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A recent genome-wide association study (GWAS) involving
patients with hemophilia A who were exposed to but unin-
fected with human immunodeficiency virus type 1 (HIV-1)
did not reveal genetic variants associated with resistance to
HIV-1 infection, beyond homozygosity for CCR5-Δ32.
Since variation in HLA class I and KIR genes is not well in-
terrogated by standard GWAS techniques, we tested whether
these 2 loci were involved in protection from HIV-1 infection
in the same hemophilia cohort, using controls from the gene-
ral population. Our data indicate that HLA class I alleles,
presence or absence of KIR genes, and functionally relevant
combinations of the HLA/KIR genotypes are not involved in
resistance to parenterally transmitted HIV-1 infection.
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Hemophilia A is the most common inherited bleeding disorder
and is caused by deficiency of coagulation factor VIII (FVIII)
[1]. The deficiency results from deleterious mutations in the
gene encoding FVIII, located on chromosome X. The incidence
of the disease is 1 in 5000 male live births, occurring as mild,
moderate, or severe forms, depending on the residual level of
FVIII activity. Prevention of hemorrhagic episodes involves in-
travenous infusions of FVIII, which have to be administered on

a regular basis and at high frequency in patients with severe
forms of the disease. Before the introduction of recombinant
FVIII in the 1990s, donor-derived pooled plasma concentrates
were the only sources of therapeutic FVIII. These concentrates
were not treated for virus inactivation until 1984, and as a result,
>90% of patients with hemophilia A who received high- and
moderate-dose treatments between 1978 and 1984 were infected
with HIV-1 [2]. The uninfected minority from this patient
group, along with other cohorts of HIV-exposed seronegative
(HESN) individuals exposed to the virus by various routes, rep-
resent a source of important genetic material for studying nat-
ural resistance to HIV acquisition [3].

Attempts to identify the genetic basis for resistance to HIV
infection have only demonstrated consistent results for the
locus encoding the chemokine receptor CCR5, which also
serves as a coreceptor for R5-tropic viral isolates [4]. Homozy-
gosity for a 32-bp deletion (Δ32/Δ32) in the CCR5 gene, which
occurs virtually only in white individuals, results in abrogation
of the receptor’s cell surface expression. Up to 15% of hemo-
philiac HESN individuals carry the Δ32/Δ32 genotype, com-
pared with approximately 1% of the general white population.
A rarer mutation, m303, which introduces a premature stop
codon, has a similar effect on CCR5 production, and homozy-
gous (m303/m303) or compound heterozygous (m303/Δ32)
carriers have also been observed among HESN individuals.

A genome-wide association study (GWAS) was recently per-
formed to search for additional genes involved in resistance to
HIV infection in patients with hemophilia A [5]. No variants
tested in 431 HESN individuals and 765 HIV-infected controls
reached genome-wide significance. Here, we applied a candi-
date-gene approach to the same cohort of hemophiliac HESN
individuals and tested variation at 2 loci that are known to be
involved in HIV pathogenesis, the gene clusters encoding
HLA class I and the killer cell immunoglobulin-like receptor
(KIR) [6]. Variation in the HLA class I region shows the stron-
gest and most consistent influence on the course of HIV disease,
including allelic associations with protection (B*57 and B*27)
and susceptibility (B*35 subtypes), as well as the allele-
defined level of HLA-C expression. These associations are
thought to be due primarily to effective anti-HIV cytotoxic
T-lymphocyte responses. Interactions between KIR and HLA
regulate innate immune responses of natural killer (NK) cells
and a subset of CD8+ T cells. A given KIR gene recognizes a
specific set of HLA allotypes, and certain combinations of
KIR3DL1/S1 and HLA-B alleles have been shown to delay dis-
ease progression [6].
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Variation at the HLA and KIR loci is usually not extensively
tested by standard GWAS, because most HLA alleles are not ef-
ficiently tagged by any single-nucleotide polymorphism (SNP)
present on the genotyping arrays [7] and because of the extreme
insertion/deletion polymorphism within the KIR locus. Given
the importance of HLA and KIR for both innate and acquired
immunity, we tested whether variation within these loci may in-
fluence HIV acquisition as they do for post-infection events. In
contrast to the Lane et al study [5],we used individuals random-
ly drawn from the general population as controls in order to
avoid the frailty bias that is inherent to virtually all HIV+ co-
horts (ie, the enrichment of alleles associated with better HIV
control in cohorts of chronic patients, due to longer survival
which confounds association results [8]). Use of a random con-
trol population is essential when probing for an effect of HLA
on HIV infection, since the HLA class I is the only locus
genome-wide to consistently show an effect on control of
HIV after infection.

