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In an earlier paper [10], we conatructed a ' locally finite approximation away from a
given prime p' of the classifying space BG of a Lie group with finite component group.
Such an approximation consists of a locally finite group g and a homotopy class of
maps <j>: BQ -> BG which in particular induces an isomorphism in cohomology with
finite coefficients of order prime to p. The usefulness of such a construction is that it
reduces various homotopy-theoretic questions concerning the space BG to the corres-
ponding questions concerning Bn for finite subgroups n. For example, we demonstrated
in [10] how H. Miller's proof of the Sullivan conjecture concerning maps from Bn->X,
where n is a finite group and X is a finite-dimensional complex, can be extended to
maps BG -> X for G a Lie group with finite component group.

In this paper, we elaborate on this philosophy by studying the relationship between
the Lie group G and a specific locally finite approximation which will be denoted by
F o (see Proposition 1 • 1). Our interest lies in comparing the structure of the families of
finite subgroups of G and of FG. With such additional information concerning the
locally finite approximation (j>: BTO -»• BG, we then deduce further homotopy theoretic
properties oiBG. In particular, Theorem 2-3 asserts that the generalized cohomology of
BG is isomorphic to the inverse limit of the generalized cohomology of Bn as n ranges
over the finite subgroups of G provided that the coefficients of the generalized co-
homology theory are finite.

This paper consists of three sections. The first compares the families of finite sub-
groups of G and Fo. Roughly speaking, TG is obtained by reducing modulo the prime p
an integral model of the complexification of a compact form of G. Although we do not
prove that the categories of prime-to-^? subgroups of G and TG are equivalent except
in the special case in which G = GLnC, we demonstrate in Theorem 1-4 that the
category of finite, prime to p subgroups of Fo and of an intermediate ' integral' group
G(R) are equivalent for any Lie group G with finite component group. We then
provide a sufficiently good comparison of the finite subgroups of G(R) and G to
facilitate our analysis in section 2 of the generalized cohomology of BG. Specializing
our Theorem 2-3 to stable cohomotopy, we obtain a generalization to Lie groups of G.
Carlsson's proof of Segal's Burnside Ring Conjecture for finite groups [6] (closely
related to results of M. Fesbach[9]); specializing to complex iT-theory, we obtain a
comparison of the complex representation rings of G and the finite subgroups n <= G.
In section 3, we return to the study of maps from BG, proving a result concerning maps
between classifying spaces of Lie groups similar to a recent theorem of A. Zabrodsky
[20].
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506 ERIC M. FRIEDLANDER AND GUIDO MISLIN

1. Comparison ofP(To) with P(G)
Our purpose in this section is to compare the categories of finite, prime-to-̂ >

subgroups of a Lie group G and rG, some 'locally finite approximation away from p'
of G. Theorem 1-4 asserts that 'reduction mod p' determines an equivalence of
categories of finite, prime-to-p subgroups of FG and an intermediate discrete group
G{R). Proposition 1-7 then provides a comparison of the finite subgroups of this G(R)
and the Lie group G. These two theorems do not imply that the categories of finite,
prime-to-^) subgroups of Ya and G are equivalent, but do provide a sufficiently strong
comparison of these categories to permit our applications in sections 2 and 3. Such an
equivalence is likely (for example, we verify this equivalence for G = GLn C in
Proposition 1-8), and we hope to consider this possibility further in a future paper by
providing the required strengthening of Proposition 1-7.

We begin by establishing our notational conventions and recalling in Proposition 1-1
our construction of a locally finite approximation away from p of a Lie group G.
Throughout this paper, all Lie groups considered will be assumed to have finite
component group, no(G). For such a Lie group G, the quotient of G by a maximal
compact subgroup K is contractible and the complex form of K (which we shall
denote GC) has reductive connected component. As described in the proof of [10], 2-1,
there exists a ring A of ^-integers in a number field (depending on G) and a group
scheme GA smooth over A such that the Lie group of complex points GA(C) oiGA is
the complex Lie group GC.

For future reference, we summarize the relationship between the Lie group G and
the locally finite group GA(¥) of points of GA in the algebraic closure F of the prime
field Fp.

