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SUMMARY

In some cases model-based and model-assisted inferences can lead to very different estimators.
These two paradigms are not so different if we search for an optimal strategy rather than just
an optimal estimator, a strategy being a pair composed of a sampling design and an estimator.
We show that, under a linear model, the optimal model-assisted strategy consists of a balanced
sampling design with inclusion probabilities that are proportional to the standard deviations of
the errors of the model and the Horvitz–Thompson estimator. If the heteroscedasticity of the
model is ‘fully explainable’ by the auxiliary variables, then this strategy is also optimal in a
model-based sense. Moreover, under balanced sampling and with inclusion probabilities that are
proportional to the standard deviation of the model, the best linear unbiased estimator and the
Horvitz–Thompson estimator are equal. Finally, it is possible to construct a single estimator for
both the design and model variance. The inference can thus be valid under the sampling design
and under the model.

Some key words: Balanced sampling; Design-based inference; Finite population sampling; Fully explainable het-
eroscedasticity; Model-assisted inference; Model-based inference; Optimal strategy.

1. INTRODUCTION

In survey sampling theory there have long been contrasting views on which approach to use in
order to obtain a valid inference in estimating population totals: a prediction theory based on a
superpopulation model or a probability sampling theory based on a sampling design. Neither of
these paradigms is false. Numerous articles compare the two approaches (Brewer, 1994, 1999b,
2002; Brewer et al., 1988; Hansen et al., 1983; Iachan, 1984; Royall, 1988; Smith, 1976, 1984,
1994). Valliant et al. (2000, p. 14), who favour the model-based theory, say that ‘there is no doubt
of the mathematical validity of either of the two theories’. Nevertheless, we believe that the choice
between them depends on the point of view of the analyst.

In the model-based, or prediction, approach studied by Royall (1976, 1992), Royall &
Cumberland (1981) and Chambers (1996), the optimality is conceived only with respect to
the regression model without taking into account the sampling design. Royall (1976) proposed
the use of the best linear unbiased predictor when the data are assumed to follow a linear model.
Royall (1992) showed that under certain conditions there exists a lower bound for the error vari-
ance of the best linear unbiased predictor, and that this bound is only achieved when the sample is
balanced. Royall & Herson (1973a,b) and Scott et al. (1978) discussed the importance of balanced
sampling in order to protect the inference against a misspecified model. These authors conclude
that the sample must be balanced, but not necessarily random.

In the model-assisted approach advocated by Särndal et al. (1992), the estimator must be
approximately design-unbiased under the sampling design. The generalized regression estimator
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uses auxiliary information from the linear model, but is approximately design-unbiased. Deville
& Särndal (1992) proposed a purely design-based methodology that takes into account auxiliary
information without considering a model. The main difference between the design-based and the
model-based approaches arises because the statistical properties of an estimator are evaluated
with respect to the sampling design and not with respect to the model.

Recently, Deville & Tillé (2004) developed the cube method, an algorithm that can select
randomly balanced samples and that satisfies exactly the given inclusion probabilities. In the
model-based framework, balanced samples are essential for achieving the lower bound for the
error variance proposed by Royall (1992). Moreover, it can be shown that balanced sampling is
also optimal under model-assisted inference. Hájek (1981) defined a strategy as a pair comprising
a sampling design and an estimator. The purpose of this paper is to show that, if we search for
an optimal strategy rather than just an optimal estimator, most of the differences between model-
based and model-assisted inferences can be reconciled.

2. NOTATION AND DEFINITIONS

We consider a finite population U of size N . Each unit of the population can be identified
by a label k = 1, . . . , N . Let xk = (xk1, . . . , xkq )′ be the vector of the values of q auxiliary
variables for unit k, for k = 1, . . . , N , and let X = ∑

k∈U xk be the vector of totals, which is also
known. The values y1, . . . , yN of the variables of interest are unknown. The aim is to estimate
the population total Y = ∑

k∈U yk . A sample s is a subset of the population U . Let p(s) denote
the probability of selecting the sample s, S being the random sample such that p(s) = pr(S = s)
and let n(S) be the size of the sample S. The expected sample size is n = Ep{n(S)}, where Ep

denotes the expected value under the sampling design p(·). Let S̄ denote the set of units of the
population which are not in S. Let πk = pr(k ∈ S) denote the inclusion probability of unit k, and
let πk� = pr(k ∈ S and � ∈ S) denote, for k � �, the joint inclusion probability of units k and �.
The variable y is observed on the sample only.