METHODS

Study Subjects
HESN individuals with hemophilia A were included in the
CHAVI014 protocol and described previously [5]. Briefly,
these individuals had moderate or severe hemophilia A, had
been treated with plasma-derived FVIII concentrates between
1979 and 1984, and were negative for HIV. The control group
included individuals from the 1958 birth cohort (available at:
http://www2.le.ac.uk/projects/birthcohort, accessed 17 April
2014). The 1958 birth cohort provides a geographically repre-
sentative sample of British people primarily of European ances-
try and has been used in a number of genetic case-control
studies. Institutional review boards at each participating center
approved the study, and all participants provided informed con-
sent for genetic testing.

Genotyping
The GWAS data (Illumina 1M) and the 2-digit HLA class I geno-
types for the 1958 birth cohort were obtained from the Wellcome
Trust Case Control Consortium (available at: http://www.wtccc.
org.uk/, accessed 17 April 2014). The GWAS data (Illumina
1M/1Mduo) for the HESN individuals were collected previously
[5]. TheHLA class I loci were typed by the sequence-based typing
method recommended by the 13th International Histocompat-
ibility Workshop (available at: http://www.ihwg.org, accessed 17
April 2014). HLA sequences were analyzed using Assign soft-
ware (Conexio Genomics), which matches experimental data
to known allele sequences from the International Immunoge-
netics Information System database (available at: http://www.
ebi.ac.uk/imgt/hla, accessed 17 April 2014). KIR genotyping
for the presence or absence of each gene was conducted by po-
lymerase chain reaction (PCR) with sequence-specific priming

as described previously [9], with some modifications. PCR was
conducted using 5 ng of genomic DNA in a volume of 5 µL,
using SYBR Green Master Mix with Platinum Taq (Life Tech-
nologies). The presence or absence of specific PCR products was
detected by melting curve analysis on the 7900 Real-Time PCR
System (Applied Biosystems). Additional KIR2DS4 subtyping
for the presence of a 20-bp deletion resulting in a null allele
was resolved by size discrimination, using the LabChip GX
instrument (Perkin Elmer).

Statistical Analyses
We conducted quality control analysis of the GWAS data as de-
scribed earlier [5]. Logistic regression tests were performed
using R software (available at: http://www.r-project.org, ac-
cessed 17 April 2014). To avoid spurious associations due to
population stratification, we used the Eigenstrat method [10]:
after exclusion of population outliers, genetic association tests
were corrected for residual stratification, using the coordinates
of the significant principal components axes as covariates. Bon-
ferroni correction was used to calculate the significant P value
threshold, P = .0006. Because of linkage disequilibrium, not all
tests are independent. Therefore, we also calculated an alterna-
tive significance threshold that was based on permutation tests.
For this, we randomly attributed case or control status to each of
the study subjects and repeated all logistic regression tests. With
1000 permutations, the lowest 5% of P values were <.0009.
Therefore, the significance threshold based on permutations
(P = .0009) was very close to that calculated by the Bonferroni
method (P = .0006). To minimize the risk of false associations,
we used the most stringent threshold, although it did not make
any difference. Power calculations are provided in Supplemen-
tary Table 1.

RESULTS AND DISCUSSION

DNA samples were available for 442 of 483 HESN individuals
included in the CHAVI014 protocol [5]. These were genotyped
for HLA class I alleles and the presence or absence of the KIR
genes. A total of 117 individuals were excluded from further
analyses on the basis of the following criteria: CCR5 mutation
homozygosity (either Δ32 or m303), self-reported non-European
ethnicity, GWAS quality control, relatedness, population outli-
ers, and genotyping failure. Thus, 325 white HESN individuals
with GWAS, KIR, and HLA class I data were used as cases in
genetic tests. The controls represent the general British popula-
tion, and genotypes available for these samples included GWAS,
HLA class I, and KIR (GWAS/HLA-A, 1916 samples; GWAS/
HLA-B, 1882; GWAS/HLA-C, 1602; GWAS/KIR, 1305;
GWAS/HLA-A/KIR, 1187; GWAS/HLA-B/KIR, 1176; and
GWAS/HLA-C/KIR, 855).