PROPOSITION 1 • 1. Let Gbea Lie group with finite component group. Then there exists a
ring A of 8-integers in a number field and a group scheme GA smooth over A with reduc-
tive connected component, such that for all sufficiently large primes p there is a map

$: BTG^BG with To = GA(f)

which is a locally finite approximation away from p of G. (In particular; <j>#: ro->n0(G)
is surjective; and for any finite n0(G)-module M of order prime top,

4>*: H*(BG,M)-+H*(Ta,<j>*M)

is an isomorphism; cf. [10], 1-1.) Moreover, if R is any subring of C containing A and
mapping to F, then Vo and G are related by a chain of homomorphisms

which in a natural way give rise to (}>: BYO-+BG; cf. [10], 2-5.
The following definition formalizes the category of finite subgroups of a given group.

Definition 1-2. For any set of primes P and any (topological) group H, we denote by
P(H) the category whose objects are finite subgroups of H of order divisible only by
primes in P and whose morphisms from the finite subgroup n to the finite subgroup n'
are homomorphisms n->n' of the form int(h) (sending xen to h^xhen') for some
heH.
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Locally finite approximation of Lie groups. II 507

Our first step in our comparison of categories of finite subgroups is the following easy
consequence of [4], 2-8.

PROPOSITION 1-3. Let Gbe a Lie group with finite component group and let K c G be
a maximal compact subgroup. Then K <= G induces an equivalence of categories

P(K) ~ P(G)

for any set of primes P. In particular, the maps GC<-K->Gof(hl) induce equivalences
of categories P(GC) ~ P{K) ~ P(G) for P the set of all primes except the chosen prime p.

Proof. To prove that K <= G induces an essential surjection P(K)->P(G), it suffices
to observe that any finite subgroup n of G is contained in some maximal compact
subgroup of G and that any two maximal compact subgroups of G are conjugate
(cf. [4], 2-7, for example): thus, n is conjugate in G to a subgroup of K. Because K <=• G
is an inclusion, the functor P(K)-+P(G) is faithful. Thus, it suffices to prove that this
functor is full; in other words, for each pair of subgroups n and n' in P(K) and for each
geG such that int(gr) (n) <= n', there exists some keK such thatint(ii) = int(gf): TJ->TI'.
This is verified in [4], 2-8. |

We recall that a strict Hensel local ring is a local domain that satisfies Hensel's
lemma and has separably closed residue field (cf. [15], p. 38). Examples of such rings
are the direct limits of all etale neighbourhoods of a geometric point on a scheme;
other examples are complete local domains with separably closed residue fields. For
our purposes, the example of primary interest is the ring of Witt vectors of an
algebraically closed field k in characteristic p, a complete discrete valuation ring of
characteristic 0 with residue field k.

The following theorem is the central step in our comparison of finite subgroups of G
and of a locally finite approximation of G.

THEOREM 1-4. Let Rbea noetherian strict Hensel local ring with residue field k and let
GR be a smooth R-group scheme. Then for any set of primes P excluding the residue
characteristic of k, reduction modulo p (i.e. GR(R)^-GR(k)) induces an equivalence of
categories P(GR(R)) ~ P(GR(k)), sending finite P-primary subgroups of GR(R) iso-
morphically onto their images in GR(k).

Our proof of Theorem 1*4 consists of two lemmas proved below. We first prove in
Lemma 1-5 that any finite P-subgroup L <= GB(k) lifts to a finite P-subgroup of
GB(R) by considering an i2-scheme Ofl whose ^-points are HomgTpa(L,GR(R)) and
whose ^-points are Homgrps(£, GR(k)). Once we verify the smoothness of Q>R, we shall
conclude the required lifting, thereby proving the essential surjectivity of

P(GR(R))-+P(GR(k)).

In fact, we shall have proved that GR(R) -> GR(k) restricts to an injection on any finite
P-subgroup of GR(R), so that P(GR(R))-+P(GR(k)) is faithful. To prove that this
functor is full, we consider in Lemma 1-6 another i?-scheme ^FJJ associated to a pair L
and L' of subgroups of GR(R), with ^ ( i ? ) equal to transpOii(fi) (L, L') and YK(fc) equal
to transpOfl(&) (L, L'). (We remind the reader that the transporter transpH (M, M') c= H
of one subgroup M c: H into another subgroup M' c U consists of those h&H with
int(A) (M) c M'.) Consequently, by proving the smoothness of YB, we shall conclude
the surjectivity of W R(R) ^-W R(k) and thus the fullness of the functor

P(GR(R))->P(GR(k)).
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In what follows, if L is a discrete group and S a scheme, then Ls will denote the
associated constant $-group scheme. For an arbitrary scheme Xs over S, one has a
natural bijection Homs (Ls, Xs) ~ Map {L, XS(S)). If S = Spec A, then we often write
XA for Xs; ifT = Spec B is an ^-scheme, we often write XA(B) for

Xs(T) = Homs(T,Xs).