Under model-based inference, the values y1, . . . , yN are assumed to be the realization of
a superpopulation model ξ . The model which we will study is the general linear model with
uncorrelated errors, given by

yk = x ′
kβ + εk, (1)

where the xks are not random, β = (β1, . . . , βq )′, Eξ (εk) = 0, varξ (εk) = ν2
k σ 2, for all k ∈ U ,

and covξ (εk, ε�) = 0, when k � � ∈ U . The quantities νk, k ∈ U , are assumed known. Moreover,
we scale them so that

∑
k∈U νk = N . The superpopulation model (1) includes the possibility of

heteroscedasticity. Under homoscedasticity, νk = 1 for all k ∈ U . An important and common
hypothesis is that the random sample S and the errors εk of (1) are independent. The symbols
Eξ , varξ and covξ denote, respectively, expected value, variance and covariance under the model.

In order to estimate the total Y , we will only use linear estimators which can be written as

Ŷw =
∑

k∈S
wkS yk =

∑
k∈U

wkS yk Ik,

where the wkS, k ∈ S are weights that can depend on the sample, and where Ik is equal to 1 if
k ∈ S and equal to 0 if k /∈ S.

DEFINITION 1 (Hájek, 1981, p. 153). A strategy is a pair {p(·), Ŷ } comprising a sampling
design and an estimator.

DEFINITION 2. An estimator Ŷ is said to be model-unbiased if Eξ (Ŷ − Y ) = 0.
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DEFINITION 3. An estimator Ŷ is said to be design-unbiased if Ep(Ŷ ) − Y = 0.

DEFINITION 4. A linear estimator Ŷw is said to be calibrated on a set of auxiliary variables xk

if and only if its weights satisfy ∑
k∈S

wkSxk =
∑

k∈U
xk.

DEFINITION 5. The design variance of an estimator Ŷ is defined by

varp(Ŷ ) = Ep{Ŷ − Ep(Ŷ )}2.

DEFINITION 6. The design mean-squared error of an estimator Ŷ is defined by

MSEp(Ŷ ) = Ep(Ŷ − Y )2.

DEFINITION 7. The model variance of an estimator Ŷ is defined by

varξ (Ŷ ) = Eξ {Ŷ − Eξ (Ŷ )}2.

DEFINITION 8. The model mean-squared error of an estimator Ŷ is defined by

Eξ (Ŷ − Y )2.

The model mean-squared error is sometimes called the error variance. The model mean-squared
error of an estimator Ŷ is generally smaller than its model variance because Ŷ is closer to Y than
to Eξ (Ŷ ).

DEFINITION 9. The anticipated mean-squared error of an estimator Ŷ is defined by

MSEpξ (Ŷ ) = EpEξ (Ŷ − Y )2 = Eξ Ep(Ŷ − Y )2.

The anticipated mean-squared error is also called the anticipated variance, for example, by
Isaki & Fuller (1982).

3. LINEAR ESTIMATORS

Consider the class of linear estimators, Ŷw = ∑
k∈S wkS yk . For all k ∈ U , define Ck =

Ep(wkS Ik) = πkEp(wkS | Ik = 1). Godambe (1955) showed that Ŷw is design-unbiased if and
only if Ck = 1 or, equivalently, if Ep(wkS | Ik = 1) = 1/πk . Moreover, its model bias is

Eξ (Ŷw − Y ) =
∑

k∈S
wkSx ′

kβ −
∑

k∈U
x ′

kβ,

for any value of β ∈ R
q . Therefore, for the class of linear estimators under the linear model

ξ , the definitions of a model-unbiased and a calibrated estimator are equivalent. For any linear
estimator, a general expression of the anticipated mean-squared error can be given.

RESULT 1. If Ŷw is a linear estimator, then

EpEξ (Ŷw − Y )2

= σ 2Ep

{∑
k∈S

(wkS − 1)2ν2
k +

∑
k∈S̄

ν2
k

}
+ Ep

(∑
k∈S

wkSx ′
kβ −

∑
k∈U

x ′
kβ

)2

= σ 2
∑

k∈U
ν2

k

{
C2

k
1 − πk

πk
+ πkvarp(wkS | Ik = 1) + (Ck − 1)2

}
+ varp

(∑
k∈S

wkSx ′
kβ

)
+

(∑
k∈U

Ck x ′
kβ −

∑
k∈U

x ′
kβ

)2
.

