the ¢ = 1 characteristic is tangent to the basal deposition surface b, and for C < 1
the solution degenerates to the purely depositing front discussed in § 3.4 and shown in
figure 12. In this situation the incoming concentration ¢~ € [0, 1] and the inequalities
(3.51) and (3.52) are still valid. There is therefore also a region, between points E and
G in figure 12, where the deposition concentration varies continuously between zero
and unity, and this is indicated by a break in the concentration contours as they cross
the basal deposition surface.

3.6. Large- and small-particle recirculation

Large grains have been observed to recirculate at coarse-particle-rich flow fronts
(Pouliquen et al. 1997; Félix & Thomas 2004), and this plays a key part in the
development of frontal instabilities (Pouliquen & Vallance 1999) and levee formation
in geophysical mass flows (Iverson & Vallance 2001; Iverson 2003). While several
authors (Pouliquen et al. 1997; Pouliquen & Vallance 1999; Vallance 2000; Vallance
& Savage 2000; Félix & Thomas 2004) have drawn schematic diagrams of the
recirculation, the exact solution developed here allows us to explicitly compute the
structure of these recirculating loops. They can be parameterized by their path

Vo € [e, ¥, (3.56)

through the coarse-grained front, and cross the ‘0’ characteristic (3.24) between points
C and D in figures 7 and 9, at

En=Ec— (Yo — Vc)/S,. (3.57)

The trajectory through the lower expansion (3.23) can be calculated by solving the
linear ordinary differential equation (3.14), subject to the initial condition (3.57), to
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give

b=t — 8, —8) + 2/9, — de\/S G — ). (3.58)
This is similar in form to the bottom shock (3.27) between points T and A in figure 7
and is precisely the same when v, = V. The particle path (3.58) intersects the bottom
of the central eye at point P, which has coordinates

Vo—Vc o s (2pee — D — V)
Sr(l - ¢eye)2 ' wP B l//C (1 - ¢eye)2 .

Once in the eye, the concentration ¢.,. given in (3.28) is constant. The trajectory
through the lower part of the eye is

U = Up + PeyeS,(E —Ep). (3.60)

The eye’s symmetry property ensures that exactly the same equation governs the path
through the upper eye, above v,,. It follows that point Q, where the large particle
crosses the upper boundary of the eye (3.29), has exactly the same streamfunction
coordinates as the entry point, i.c.

So=Er, Vo=1»r (3.61)
Substituting (3.18) into (3.14) yields a linear ordinary differential equation for the

trajectory through the top expansion. Using (3.29), (3.59) and (3.61) the solution can
be written as

b= Pat SE—E)— 21— d/SEr—ES.E—E). (62)

A more convenient form of this equation can be obtained by noting that the lower
shock (3.27) and the lower boundary of the eye (3.30) intersect at &£,, which implies

(1 = Goye) S (Ec — &a) = Y1 — V. (3.63)

Adding and subtracting £, within the second bracketed term on the left-hand side of
(3.63) and using (3.59) it follows that

(1= Geye)SeEp — E4) = W1 — ¥, (3.64)
and therefore that the trajectory through the upper expansion (3.62) is

Ep =Ec — (3.59)

=+ SE — B0 =20/, — D/ 5. — ). (3.65)
From this it is easy to see that (3.65) reduces to the equation of the ¢ = 1 characteristic

(3.19) emanating from (£4, ¥4) when v, = ¥;. The trajectory intersects with the top
shock (3.22) at

A A 1 A A A A 2 A A
b =it (WL — G+ 0 — m) C o = Do (3.66)

forming a closed loop with the yf path in the large reglon A series of recirculating
large-particle loops for v, € [Yc, ] are illustrated in figure 13. Large particles
recirculate around these paths in a clockwise fashion. They are swept into the bottom
right-hand side of the lens by the bulk flow and rise up through it by particle-size
segregation, crossing the no-mean-flow line and exiting across the top shock, before
being swept down to the bottom again by the bulk flow. Large-particle paths that
start above the incoming shock path v, are all deposited. Most of these paths remain
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FIGURE 13. The large-particle paths are shown for the bulk flow and concentration solutions
shown in figures 6 and 8. Particle paths that lie above v, are all deposited as indicated by the
dot-dashed and dashed lines and the grey circular markers. Most of these paths are the same
as the bulk flow paths, as they remain in purely coarse-grained regions. However, there are a
few that briefly enter the lower expansion fan before being deposited into the narrow region,
where the concentration varies between zero and unity. The solid lines correspond to the paths
of large grains that are recirculated at the flow front. They circulate clockwise, entering the
breaking wave at the bottom right and rise up by particle-size segregation, before crossing the

top shock and being swept around by the bulk flow to the bottom again. The ¥, path marks
the division between these two sets of paths, and the black markers indicate the top of the

breaking wave &5 and the tangency point &r. Above the main figure is a compressed image
showing the solution in a more realistic aspect ratio.