No SNP reached genome-wide significance when the HESN
individuals were compared with the general population
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controls, similar to the results of the study by Lane et al, in
which HIV–infected individuals were used as controls [5].
Next, the frequencies of the HLA class I alleles were compared
between the HESN individuals and individuals in the 1958 birth
cohort in dominant models using logistic regression. Although
some differences in allelic frequencies were observed between
cases and controls, none reached statistical significance after
correction for population stratification and multiple testing
(Table 1). For example, HLA-B*08 was present at only about
half the frequency in the HESN individuals as compared to in-
dividuals in the 1958 birth cohort (15% vs 27%), but this diffe-
rence is entirely attributed to differences in population structure
between cases and controls. The HESN group contains a mix of
Europeans with substantial numbers of individuals from south-
ern Europe, whereas the 1958 birth cohort is a relatively homo-
geneous British population. The HLA-B*08 allele is observed at
a lower frequency in southern Europe as compared to northern
Europe, such that the difference between the cases and controls
is geographically based, as indicated by the statistical analysis
(available at: http://www.allelefrequencies.net, accessed 17
April 2014).

Similarly, we tested the frequencies of the KIR genes (presence
or absence), using logistic regression. Again, no significant diffe-
rence between cases and controls was observed (Table 2). Given
the known receptor-ligand interactions between HLA and KIR,
we further performed tests for KIR ligand groupings and geno-
typic combinations, some of which have been associated with
diseases previously (Table 2 and Supplementary Table 2).
These included KIR3DL2-HLA-A*3/11, functional KIR2DS4-
HLA-A*3/11, KIR3DL1-HLA-Bw4, KIR3DS1-HLA-Bw4-80I,
KIR2DL3-HLA-C1, and KIR2DL1/S1-HLA-C2 [6]. None of the
results were significant after correction for multiple testing, but
the lowest P values were observed for the KIR2DL1-HLA-C2
compound genotype (adjusted odds ratio, 1.68; P = .002),
which tends toward protection from HIV infection. This geno-
type confers a relatively high level of inhibitory KIR engagement
and may be indicative of efficient NK-cell licensing. However, the
possibility of such a mechanism being involved in protection
from infection is inconclusive from our data, as the P value
does not reach the threshold of significance (P = .0006).

Thus, we did not detect any significant influence of the HLA
class I alleles and the presence or absence of the KIR genes on
HIV acquisition among the hemophiliac HESN individuals.
Whereas homozygosity for deleterious CCR5 variants is protec-
tive against mucosal and parenteral transmission of HIV, there
could be distinct genetic mechanisms of protection against HIV
infection, depending on the route of exposure, and it is well doc-
umented that the level of viral exposure impacts the risk of in-
fection [3]. These factors vary across groups who are at risk for
HIV infection, including sex workers, serodiscordant couples,
children of infected mothers, injection drug users, men who
have sex with men, and health workers [3]. The exposure level

Table 1. Logistic Regression Analysis Comparing 325 Hemophiliac
Human Immunodeficiency Virus–Exposed Seronegative Individuals
(Cases) and 1916 Individuals From the 1958 Birth Cohort (Controls)
for HLA Class I Alleles With Frequencies >3%

HLA
Allele

Cases, %
(No.)

Controls, %
(No.)

P
Value

Adjusted OR
(95% CI)

A*01 24.3 (79) 34.4 (660) .53 0.90 (.66–1.24)

A*02 52.3 (170) 49.7 (953) .08 1.30 (.97–1.73)

A*03 23.1 (75) 26 (499) .35 0.85 (.61–1.19)

A*11 8.9 (29) 12.5 (239) .09 0.66 (.41–1.07)

A*23 4.0 (13) 3.0 (57) .62 1.20 (.58–2.45)

A*24 17.8 (58) 14.9 (286) .83 0.96 (.65–1.41)

A*25 3.1 (10) 3.5 (67) .54 0.78 (.34–1.75)

A*26 7.7 (25) 4.9 (93) .94 0.98 (.50–1.89)

A*29 8.3 (27) 7.9 (152) .97 1.01 (.59–1.73)

A*30 6.8 (22) 4.2 (81) .60 0.83 (.41–1.66)

A*31 6.8 (22) 5.3 (102) .27 1.36 (.78–2.38)