LEMMA 1-5. Let GR be a smooth R-group scheme, R a noetherian, strict Hensel local ring
with residue field k. Let L be a finite group of order prime to the characteristic of k. Then
the functor <bR on R-schemes defined by ®R(S) = Homs_grp (Ls, Gs) is representable by a
smooth group scheme. Consequently, Homgrp (L, GR(R)) ->Homgrp (L, GR(k)) is surjective
and GR(R) -*• GR(k) restricts to an injection on any finite subgroup of order prime to the
characteristic of k.

Proof. We can write Q>R as a fibre product of functors

HomR (LR, GR) and Homfl (LR x R LR, GR)

which are representable by suitable products over R of copies ofGR. Since GR is locally
finitely presented, OK is representable by a locally finitely presented ^-scheme. To
prove the smoothness of <J>R, it suffices to prove that it is 'formally smooth': namely,
for every affine .R-scheme S and every subscheme So<^ 8 defined by a nilpotent ideal,
®R(S)-*• ^B(^O) is surjective (cf. [17], XI-1-1). Since LR is a constant group scheme,
the Hochschild cohomology groups H*(LS,F) and H*(LS ,F0) are isomorphic to the
Eilenberg-Mac Lane cohomology groups H*(L, F(S)) and H*(L, F0(S0)) whenever F and
Fo are quasicoherent <PS- and 08 -modules provided with an Zr-action (cf. [8], II-3-4-1).
Because the order of L is invertible in R and thus in F(S) and F0(S0), we conclude the
vanishing of these cohomology groups in positive degrees. As shown in [17], III-2-1-2-3,
this not only implies that any morphism of So-groups u0: Ls -+GS can be lifted to a
morphism of ^-groups u: LS->GS, thereby proving the surjectivity of

but also that for any two liftings u,u': LS->GS of u0: Ls ~>GS there exists some
g e GR(S) such that u' = int(g) o u and the image of g in GR(S0) is the identity element.

The smoothness of Q>R thereby implies the surjectivity of

HomgTp(L,GR(R)) ~ ®R(R)->®R(k) ~ Homgrp(i,GR(k))

(cf. [15], 1-3-246 and l-4-2d). To complete the proof of the lemma, let L c GR(R) be
a finite group of order prime to the characteristic of k which lies in the kernel of the
reduction map GR(R) -> GR(k). Let m denote the maximal ideal of R and let JRA denote
the m-adic completion of R. Since GR{R) c GR(R*) = lim GR(R/mn), we conclude for
n sufficiently large that the composition L->GR(R)->GR(R/mn) is injective. Because
the ideal m/tnn is nilpotent in R/mn, this contradicts the uniqueness (up to conjugation)
of the lifting of the trivial map L -> GR(k) as verified above for S — Spec R/mn and
So = Spec k. |

One consequence of Lemma 1-5 is that any inclusion L <= GR(k) determines an
embedding u: LR-> GR of schemes for any finite group L of order prime to the charac-
teristic of k. Namely, any lifting u: LR^-GR of the inclusion u0: L <= GR(k) must be an
embedding, as seen by applying Nakayama's Lemma to the kernel of u. Thus, the
following lemma completes the proof of Theorem 1-4.
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LEMMA 1-6. Let GR be a smooth R-group scheme, R a noetherian, strict Hensel local ring
with residue field k. Let L and M be finite groups of order prime to characteristic of k, and
let uR: LR->GR and vR: MR^-GR be given embeddings. Define the subfunctor *FR of GR

on R-schemes by ^Y^S) = transpG (Ls, Ms) = {geGR(S), int(gr)otts: Ls^-Gs factors
through vs}. Then YR is representable by a smooth R-scheme. Consequently, y¥R(R) -> T^fc)
is surjective.