The proof is given in the Appendix.
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The anticipated mean-squared error EpEξ (Ŷw − Y )2 is the sum of five nonnegative terms,

EpEξ (Ŷw − Y )2 = A + B + C + D + E, (2)

where

A = σ 2
∑

k∈U
ν2

k C2
k

1 − πk

πk
, B = σ 2

∑
k∈U

ν2
k πkvarp(wkS | Ik = 1),

C = σ 2
∑

k∈U
ν2

k (Ck − 1)2, D = varp

(∑
k∈S

wkSx ′
kβ

)
,

E =
(∑

k∈U
Ck x ′

kβ −
∑

k∈U
x ′

kβ
)2

.

Term A is a part of the anticipated mean-squared error; it depends on the inclusion probabilities
and the variance of the errors. Term B is only relevant if the weights wkS differ from sample
to sample. Term C depends on the design bias and the variance of the errors of the model;
it is null if the estimator is design-unbiased. Term D is the design variance of the model
expectation of the estimator; it is null when the estimator is calibrated, or model-unbiased.
Term E is the square of the design bias of the model expectation of the estimator; it is
also null when the estimator is calibrated, or model-unbiased or when the estimator is
design-unbiased.

Some particular cases of Result 1 are interesting.

COROLLARY 1. If Ŷw is a model-unbiased linear estimator, or a calibrated estimator, then
EpEξ (Ŷw − Y )2 = A + B + C.

COROLLARY 2. If Ŷw is a design-unbiased linear estimator, then Ck = 1 for all k in U and
EpEξ (Ŷw − Y )2 = A + B + D.

COROLLARY 3. If Ŷw is a design-unbiased linear estimator with weights wks that are constant
from sample to sample, then Ck = 1, for all k in U, and EpEξ (Ŷw − Y )2 = A + D.

COROLLARY 4. If Ŷw is a design-unbiased and model-unbiased linear estimator, then
EpEξ (Ŷw − Y )2 = A + B.

Example 1. The Horvitz–Thompson estimator, given by

Ŷπ =
∑

k∈S

yk

πk
,

is linear and design-unbiased when πk > 0, for all k ∈ U , because

Ep(Ŷπ ) =
∑

k∈U

yk

πk
E(Ik) = Y .

Under any sampling design, the design variance of this estimator is

varp(Ŷπ ) =
∑

k∈U

∑
�∈U

yk

πk
�k�

y�

π�

, (3)

where �k� = πk� − πkπ�, k, � ∈ U . The Horvitz–Thompson estimator is, however, model-biased
and its bias is

Eξ (Ŷπ − Y ) =
(∑

k∈S

x ′
k

πk
−

∑
k∈U

x ′
k

)
β. (4)
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Since the Horvitz–Thompson estimator is design-unbiased with weights wks = 1/πk that are
constant from sample to sample, its anticipated mean-squared error can be deduced from
Corollary 3,

EpEξ (Ŷπ − Y )2 = A + D = σ 2
∑

k∈U
ν2

k
1 − πk

πk
+

∑
k∈U

∑
�∈U

x ′
kβ

πk
�k�

x ′
�β

π�

.

4. BALANCED SAMPLING

There exist several different definitions of the concept of balancing. A first definition of
a balanced sample is that the sample mean is equal to the population mean. According to
this definition, balancing is a property of a sample and a balanced sample can be constructed
deliberately and deterministically without reference to a random procedure. A balanced sample is
then associated with the purposive selection and is thus in contradiction to the random selection
of the sample (Brewer, 1999b).

A balanced sample can also be selected randomly by a procedure called a balanced sampling
design. According to the definition of Deville & Tillé (2004), a sampling design p(·) is said
to be balanced on the auxiliary variables x1, . . . , xq if the Horvitz–Thompson estimator satisfies
the relationship

X̂π =
∑

k∈S

xk

πk
=

∑
k∈U

xk = X . (5)

Authors such as Cumberland & Royall (1981) and Kott (1986) would call this a ‘π-balanced
sampling’, as opposed to a mean-balanced sampling defined by the equation

1

n

∑
k∈S

xk = 1

N

∑
k∈U

xk .

Below, we use the expression ‘balanced sampling’ to denote a sampling design that satisfies
equation (5) for one or more auxiliary variables, a mean-balanced sampling being a particular
case of this balanced sampling when the sample is selected with inclusion probabilities n/N .