A*32 8.0 (26) 8.0 (153) .35 0.76 (.43–1.34)

A*68 7.7 (25) 7.7 (147) .79 1.07 (.64–1.80)

B*07 18.2 (58) 26.4 (497) .27 0.82 (.58–1.16)

B*08 15.1 (48) 27.2 (511) .13 0.75 (.52–1.08)

B*13 3.1 (10) 3.4 (64) .68 0.84 (.36–1.93)

B*14 6.3 (20) 8.0 (151) .28 0.72 (.39–1.31)

B*15 13.2 (42) 15.6 (293) .79 1.06 (.71–1.56)

B*18 10.4 (33) 6.8 (128) .74 0.91 (.52–1.60)

B*27 7.2 (23) 8.4 (159) .78 1.07 (.64–1.79)

B*35 19.8 (63) 11.4 (214) .62 1.11 (.73–1.69)

B*37 4.4 (14) 2.9 (55) .09 1.85 (.91–3.74)

B*38 5.7 (18) 1.6 (31) .97 0.98 (.38–2.53)

B*39 4.7 (15) 3.6 (67) .55 0.79 (.37–1.70)

B*40 11.9 (38) 13.2 (249) .56 1.13 (.75–1.70)

B*44 29.9 (95) 31.1 (586) .28 1.19 (.87–1.62)

B*50 4.4 (14) 1.8 (34) .02 2.43 (1.14–5.19)

B*51 13.5 (43) 7.9 (148) .58 1.14 (.71–1.85)

B*55 2.8 (9) 3.8 (71) .92 0.96 (.43–2.14)

B*57 6.3 (20) 8.6 (162) .72 0.90 (.52–1.57)

C*01 6.2 (20) 7.5 (120) .20 0.66 (.35–1.24)

C*02 8.3 (27) 6.7 (107) .47 1.23 (.70–2.14)

C*03 24.7 (80) 28.5 (456) .64 1.08 (.78–1.49)

C*04 24.4 (79) 14.4 (230) .28 1.23 (.84–1.80)

C*05 19.4 (63) 19.9 (318) .09 1.36 (.95–1.95)

C*06 17.9 (58) 18.5 (296) .61 1.10 (.76–1.60)

C*07 44.1 (143) 57.9 (928) .03 0.72 (.54–.97)

C*08 6.5 (21) 8.4 (134) .22 0.69 (.38–1.26)

C*12 13.9 (45) 7.1 (114) .76 0.92 (.54–1.57)

C*14 3.4 (11) 1.7 (28) .59 1.31 (.49–3.50)

C*15 8.3 (27) 3.4 (54) .10 1.66 (.91–3.02)

C*16 7.4 (24) 8.2 (131) .71 0.90 (.51–1.58)

ORs were corrected for population stratification. An OR of > 1 reflects
protection against HIV infection, and an OR of < 1 reflects susceptibility to
HIV infection. None of the variables shown here reached the threshold of
significance (P = .0006).

Abbreviations: CI, confidence interval; OR, odd ratio.

BRIEF REPORT • JID 2014:210 (1 October) • 1049

http://www.allelefrequencies.net
http://www.allelefrequencies.net
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu214/-/DC1


in these groups is not easily quantifiable and therefore makes
results of the genetic association tests for the risk of infection
difficult to interpret. In addition, the risk of infection is esti-
mated to be <1% per exposure in sexual and parenteral con-
tacts, except for cases of contaminated blood transfusion, in
which the risk is about 90% (available at: http://www.cdc.
gov/hiv/policies/law/risk.html, accessed 17 April 2014). The
hemophiliac cohort that we analyzed herein is the most reli-
able, compared with other HESN cohorts, in terms of the ho-
mogenously high risk of infection across participants, detailed
clinical data, and the size of the cohort [5]. Several studies sug-
gested a role forHLA class I allele and/or KIR gene presence or
absence in HIV infection in sexual, parenteral, and mother-to-
child transmissions [11–13]. These results should be interpreted
with caution because of potential shortcomings in terms of sam-
ples sizes, exposure quantification, population stratification, and
frailty bias, which invariably leads to the enrichment of geno-
types that protect against disease progression in cohorts of chron-
ically infected individuals. Nevertheless, the negative data
obtained here cannot be readily extrapolated to other types of

HIV exposure, owing to potentially distinct mechanisms of
protection.