Proof. Because LR is locally free over R, Tf l is representable by a locally finitely
presented scheme over R (cf. [17], VIII-6-5e). As argued in the proof of Lemma 1-5,
to prove the smoothness of *Ffi it suffices to prove the surjectivity of yYR(S)-^xYR(80)
for any affine .R-scheme S and closed subscheme S0->S defined by a nilpotent ideal.
Let g'eGR(S0) be such that int(gr')o% =vso<f> for some (uniquely determined)
0: LSo^-MS(>. Using the smoothness of GR, choose some g e GR(S) mapping to g' e GR(S0).
As argued in the proof of (1-5) with GR replaced by MR, $ lifts to some <f>~: LS->MS

together with some g" eMR(S) mapping to e eMR(S0) such that

int(<jr")oint(<7')ows = vso$~.
Consequently, g"g' e'W^S) maps to ge^¥R{S0), thereby proving the surjectivity of
WR(S)^-XFR(SO). The surjectivity of TB(i?)->TB(A;) now follows from the consequent
smoothness of T^. |

To complete our comparison of P ( r o ) and P(G), we must investigate the functor
P(GA(R))^-P(GC), induced by an embedding R^-C, where GA is a smooth group
scheme over the ring of ^-integers in a number field as in (1-1) and R is a strict Hensel
local ring containing A with residue field F (e.g. the Witt vectors of F). Although the
comparison provided by Proposition 1-7 below is the weakest in the chain, it will prove
sufficient for applications to generalized cohomology.

PROPOSITION 1-7. Assume the notation and hypotheses of (1-1). Let Pbea set of primes
such that R contains all nth roots of unity whenever the prime divisors of n lie in P. If GR

contains an R-split maximal torus, then P(GA(R))-> P(GC) is a faithful functor which is
essentially surjective on subgroups of P(GC) which are of prime power order.

Proof. Because GA(R)->GA(C) = GC is a monomorphism, P(GA(R))-+P(GC) is
faithful. To prove the asserted essential surjectivity, we must show that any subgroup
of P(GC) of prime power order is conjugate to a subgroup of GA(R). Let q be a prime
in P, and let L be a finite <7-group. Because L normalizes a maximal torus of GC
([19], 5-17), we may assume that L lies in the group of complex points NC = NA(C)
of the normalizer of some maximal, i?-split torus

TR = TAX Spec A Spec R of GR = GAx Spec A Spec R
with group of complex points the maxima] torus TC of GC. Because TC/TR(R) is
uniquely ^-divisible and W = NC/TC is isomorphic to NR(R)/TR(R), NR(R) c NC
contains a maximal g-torsion subgroup of NC

Thus, it suffices to prove that any two maximal g-torsion subgroups of NC are
conjugate. Let Q <= IF be a g'-Sylow subgroup and let H be a maximal g-torsion sub-
group of NC with image Q in W. Then the inclusion H <= NC fits in the following map
of extensions, where Tq = H n TC is the g-torsion subgroup of TC and the extension
class of Tq->H~-+Q is uniquely determined by Q-+W and the isomorphism
H*(Q,TC) ~ H>(Q,Tg): Tg^H~->Q
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510 ERIC M. FRIEDLANDER AND GUIDO MISLIN

with Tq->-TC the canonical inclusion, Q-^-W the given inclusion, and f(H~) = H.
Because the q-Sylow subgroups of W are conjugate, we see that some conjugate H' of
any other maximal g-torsion subgroup of NC determines a similar map of extensions
with middle arrow/: H~-+NC such that / ' (#~) = H'. The two maps / , / ' : H~->NC
differ by a cocyle Q-+TC which factors up to coboundary through Tq. By standard
homological algebra, we conclude the existence of an automorphism T of H~ over Q
and an inner automorphism int(gr) of NC over W such that / o Y = int(<;)o/'. In
particular, the images of/ and / ' are conjugate as required. |

As we see in the following proposition, Proposition 1-3, Theorem 1-4, and Propo-
sition 1-7 are sufficient to imply an equivalence of categories P(TO) ~ P(G) in the
special case of G = GLn(C) (or, of course, the compact form Un oiGLn(C)).

PROPOSITION 1-8. Let G = GLn{C), let R denote the Witt vectors of F provided with
some embedding R c C, and let P denote any set of primes excluding p. Then the maps of
(1-1)

To <- GZ(B) -> GC <- K -> G

induce equivalences of categories

P(TO) ~ P(GZ(R)) ~ P(GC) ~ P(K) ~ P(G).
Proof. After applying Proposition 1-3, Theorem 1-4, and Proposition 1-7, there

remains to prove that the functor P(G%(R)) -> P(GC) is essentially surjective and full.
We identify a finite subgroup n <= GC with a complex representation pn, so that sub-
groups v and TT' are conjugate in G if and only if the corresponding representations
pn and pn. are equivalent. We recall ([18], theorem 24) that any complex representation
pn of the finite group n is equivalent to an ^-representation (and only one, up to in-
equivalence) defined over any characteristic 0 field F containing the nt\v roots of
unity, where n equals the order of n. Thus, if F denotes the field of fractions of R, then
n <= GC is conjugate to a subgroup of GZ(F) <= GC whenever p does not divide the
order of n. By choosing an R[n]-lattice inside the resulting F[7r]-sj)&ce representing
pn (i.e. an ' J?-form' for pv), we obtain a conjugate of ir contained in GZ(R). This implies
that P(GZ(R)) -+ P(GC) is essentially surjective.