within the region of purely large particles, and they necessarily follow the bulk-particle
paths (2.29). These paths are shown as dot-dashed and dashed lines separated by grey
markers at the deposition point in figure 13. There are also a few large-particle paths
that lie just above v, which intersect the ‘0’ characteristic (3.24) between points D
and E in figure 9. These grains follow the bulk-particle paths except for a very brief
period when they move up through the expansion, before being deposited between
points E and T.

The fine ones are also recirculated in the clockwise sense, and their particle paths
are shown in figure 13 using faint grey lines. Small grains enter from the top left
and follow the bulk paths in the fine region as they are sheared towards the front. If
the path Vo < Ua, then the particles recirculate before reaching the breaking wave.
Paths in the range ¥, € [V4, ¥¢] enter the breaking wave and are rapidly segregated
downwards as large particles are driven upwards by squeeze expulsion. As they exit
the breaking wave three things may happen: (i) they may cross the bottom shock
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and be recirculated backwards within the avalanche; (ii) they may exit across the
shock and be transported a short distance, before being deposited; or (iii) they may
deposit directly out of the breaking wave between points E and T in figure 9. The
explicit formulae are closely analogous to those obtained for the large particles in
(3.56)—(3.66) and omitted for brevity.

4. Discussion and conclusions

The stratification experiments in §1.1 showed that large rough particles rise to
the surface of the flow by particle-size segregation and are transported to the flow
front by velocity shear. Here they experience much greater resistance to motion and
are deposited on the underlying substrate, which allows the more mobile incoming
material behind to progress further downslope. This is explicitly revealed in figure 2(a),
which shows that there is a well-defined coarse-grained flow front, which is followed
by a steady uniform flow, with a layer of small particles sandwiched between a rapidly
moving layer of large particles at the surface and a static carpet of deposited coarse
grains at the base. This complex structure has not been reported before, and it shows
that there is a travelling-wave regime, where all the large rough particles that reach
the front are deposited on the underlying slope. As a result the coarse-grained flow
front stays at a constant length, instead of growing approximately linearly with time,
as one would otherwise expect in the absence of deposition.

Stratification patterns are a prime example of flows in which the evolving particle-
size distribution provides feedback to the mobility of the bulk flow and the deposition
from it. This is termed the segregation—-mobility feedback effect. Other examples
include the formation of triangular segregation patterns in two-dimensional heaps
(Herrmann 1998) and in three dimensions the formation of fingers and static lateral
levees (Costa & Williams 1984; Pierson 1986; Pouliquen et al. 1997; Pouliquen &
Vallance 1999; Iverson & Vallance 2001; Jomelli & Bertran 2001; Bertran 2003;
Iverson 2003; Félix & Thomas 2004 ; Iverson 2005; Aranson et al. 2006; Goujon et al.
2007).

A fully coupled solution is beyond the scope of this paper, but particle-size
segregation models (e.g. Savage & Lun 1988; Dolgunin & Ukolov 1995; Gray &
Thornton 2005; Gray & Chugunov 2006; Thornton et al. 2006) open up the realistic
possibility of developing fully coupled theories in future. One way to achieve this
is to use an avalanche model (e.g. Grigorian et al. 1967; Savage & Hutter 1989;
Iverson 1997; Gray et al. 1999; Pouliquen 1999a.,b; Wieland et al. 1999; Denlinger &
Iverson 2001; Iverson & Denlinger 2001; Gray et al. 2003) to (i) calculate the depth-
averaged velocity #, (i) use assumed velocity profiles through the avalanche depth
to reconstruct the three-dimensional velocity field u, (iii) compute the concentration
¢ with a segregation model and (iv) then couple them using a segregation—mobility
feedback. There are several ways that this coupling may be achieved; the most
straightforward is to (a) modify the basal friction in response to the evolving flow
composition (Pouliquen & Vallance 1999), but one could also (b) change the assumed
velocity profile through the avalanche (Phillips et al. 2006; Linares-Guerrero et al.
2007; Rognon et al. 2007) and/or (c¢) make the deposition rate composition dependent.

