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1. Introduction

Which connected real Lie groups embed continuously into the invertible group
of some unital Banach algebra? This paper gives the (fairly simple) answer: only the
linear groups, that is, those embedding continuously into GLn(C) for n big enough.

The point is that, although any connected real Lie group G is locally isomorphic
to some linear group (a corollary to Ado's theorem), linearity need not be preserved
under coverings: in fact, no non-trivial covering group of SL2(R) is linear (see [16,
Chapter 2, Exercise 15(b)], or Example 1 below); on the other hand, there is a non-
linear group covered by the 3-dimensional Heisenberg group (see Example 2). It is
interesting to notice that, if G is linear, there exists for n big enough a continuous
faithful representation G -> GLn(C) with closed range [4, Theorem 9].

A representation of the topological group G on a complex Banach space E is said
to be uniformly continuous if the homomorphism G -> GL(£") is continuous when
GL(E) is endowed with the norm topology. Uniformly continuous representations of
real Lie groups are rather special representations since, via the differential, the Lie
algebra acts by bounded operators. Singer [15] (for unitary representations) and
Gurarie [5] (in general) showed that a connected real Lie group G admits a faithful,
uniformly continuous, uniformly bounded representation if and only if G is the direct
product of a compact Lie group and a real vector space; this in turn is equivalent to
the fact that G embeds continuously into U(n) for n big enough. Our Theorem A can
be seen as an analogue of these results when one drops the assumption of uniform
boundedness.

THEOREM A. Let G be a connected real Lie group. The following properties are
equivalent:

(i) G is linear;
(ii) the continuous algebra seminorms separate the points of S\G);

(iii) the uniformly continuous representations separate the points of G;
(iv) G admits a faithful, uniformly continuous representation;
(v) G embeds continuously into the invertible group of a unital Banach algebra.

Recall that S\G) denotes the convolution algebra of compactly supported
distributions on G. Endowed with the strong dual topology, it becomes an algebra
with jointly continuous multiplication (see [14, Theoreme VI.IV]). Theorem A says
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that S"(G) has enough continuous algebra seminorms if and only if G is linear. The
criterion for S'(G) to admit a continuous algebra norm is given by the following
theorem.

THEOREM B. Let G be a connected real Lie group. Then S"(G) embeds continuously
into a Banach algebra if and only if G is nilpotent and simply connected.

Theorems A and B are our main results, and their proof occupies most of the
paper. Theorem A will be proved in the following way: in Section 2, the implications
(i) => (ii) and (ii) => (iii) will be shown in Propositions 1 and 2 respectively; the proof
of the most difficult implication (iii) => (i) occupies Section 3. Observe further than
(i) => (V) arid (iv) => (iii) are obvious. Concerning (v) => (iv), if G embeds continuously
into the irivertible group A'1 of the Banach algebra A, then by letting A act on itself
by the left regular representation one obtains a faithful uniformly continuous
representation of G.

Section 4 will be devoted to the proof of Theorem B; it will rely on the implication
(i) => (ii) from Theorem A.

The Appendix has a somewhat different flavour. Our Theorem A illustrates the
dramatic difference between strongly continuous and uniformly continuous repre-
sentations; however, we show that on certain infinite-dimensional Banach spaces,
such as /°° and L°°, any strongly continuous representation of a connected real Lie
group is automatically uniformly continuous.

Throughout this paper, G will denote a connected real Lie group, and e its neutral
element.

2. Proof of Theorem A (start)

LEMMA 1. Assume that G is linear; let <$ be the algebra (under p'ointwise
multiplication) of all matrix coefficients of continuous finite-dimensiohdl representations
ofG. Then <tf is dense in C°°(G) = S(G).