To prove that P(GZ(R))-+P(GC) is full, we must verify for any two subgroups n
and TT' of Gz (R) of order relatively prime to p that a map int(gr): n -+ rfl <= n' is a map in
P(GZ(R)). Clearly, it suffices to assume that rfl = n', in which case n c GZ{R) and
int(<7): n-*-n' c GZ(R) correspond to C-equivalent representations which we must
prove i?-equivalent. As seen above, these .ft-forms are .F-equivalent. The JR-equivalence
now follows from the observation that R[n] is a maximal order in F[n] because the
order of n is invertible in R (cf. [7], 27-1), so that .F-equivalence implies iJ-equivalence
([7], example 26-11). |

2. Applications to cohomology theories

We utilize the results of section 1 comparing P(FG) to P(G) to study the generalized
cohomology h*(BG) of BG. Of particular interest is Theorem 2-3 below which asserts
that h*(BG) can be computed as an inverse limit of h*(Bn) for n ranging over finite
subgroups of G whenever h*( ) satisfies a suitable finiteness property. This sharpens
a theorem of T>. Quillen asserting that mod-p cohomology of BG can be detected
modulo nilpotent elements on elementary abelian subgroups of G [16]. Theorem 2.3
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is another example of extending a known property of BV for all locally finite groups F
to BO for G a Lie group by using a locally finite approximation <f>: BTO^>BG.
Specializing Theorem 2-3 to various cohomology theories provides several interesting
corollaries: in the case of stable cohomotopy n*( ), we obtain a version of the Segal
Conjecture for Lie groups similar to results of M. Fesbach[9]; in the case of If-theory
K*{ ), we give a comparison of the representation rings of G and its finite subgroups n.

Before applying generalized cohomology theories to Bn with neP(G), we record
the following consequence of the comparisons of section 1, applicable to very general
functors on P(G). This generality will be employed in section 3 when we consider
mapping complexes with source BG.

PROPOSITION 2-1. Let G be a Lie group with finite component group, let qbe a prime,
and let <j>: BTO^-BG be a locally finite approximation away from some prime p =)= q
induced up to homotopy by a chain of maps as in (1-1). Then for any functor

<D: Grp°p->Sets

(i.e. a set-valued, contravariant functor on the category of groups), this chain of maps
determines an injection

lim 0(TT)-> lim O(T)

where {q} is the singleton set consisting of the prime q.

Proof. By Proposition 1-3, Theorem 1-4, and Proposition 1-7, we conclude that it
suffices to prove that if F: C->D is an essentially surjective inclusion of sub-
categories of Grp, then the map lim deD <&(d) ->-limCeC <E>(c) induced by F is injective.

Because lim $>{d) <= F l^W a n d lim <£(c) <= n<l)(c) where the products are indexed by
isomorphism classes of objects in D and C respectively, the required injectivity follows
from the observation that essential surjectivity (i.e. surjectivity on isomorphism
classes of objects) implies the injectivity of n ®(d) ->• II ®ic)- I

Of course in the special case of G = GLn C, Proposition 1-8 enables us to conclude
that

lim O(7r)-> lim O(T)

is a bijection for any set of primes P not containing p. For more general Lie groups,
Proposition 2-1 when employed in conjunction with a generalized cohomology theory
h*( ) will provide isomorphisms for sets of primes P not containing p. The essential
property we employ of such a general cohomology theory is transfer, which reduces
many questions concerning Bn to questions concerning Bniq) for primes qeP, where
7T(9) is a g-Sylow subgroup of n.

In the following lemma, we observe that the generalized cohomology (satisfying a
finiteness condition) of BT for any countable, locally finite group F is determined by
the finite subgroups of F. This will be applied in Theorem 2-3 to prove the analogous
statement for BG for G a Lie group.

IjEMMA.2-2.LetPbeasetofprimes, letlP
A = YIZ^ with the product indexed by primes

qeP, and let h*() be a generalized cohomology theory with h^S0) a finitely generated
ZP*-module for all j . For any countable locally finite group F, there is a natural iso-
morphism h*(BF) ~ limh*(Bn), where the limit is indexed by neP{F).