Conversely, HIV transmission between sex partners has been
shown to be associated with certain HLA class I alleles in the
infected partners [14, 15], which is likely due to the influence
of these HLA class I alleles on viral load. The same studies
did not find HLA class I allelic associations with resistance to
the HIV acquisition in uninfected partners, similar to our
findings.

In summary,HLA class I and KIR genes do not appear to im-
pact HIV acquisition among hemophiliac patients exposed to
contaminated blood products. Host genetic factors could still
be involved in the resistance phenotype observed in HESN in-
dividuals (eg, low-frequency variants poorly tagged by genotyp-
ing arrays or structural variants, such as insertion and deletion
polymorphisms), and this should be investigated further. Avail-
ability of large, randomly selected control groups with available
genome-wide genotyping data, such as the 1958 birth cohort,
allows a thorough investigation of genetic associations in ethni-
cally matched populations.

Table 2. Logistic Regression Analysis Comparing 325 Hemophiliac Human Immunodeficiency Virus–Exposed Seronegative Individuals
(Cases) and 1305 Individuals From the 1958 Birth Cohort (Controls) for KIR Genes and Genotypic Combination of KIR and HLA

Test Cases, % (No.) Controls, % (No.) P Value Adjusted OR (95% CI)

KIR2DL1 96.3 (313) 96.9 (1264) .48 1.37 (.57–3.27)

KIR2DL2 51.7 (168) 50.1 (654) .89 1.02 (.76–1.37)
KIR2DL3 88.6 (288) 91.7 (1197) .97 1.01 (.59–1.72)

KIR2DL5 53.2 (173) 46.2 (603) .27 1.18 (.88–1.59)

KIR2DP1 96.3 (313) 96.9 (1264) .48 1.37 (.57–3.27)
KIR2DS1 42.2 (137) 36.3 (474) .09 1.30 (.96–1.76)

KIR2DS2 52.6 (171) 50.6 (660) .78 1.04 (.78–1.40)

KIR2DS3 31.1 (101) 24.7 (322) .17 1.26 (.91–1.76)
KIR2DS4 35.4 (115) 39.1 (511) .84 0.97 (.71–1.32)

KIR2DS5 33.2 (108) 29.7 (388) .14 1.27 (.93–1.74)

KIR3DL1 96.0 (312) 95.6 (1248) .49 1.31 (.60–2.85)
KIR3DS1 41.8 (136) 36.2 (473) .07 1.32 (.98–1.79)

KIR3DS1_hmz 4.0 (13) 4.4 (57) .49 0.76 (.35–1.66)

HLA-A*3/11 30.8 (100) 35.6 (422) .19 0.81 (.59–1.11)
HLA-A*3/11 + KIR2DS4 10.5 (34) 14.7 (175) .08 0.65 (.41–1.06)

HLA*Bw4 66.0 (210) 60.5 (711) .38 1.15 (.84–1.57)

HLA*Bw4 80I 30.2 (96) 21.9 (258) .78 0.95 (.66–1.36)
HLA*Bw4+ KIR3DL1 63.2 (201) 58.2 (684) .31 1.17 (.86–1.60)

HLA*Bw4 80I + KIR3DS1 11.6 (37) 7.7 (91) .90 0.97 (.55–1.69)

HLA group C1 81.8 (265) 88.7 (758) .13 0.71 (.46–1.10)
HLA group C1 hmz + KIR2DL3 hmz 16.4 (53) 20.7 (177) .05 0.65 (.43–.99)

HLA group C2 66.0 (214) 56.0 (479) .006 1.58 (1.14–2.20)

HLA group C2 hmz + KIR2DL3 hmz 7.7 (25) 5.6 (48) .75 1.10 (.59–2.06)
HLA group C2 + KIR2DL1 63.6 (206) 53.9 (461) .002 1.68 (1.21–2.32)

HLA group C2 + KIR2DS1 26.9 (87) 20.0 (171) .03 1.51 (1.05–2.17)

Only the functional KIR2DS4 allele was included. ORs were corrected for population stratification. An OR of >1 reflects protection against HIV infection, and an OR of
<1 reflects susceptibility to HIV infection. None of the variables shown here reached the threshold of significance (P = .0006).

Abbreviations: CI, confidence interval; hmz, homozygous; OR, odd ratio.
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ing errors should be addressed to the author.
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