Proof. First note that ^ is stable under conjugation (because of conjugate
representations) and that <$ separates points of G (because G is linear). The classical
Stone-Weierstrass Theorem shows that # is dense in the space C(G) of continuous
functions on G. To prove that ^ is dense in C°°(G), we appeal to Nachbin's extension
of the Stone-Weierstrass Theorem for smooth functions [13]. The extra assumption
we need to check is: for every geG and non-zero tangent vector Yat g, there exists
a function feW such that Yf(g) # 0. Now write

where X belongs to the Lie algebra of G. Let a be a faithful continuous representation
G -> GLn(C); denote by a+ the differential of a, and by 0^ n the matrix coefficient of
a associated with ^ e C n and ^e(C n ) ' ; then Y(f)^n(g) = ^^^(xn^is) will be non-zero
for some £, n.

We thank Henrik Stetkaer for pointing out Nachbin's paper to us.

An easy consequence is the implication (i) => (ii) of Theorem A.
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PROPOSITION 1. Assume that G is linear. Then, for any non-zero TeS"(G), there
exists a continuous algebra seminorm v on $'{G) such that v(T) # 0.

Proof. By Lemma 1, we find a coefficient ^ n of some continuous representation
OL:G -> GLB(C) such that T(<j>irl) # 0. Then the map

v: S\G) -+ U+ given by S -• || <x(S)||

(|| • || being any algebra norm on the nxn matrices) will define a continuous algebra
seminorm on <o'(G), with v(T) # 0.

We now show the implication (ii) => (iii) of Theorem A.

PROPOSITION 2. Assume that continuous algebra seminorms separate points of
S"(G). Then uniformly continuous representations separate points of G.

Proof. First notice that G embeds continuously into the invertible group of
S"(G), by mapping g to 3g (continuity follows from the Mean Value Theorem applied
to the first order derivatives of functions in ${G)). For geG, g # e, we can find a
continuous algebra seminorm v on S"(G) such that v(Sg — Se) ^ 0 ; by separating/
completing, we get a unital Banach algebra Av with a continuous homomorphism
fiv:G -> A~l such that fiv(g) ^ 1', finally, passing to the left regular representation of
Av, as in the last part of Section 1, we obtain a uniformly continuous representation
av: G -> GL(^V) such that av(g) ̂  Id.

REMARK. Let MC(G) be the convolution algebra of compactly supported Radon
measures on G, endowed with the strong dual topology. Then the embedding G ->
MC(G) given by g -> Sg is not continuous (except for G = {e}). Notice in passing that
MC(G) always has a continuous algebra norm, given by the total variation of a
measure. This means that there is no analogue of Theorems A and B with £"(G)
replaced by MC(G).

3. Proof of Theorem A (conclusion)

Let G = RS be a Levi-Malcev decomposition of G, with R the solvable radical
and S a maximal semisimple subgroup of G.

PROPOSITION 3. The group G is linear if and only if R and S are.

Proof. See [10, XVIII.4.2].

Therefore, it suffices to prove the implication (iii) => (i) of Theorem A for G
semisimple (see Proposition 4) and for G solvable (see Proposition 5).

PROPOSITION 4. Assume that G is semisimple. If the uniformly continuous
representations separate points of G, then G is linear.

Proof. We shall denote by n: G -• G the universal covering homomorphism, and
by G* the range of the complexification a:G^Gc.
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We claim that every uniformly continuous representation a: G -> GL(E) factors
through G*. Indeed, the complexified differential a* provides a representation of the
complex Lie algebra gc by bounded operators, which we integrate to a uniformly
continuous representation of Gc, and finally restrict to G*. This proves the claim.

Thus, if G admits enough uniformly continuous representations, we have
Ker a £ Ker n, so that G is a quotient of G *; but any such quotient is linear, by
[10, XVII.3.3].

EXAMPLE 1. Let G be a non-trivial covering group of SL2(R); then Gc = SL2(C)
and G * = SL2(R). The claim in the proof of Proposition 4 shows that any uniformly
continuous representation of G factors through G*. In particular, so does any finite-
dimensional continuous representation of G, meaning that G is not linear; the proof
of this fact, sketched in [16, Chapter 2, Exercise 15(b)], rests on a similar idea.