17 PSP ioo
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512 ERIC M. FRIEDLANDER AND GTTCDO MISLIN

Proof. We write T as a union of finite subgroups, F = \Jnn. Using the Milnor exact
sequence (cf. [1], III-8-1), we readily verify that hi(Bnn) is compact for e&chj and n
(namely, h'(Bnn) is the inverse limit of the finitely generated ZP

A-modules h}(Xnk)
with Xnk the ^-skeleton of Bnn). Thus, using the Milnor exact sequence again, we
conclude that h*(BF) ~ lim h*(Bnn). We recall (cf. [11]) that for any finite subgroup n

h*(Bn) is isomorphic to lim JI*(BT), where the limit is indexed by TeP(n), whenever
h?(S°) is a finitely generated ZP

A-module for eachj. Thus, the lemma follows from the
observation that P(F) = U P{^n)

 a n ^ the fact that inverse limits commute. |
The following theorem should be compared with a theorem of M. Peschbach

describing h*(BG) in terms of 'stable elements' in the generalized cohomology of
finite subgroups of a normalizer of a maximal torus of G ([9], 2-2).

THEOREM 2-3. Let Pbea set of primes and let h*( ) be a generalized cohomology theory
with h,1(8°) a finitely generated ZP''-module for all j . For any Lie group G with finitely
many components, there is a natural isomorphism

h*(BG) ~ lim h*{Bn).

Proof. We recall that h*( ) is a product of generalized cohomology theories,

h*() ~

with the product indexed by q eP and with hl(S°) EL finitely generated 2Q
A-module for

all j (because the spectrum representing h*( ) splits as a product of its g-adic com-
pletions). Thus, we may assume that for some qeP each A3(#°) is a finitely generated
Zg

A-module. Let <f>: BTa->BG denote a locally finite approximation away from some
prime p different from q as in Proposition 1-1. We consider the following commutative
diagram:

h*{BG)-> lim h*(Bn)-> lim h*(Bn')

4, \ 4- (2-3-1)
h*{BTa)-> lim h*(Br)-> lim

The left vertical map is induced by the locally finite approximation; this map is an
isomorphism because h*( ) is an inverse limit of cohomology theories with finite
^-primary coefficients. The two lower horizontal maps are isomorphisms by Lemma 2-2.
The right vertical map is an injection by Proposition 2-1. An easy diagram chase
verifies that, to prove that the upper left horizontal map is an isomorphism as asserted,
it suffices to prove that the upper right horizontal map is an injection. This latter fact
is proved by observing that Lemma 2-2 implies that h*(Bn) restricts injectively to
h*(Bn') for any y-Sylow subgroup n' of n. |

Specializing Theorem 2-3 to h*( ) = H*( ,Z/n), we conclude the following sharpening
of Quillen's theorem asserting that mod- ĵ cohomology modulo nilpotents is detected
by restricting to finite elementary abelian ^-groups [16]. Of course, Corollary 2-4
together with such a detection result modulo nilpotents in the special case of finite
groups (now provable in an efficient, algebraic manner; cf. [3], for example) implies
Quillen's detection result for general compact Lie groups.
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COROLLARY 2-4. Let G be a Lie group with finitely many components, n a positive
integer, and P a set of primes containing the prime divisors of n. Then the natural restric-
tion map is an isomorphism:

H*(BG, 1/n) ~ lim H*(Bn, 1/n).
*

The reader can easily verify that a very similar proof to that of Theorem 2-3 applies
to finite, local coefficient cohomology as asserted in Corollary 2-5 below. One considers
a commutative diagram obtained from (2-3-1) by replacing h*( ) with H*( ,A) and
one observes that the analogue of Lemma 2-2 is easily implied by the classical Cartan-
Eilenberg 'stable element' theorem ([5], XII-10-1).

COROLLARY 2-5. Let G be a Lie group with finite component group no(G), A a finite
n0(G)-module, and P a set of primes containing the prime divisors of the order of A. Then
the natural restriction map is an isomorphism:

H*[BG,A)~ lim H*(Bn,A).

In the following proposition, we investigate a consequence of Theorem 2-3 in the
special case in which h*( ) equals mod-n stable cohomotopy, h*( ) = 7r*( , 1/n).
Following our general philosophy, we utilize a known result for the classifying space
of finite groups (the affirmation of the Segal Conjecture [6]) to obtain a corresponding
result for the classifying spaces of Lie groups. Proposition 2-6 is closely related to
results of [9]. Following the usual convention, we let A(n) denote the Burnside ring of
a finite group n and AA(n) denote the completion of this Burnside ring with respect to
its augmentation ideal topology.