Given our relatively rudimentary knowledge of particle-size segregation, the primary
aim of this paper has been to investigate the structure of the size distribution in a
non-uniform depositing flow. A very simple uncoupled depth-averaged solution has
been used to capture the basic kinematics of the avalanche motion observed in §1.1.
The derivation illustrates the key stages at which full coupling could be achieved
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and where additional effects, such as sidewall friction, could be included. Exact
solutions to the segregation problems in non-uniform depositing flows are due, in
no small part, to the introduction of streamfunction coordinates in (2.32), which
linearize the segregation equation (3.4), the jump condition (3.9) and the particle path
equations (3.13). These coordinates are the natural extension of the depth-integrated
velocity coordinates, which have been used extensively to solve segregation problems
in steady uniform flows (Gray & Thornton 2005; Gray et al. 2006; Thornton et al.
2006; Mclntyre et al. 2008; Shearer et al. 2008; Thornton & Gray 2008). Another
significant generalization lies in the treatment of the concentration jump condition
over the basal deposition interface in §3.5, where there is segregation on only one
side. These types of interfaces are common in many problems, and this is likely to
find application elsewhere.

Three types of segregation solution have been identified, which are dependent on
the segregation rate S,, the amount of deposition 4 and the incoming composition,
which is set by the inversely graded shock path ;. The most interesting of these is
when the segregation is sufficiently strong, and all the large particles that reach the
front are deposited. In this situation a breaking size-segregation wave forms behind
the front, which joins a downstream region of pure coarse grains to an upstream
region in which the particle-size distribution resembles a small-particle sandwich. The
small-particle concentration ¢ is shown in figure 8 and provides the first exact solution
for the particle-size distribution in a non-uniform depositing flow. The breaking wave
is more general than the uniform case (Thornton & Gray 2008) and consists of
two expansion fans, two shocks and a central eye of constant concentration, which
are arranged in a lens-like structure that is located at a unique position behind
the flow front. Hyperbolic segregation theory (Gray & Thornton 2005; Thornton &
Gray 2008) therefore captures the gross features of the experimental flow shown in
figure 2(a), such as the coarse-grained flow front, the raft of rapidly moving large
particles at the surface, the static carpet of coarse grains deposited at the bottom and
the small particles sandwiched in-between, but the finer structures in the breaking
wave are hard to see and are lost in the graininess of these thin flows. Indeed it is
even hard to identify these detailed features in the compressed image at the top of
figure 8, which uses just a contour scale to represent the exact solution.

Another important feature of these solutions is that it is possible to explicitly track
the large and small particles. Figure 13 shows how some of the large particles are
recirculated at the flow front, while all of the coarse grains that are transported to
the front are deposited. There are several conceptual diagrams of recirculation at
flow fronts in the literature, and large recirculating particles have been observed in
the field by Costa & Williams (1984) and Pierson (1986) and measured in fingering
experiments by Pouliquen et al. (1997) and Pouliquen & Vallance (1999), but this
paper provides the first concrete structure for it in a two-dimensional depositing flow.
It should be noted that the solution is idealized in the sense that it is steady in the
moving frame. Realistic flows are likely to have some element of unsteadiness, as well
as other effects, such as diffusive remixing, polydispersity of the grain-size population,
out-of-plane motion and discreteness, that break the idealized recirculation loops
shown in figure 13 and allow large particles to have more complicated paths.

Finally, it should be noted that this travelling wave breaks down (i) either when
the segregation rate is too low (ii) or when all the large incoming particles cannot be
deposited. In the latter case, the large particles gradually accumulate at the flow front,
and a specific example of this, in the absence of deposition, is shown in figure 4. In
fully coupled models these types of growing coarse-particle-rich fronts provide more
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and more resistance to motion and may ultimately bring the front to a complete halt.
In contrast the unique location of the breaking wave in the travelling-wave solutions
is rather surprising, and may be particularly significant for fully coupled models, as
it determines the length scale over which there is enhanced basal friction.
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