We now address the difficult case, that is, the solvable case. Before proving
Proposition 5, we need some preliminary results.

LEMMA 2. Assume that G is solvable. The following properties are equivalent:
(a) G is linear;
(b) the commutator subgroup G' is closed in G, and does not contain any non-trivial

compact subgroup;
(c) the closure c\G' of G' does not contain any non-trivial compact subgroup.

Proof. The equivalence (a)<=>(b) is shown in [10, XVIII.3.2]. The implication
(b) => (c) is clear. To prove the converse, let K be any compact subgroup of G. Then
K fl clG' = {e}, so K ft G' = {e}; in particular, K n G' is closed in K. It follows
from [10, Chapter XVI, Exercise 2] that G' is closed in G.

Other conditions equivalent to linearity of a solvable G are given in [4, Theorem
5]. We present now a couple of examples; the first one was promised in Section 1.

EXAMPLE 2. Denote by H the 3-dimensional real Heisenberg group, and let T
be a non-trivial discrete subgroup of the centre. Then G = H/T is not linear, since
G' = Z(G) is a 1-dimensional torus (see also [10, Chapter XVIII, Exercise 1].

EXAMPLE 3 [10, Chapter XII, Exercise 3]. With H as above, let G = Hx U; the
centre Z(G) is a 2-dimensional vector space in which the commutator subgroup G'
appears as a 1-dimensional subspace. Let T be a lattice in Z(G), and define G = G/T.
Either G' 0 T = [e], in which case G' is a real line densely embedded into a 2-
dimensional torus, or G' n T # {e}, and then G' turns out to be a 1-dimensional torus
(this situation being analogous to Example 2). In both cases, Lemma 2 shows that G
is not linear.

LEMMA 3. Assume that G is solvable. Let K be a compact subgroup ofc\G'. Then
K is central in G.
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Proof. Recall that G' is a nilpotent subgroup of G (see [10, XI. 1.3]); so clG' is
nilpotent as well [1, Chapter V, Proposition 10a, Corollary]. Now Goto proved [4,
Lemma 13] that a compact subgroup in a normal nilpotent Lie subgroup of G is
central in G.

We shall need the following definition, inspired by [8, Chapter 1, Definition 1].

DEFINITION 1. Let a be a strongly continuous representation of a locally
compact group H on a Banach space E. We say that a almost has invariant vectors if,
for every e > 0 and every compact subset K of H, there exists a vector £ of norm 1
in E such that

-d;|| < e foranygetf.

LEMMA 4. Le/ K be a compact group. If the strongly continuous representation
a:K^> GL(E) almost has invariant vectors, then a has non-zero invariant vectors.

Proof (Compare with [8, Chapter 1, Example 5]). Let dk be the normalized Haar
measure on K. Let £eE be a unit vector such that

Define

n=\ a{k)dk.

The vector rj e E is clearly invariant; we still need to show that n # 0. Let /e E' be such
that Il/H = 1 and/(<!;) > \. Then

1/(0-/07)1 =

so that/0/) #0 and n # 0.

LEMMA 5. Le/ G be a connected solvable real Lie group, and let a:G -> GL(is)
£e a uniformly continuous representation on the non-zero Banach space E. Then the
restriction a|clG, almost has invariant vectors.

Proof. We denote by g (respectively h) the Lie algebra of G (respectively clG').
We appeal to the following result of Gurarie and Lyubich [7] (it may be seen as an
infinite-dimensional version of Lie's theorem): there exists a continuous character
X'G -> C"1 and a sequence (£m)meN of unit vectors in E such that, for any XEQ:

(where (x*,/* denote the differentials of a , / ) . Since/ is trivial on clG1', this implies that

lim \MX)£J =0 f

Let Xv...,Xn be a basis of h, and C be a compact subset of clG'. Since clG' is
nilpotent, it is exponential, and we can find an a > 0 such that any g e C can be written
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as g = ExpG £]£_! ttXt, with \t{\ < a for / = 1, ...,n. Let us write Yjt-i tiXi — X and

vWJQ*

which goes to 0 uniformly on C as m oo.