PROPOSITION 2-6. Let G be a Lie group with finitely many components, n a positive
integer, and P a set of primes containing the prime divisors of n. Let n*( ) denote un-
reduced stable cohomotopy (i.e. ns{X) denotes the group of pointed homotopy classes of
maps X+ = X II pt^ Q^S00^). Then

n°s(BG) ® 1/n ~ lim (Ah(n) ® I/n)

nl(BG) = 0
for j > 1.

Proof. The affirmative solution to the Segal Conjecture for finite groups [6] implies
for any finite group n that n%(B7r) is isomorphic to AA(n) and n^Bn) = 0 for j > 0,
so that no

s(Bn,l/n) ~ A*(n) ® 1/n and ni(Bn,I/n) - 0 for j > 0. Theorem 2-3
therefore implies that n°(BG, 1/n) ~ lim (AA(n) ® 1/n), where the limit is indexed

by nePifi), and that n}
8(BG, 1/n) = 0 for j > 0. This implies that

^"S"^)*) ~ lim ft}
8(BG, 1/n) = 0 (j > 0).

Considering pointed maps from BG to the fibration

we conclude that S'-^BG, 1A/1) ~ iti(BG) for any j > 0. Because 7T̂ (<S0) = 0 for
17-2
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j > 0,n}
8( ) ~ ftl( ) so that n}

s(BG) ~ ffi-1(BG,Z'i/Z)forj > 0. In particular, n\(BG) = 0.
The vanishing of nl(BG) immediately implies the isomorphism

n°s(BG) ® 1/n ~ n°s(BG, I/n),

completing the proof of the proposition. |
We consider another special case of Theorem 2-3 in the following proposition,

namely that of unreduced (complex) if-theory. In this case, we employ Theorem 2-3
with h*( ) = K*( , Z/n), together with results of [2] relating the (complex) repre-
sentation rings of compact groups to their K-theory, to relate the representation rings
of BG and Bn as n ranges over the finite subgroups of the compact Lie group G.

PROPOSITION 2-7. Let Gbea compact Lie group, n a positive integer, P a set of primes
containing the prime divisors ofn. Let R( ) denote the functor sending a compact group to
its complex representation ring, and let RK(G) denote the completion of R(G) with respect
to its augmentation ideal topology. Then the restriction map induces an isomorphism

R"(G)®Z/n~ lim (R\n)®Z/n).

Proof. Because K°(BH) ~ RK(H) and K^BH) = 0 for any compact Lie group H [2],
K°(BH, Z/n) ~ R*(H) ® Z/n. Thus, the required isomorphism follows immediately
from the isomorphism K°(BG, Z/n) ~ lim K°(Bn, Z/n) given by Theorem 2-3. |

3. Applications to mapping complexes

In [10], we employed the existence of locally finite approximations to a Lie group G
in order to study the mapping complex of (pointed) maps from BG to a finite di-
mensional complex X. The key input into our analysis in addition to the existence of
such approximations was H. Miller's affirmation of the Sullivan Conjecture asserting
that the mapping complex of (pointed) maps from Bn to a simply connected, finite
dimensional complex is weakly contractible for any finite group n [14]. In the pre-
ceding section, our study of generalized cohomology of BG can be equally viewed as
the study of the homotopy groups of the mapping complex of maps from BG to the
infinite loop spaces representing generalized cohomology theories. Our analysis used
the infinite loop space structure of the target space of such a mapping complex in
order to employ a transfer argument (necessary in the proof of Lemma 2-2).

In this section, we give some additional results concerning mapping complexes with
source BG. The goal of our analysis is some understanding of mapping complexes for
which both source and target are classifying spaces of compact Lie groups.

THEOREM 3-1. Let Gbea Lie group with finite component group, P a set of primes, X a
simply connected space whose loop space QX is homotopy equivalenttoafinite-dimensional
complex, and XA the Sullivan P-completion of X. Let f: BG->XA satisfy the condition
that the restriction of f to Bn is homotopically trivial for every finite q-subgroup it <=• G
with qeP. Then f is itself homotopically trivial.

Proof. Since X* is homotopy equivalent to the product n Xg
A of the Sullivan {q}-

completions for all primes qeP, it suffices to assume that P = {q}. Let <j>:BYo-+BG
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be a locally finite approximation away from some prime p + q, and write F o = U yn

with each yn finite. We consider the following commutative diagram:

*] > lim [Bn,X*]

lim [Byn,X*]^ lim [Bn,X*\
n

Using obstruction theory, we conclude that the fact that 0: BTG^>BG induces an
isomorphism in mod-q cohomology implies that the left vertical map is a bijection.
By Proposition 2-1, the right vertical map is an injection. The Milnor exact sequence
implies that the lower left horizontal map is a bijection because the homotopy groups
of each component of each mapping space map+(Byn, XA) are compact.

Consequently, to prove the theorem it suffices to prove that the lower right horizontal
map sends only the base point to the base point. For this, it suffices to prove for each n
that any map/ n : ByH->X* whose restrictions to every g-subgroup n <= yn ia homo-
topically trivial is itself homotopically trivial; in other words, we may assume G is a
finite group, G = y. Let a <=• y be a g-Sylow subgroup and let B(y/o~) denote the orbit
space y\E(y/cr) as defined in [14], section 9. This space is Z(a)-acyclic; moreover, the
natural surjective map A: By->B(y/cr) has the property that the pre-image A-1(a;)
of any xeB(y/cr) is homotopy equivalent to Bn for some g'-subgroup n of y.

To prove that / : By->X" is homotopically trivial, it suffices to prove that/extends
to a map B(y/o~)->X* because B(y/cr) is Z(g)-acyclic and X* is H*( ; Z(a)) local.
Because / : By->XA restricts to a homotopically trivial map/, : \~1(x)->XA for each
xeB(y/cr), f extends by [20], 1-5, to B(y/cr) provided that map#(A~1(a;),XA) has
contractible trivial component map*(A~1(x),XA)0 for each xeB(y/ar). Finally, this
contractibility is given by [10], 2-1, in view of the equivalence

and the assumed finite dimensionality of Q.X. \
The following lemma, to be employed in the proof of Proposition 3-3, is perhaps of

some independent interest. The lemma is a consequence of Theorem 1-4 and the
construction of the locally finite approximation <j>: Bro->BG.

LEMMA 3-2. Let Gbea Lie group with finite component group no(G). For any subgroup
Q <= no(G) of prime power order, there exists a finite subgroup n <= G of prime power order
such that Q is contained in the image of the composition n c: G->no(G).

Proof. Let 0: BTa^>BG be a locally finite approximation away from some primep
so that rQ-+n0(G) is surjective (by [10], M),andlet<J <= F o map onto no(G). Letgbe
the unique prime dividing \Q\ and let T <= S denote a g-Sylow subgroup of 8, so that
T c TG has image in no(G) containing Q. Using Theorem 1-4, find

7R a GR(R)

mapping isomorphically onto 7 c: r G and let n <= G denote the (iaomorphic) image of
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TR. The lemma is implied by the homotopy commutativity of the following
diagram

BT ~ BTR ~BTT

I II

I I
BYO - > BG

implicit in the construction of 0: BT0^*BG (cf. [10], 1-6).
Applying Theorem 3-1 and Lemma 3-2, we obtain the following criterion for a map

/ : BG->BH to be homotopically trivial. The interested reader should compare
Proposition 3-3 in light of our Proposition 2-7 to a criterion of A. Zabrodsky [20] given
in terms of the triviality of the map induced by/on complex i£-theory.

PROPOSITION 3-3. Let G and H be Lie groups with no(G) finite. Let f: BG->BH be a
map whose restriction f\Sn: Bn->BH is homotopically trivial for every subgroup n <= G
of prime power order. Then f is itself homotopically trivial.

Proof. We first prove that/ : BG->BH factors though/0: BG->BH°, where H° is
the connected component of H, by proving that/#: no(G)->no(H) is trivial. For this,
it clearly suffices to prove that/# is trivial upon restriction to any subgroup of prime
power order. This is immediately implied by Lemma 3-2 and our hypothesis concerning

Because our hypotheses on/imply that/°|Bff is also homotopically trivial for every
subgroup 77 <= G of prime power order, we may apply Theorem 3* 1 to/0 to conclude that
(/°)A: BG->{BH0)h is homotopically trivial. Consequently, f° is a phantom map
(cf. [12], [13]). On the other hand, the vanishing of H^BG, ni+1(BH°) ® Q) for every
j ^ 0 implies that every phantom map BG->BH° is homotopically trivial. |

We gratefully acknowledge the assistance of A. Borel, who kindly provided the
reference ([4], 2-8) tailored for our needs. We also profited from numerous con-
versations with P. Gabriel, M. Hopkins and H. Miller. The first author's research was
partially supported by the N.S.F.
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