LEMMA 6. Assume that G is solvable. Let K be a compact subgroup ofclG'. Then
K is contained in the kernel of every uniformly continuous representation of G.

Proof. Let <x:G->GL(E) be a uniformly continuous representation. Then E
splits as a direct sum to ®xeliEx, the action of K on each Ex being isotypic and
homothetic (see for example [9, V.3.1]; it follows from [6, Remark 1] that this direct
sum is actually finite, although we shall not use this fact). By Lemma 3, K is central
in G; so each component Ex is a(G)-invariant. Now, the combination of Lemmas 4
and 5 shows that, provided Ex is non-zero, the restriction of a to Ex must have non-
zero a(A^)-invariant vectors. This means that only the trivial character of K appears
in the direct sum.

We can now finish the proof of Theorem A.

PROPOSITION 5. Assume that G is solvable. If the uniformly continuous
representations separate points of G, then G is linear.

Proof. By Lemma 6, clG' does not contain any non-trivial compact subgroup.
The result now follows from Lemma 2.

Before leaving Theorem A, we remark that it has as a consequence the following
result of Goto ([4], Theorem 8): a connected real Lie group is linear if and only if it
has a separating family of continuous finite-dimensional representations.

4. Proof of Theorem B

Let G be a connected real Lie group, g its complexified Lie algebra, and ^r(g) the
enveloping algebra of g. The latter may, and will, be identified with the subalgebra of
S"(G) consisting of all distributions supported within {e}.

Theorem B states that, in order for $'{G) to admit a continuous algebra norm, it
is necessary and sufficient for G to be nilpotent and simply connected. The necessity
will follow from Lemmas 7 and 8.

LEMMA 7. The algebra ^(g) admits an algebra norm if and only if a, is nilpotent.
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Proof. See [12, main result].

Therefore, if G is not nilpotent, then < (̂g) is not normable, and there is no
(continuous or not) algebra norm on $"(G).

LEMMA 8. Let T be the \-dimensional torus. There is no algebra norm on S"(T).

Proof. Assume by contradiction that || • || is such a norm. Denote by 5' the
derivative of the Dirac measure S at the neutral element. We can find n e N such that
n > \\S'\\. Then &— inS would be invertible in the || • ||-completion of S"(T); but if

-*~. then ( * «

showing that 3' — inS is a divisor of zero, a contradiction.

Now, if G is not simply connected, it contains a closed subgroup isomorphic to
T (see [10, XVI. 1.2]); so S"(J) embeds continuously into $'{G). Again we conclude
that $'{G), containing a non-normable subalgebra, does not admit any algebra norm.

The converse part of Theorem B is slightly more difficult. We shall prove it first
for groups of triangular matrices (see Proposition 6), and then show how to derive the
conclusion for arbitrary simply connected nilpotent groups.

Fix n ̂  2, and let

R = {(at})eGLn(R):atJ = 0 if i>j, and ati > 0 for all /},

N = {(at])eR:au= 1 for all/}.

PROPOSITION 6. The topological algebra S'{N) is normable.

Proof. Consider, for / > 0, the diagonal matrix in R:

at = dmg(t,t\...,tn).

Let (eti)i<f be the canonical basis of the Lie algebra n of N. For t > 0, we have

Adat(etj) = ?-> ei}.

Since R is linear, Proposition 1 and its proof assert that there exists a separating
family 2F of continuous finite-dimensional representations of S"(R). Fix tx:$"(R)-+
GL(Ea) belonging to 2P'. For / (depending on a) large enough, we have

|| a o Ada((<?y) || < 1 for / < /

Since aoAdfl, and a are equivalent representations, we may as well assume that
for any OLE^. SO

sup ||a(X)|| < oo for any Xen.

Now we can construct, as in [12], a representation of n by bounded operators, acting
on the ^-direct sum E of the Ea: we define

fi= ©«ln-

Then fi:x\ -> S£{E) is a Lie algebra homomorphism. Since iV is simply connected, /?
integrates to a uniformly continuous representation N -> GL(E), which finally yields
y\i'(N) -> y(E), a continuous algebra homomorphism, with

Ktry=
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LEMMA 9. Assume that G is simply connected and nilpotent. Then, for n large
enough, there exists a continuous embedding G -> GLn(IR), whose range is contained
in N.

Proof. See [10, XVIII.3.1]. Observe that the range of an embedding G ^> N is
always closed because Exp: n -> N is a diffeomorphism.

Theorem B now becomes clear: the embedding G -*• N induces an embedding
&'(G) -> &'{N)t and S\N) is normable by Proposition 6.

EXAMPLE 4. When G is nilpotent and simply connected, it is not true that every
algebra norm on %(Q) extends to an algebra norm on £'(G); in other words, a
monomorphism ^(g) -+ £f(E) always yields a homomorphism &'(G) -*• £f(E), but
the latter need not be injective.

To see this, consider G = U2, a simply connected additive real Lie group, on which
we use tx, t2 as coordinates. Passing to the complex Fourier transform, we identify
<^(g) with C[zx,z2], and £"(G) appears as an algebra of entire functions of zx,z2

(Paley-Wiener class). Define

1| ^ I , | z 2 |^ 1}.

The supremum on K defines an algebra norm on C[z15z2]. Consider now the
distribution

1 ^ dtx

with support {(0,0), (0,1)} (so that T does not belong to ^(g)); then f(z1,z2) =
e~<22 _ 2X vanishes on K. Therefore, the supremum on K will yield only a seminorm on
i\G).

This example shows that Proposition 1 is an essential ingredient in the proof of
Proposition 6.

Appendix

We prove here that there are infinite-dimensional Banach spaces on which any
strongly continuous representation of a connected real Lie group is uniformly
continuous.

DEFINITION 2. A Banach space E has the Dunford-Pettis property if, for any
sequence (xn)neN in E converging weakly to x, and any sequence (fn)neN in E'
converging weakly to / , one has

lim/n(xn) =f(x).
n

DEFINITION 3. A Banach space E has the Grothendieck property if every weak*
convergent sequence in E' also converges in the weak topology on E'.

If AT is a compact space, it is known that C(K) always has the Dunford-Pettis
property, and that it has the Grothendieck property when K is stonian, that is, the
closure of an open set is open; see for example [11], and the references therein. In
particular L°° and /°° have both the Dunford-Pettis and the Grothendieck properties.
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PROPOSITION 7. Let E be a Banach space having both the Dunford-Pettis and the
Grothendieck properties. Any strongly continuous representation a. of a connected real
Lie group G on E is uniformly continuous.

Proof. We appeal to a result of Lotz ([11, Theorem 3]; see also [3] for a short
proof): any strongly continuous one-parameter semigroup of operators on E is
uniformly continuous. Thus, if X is an element in the Lie algebra g of G, the one-
parameter group (a(Expc tX))teR is strongly continuous, hence uniformly continuous.
Let then Xv...,Xn be a basis of g; by [10, VII.4.1] there exists a number e > 0 and
a neighbourhood V of e in G such that any element geU can be written uniquely as

g = ExpGt1Xn...ExpGtnXn

with |/t| < e for i=\,...,n. So the homomorphism a.G -• GL(£) is uniformly
continuous at e, hence everywhere.

If a is uniformly bounded, our Proposition 7 appears as a particular case of the
Theorem in [2, §111.4].

We thank Thierry Coulhon for providing us with the references of this Appendix.
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