The definition of balanced sampling includes the definition of sampling with fixed sample size.
Suppose that one of the balancing variables is proportional to the inclusion probabilities or, more
generally, that there exists a vector λ such that λ′xk = πk , for all k ∈ U . In this case, the balancing
equation ∑

k∈S

xk

πk
=

∑
k∈U

xk

becomes for this variable, by multiplication by λ′,∑
k∈S

πk

πk
=

∑
k∈U

πk,

or equivalently, ∑
k∈S

1 =
∑

k∈U
πk,

which means that the sample size must be fixed. In practice, it is always recommended to add
the vector of inclusion probabilities in the balancing variables, because this allows one to fix the
sample size and thus the cost of the survey.

If a sampling design is balanced on the auxiliary variables, then X̂π is not a random variable. For
a long time, balanced samples were considered difficult to construct, except for particular special
cases such as sampling with fixed sample size or stratification. Partial procedures of balanced
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sampling have been proposed by Yates (1946), Thionet (1953), Deville et al. (1988), Ardilly
(1991), Deville (1992) and Hedayat & Majumdar (1995), and a list of methods for constructing
balanced samples is given in Valliant et al. (2000, pp. 65–78). Several of these methods are
rejective: they consist of generating randomly a sequence of samples with an original sampling
design until a sample is obtained that is sufficiently well balanced. Rejective methods are actually
a way of constructing a conditional sampling design and have the important drawback that
the inclusion probabilities of the balanced design are not necessarily the same as the inclusion
probabilities of the original design. Moreover, if the number of balancing variables is large,
rejective methods can be very slow.

The cube method, proposed by Deville & Tillé (2004), is a non-rejective procedure that directly
allows the random selection of balanced or nearly balanced samples and that satisfies exactly the
given first-order inclusion probabilities. The cube method works with equal or unequal inclusion
probabilities (Tillé, 2006, pp. 147–76). If one of the balancing variables is proportional to the
inclusion probabilities, then the cube method will produce samples of fixed size. However, it is
not always possible for such a sample to be exactly balanced because of the rounding problem.
For instance, in proportional stratification, which is a particular case of balanced sampling, it is
generally impossible to select an exactly balanced sample because the sample sizes of the strata,
nh = nNh/N , are seldom integers. Deville & Tillé (2004) also showed that the rounding problem,
under reasonable hypotheses, is bounded by O(q/n), where q is the number of balancing variables
and n is the sample size. Thus, the rounding problem becomes negligible if the sample size is
reasonably large relative to the number of balancing variables.

Under model (1) and balanced sampling, the Horvitz–Thompson estimator is model-unbiased.
Indeed, by equations (4) and (5), it follows that

Eξ (Ŷπ − Y ) =
(∑

k∈S

xk

πk
−

∑
k∈U

xk

)′
β = 0.

Under model (1) and balanced sampling, we can compute the error variance and the anticipated
mean-squared error of the Horvitz–Thompson estimator.

RESULT 2. Under model (1), if the sample is balanced on xk and selected with inclusion
probabilities πk , then

EpEξ (Ŷπ − Y )2 = σ 2
∑

k∈U
ν2

k
1 − πk

πk
.

The proof is given in the Appendix.
If we fix the inclusion probabilities, then the expectation of the sample size is also fixed. The

design mean-squared error of a balanced sampling design is, unfortunately, more difficult to
determine. In their Method 4, Deville & Tillé (2005) have proposed the following approximation
of the design variance given in (3):

varp(Ŷπ ) � varapp(Ŷπ ) =
∑

k∈U
dk

(yk − x ′
kb)2

π2
k

, (6)

where

b =
(∑

k∈U
dk

xk x ′
k

π2
k

)−1 ∑
k∈U

dk
xk yk

π2
k

,
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and the dk are the solutions of the nonlinear system

πk(1 − πk) = dk − dk x ′
k

πk

(∑
�∈U

d�

x�x ′
�

π2
�

)−1
dk xk

πk
, k ∈ U . (7)

This approximation, which uses only the first-order inclusion probabilities, was validated by
Deville & Tillé (2005) under a variety of balanced samples regardless of how the y-values
were generated. An additional argument in favour of using this approximation is that its model
expectation is equal to its anticipated mean-squared error, as we see below.

RESULT 3. Under model (1), if the sample is balanced on xk, then

Eξ {varapp(Ŷπ )} = EpEξ (Ŷπ − Y )2.

The proof is given in the Appendix.

5. THE MODEL-ASSISTED APPROACH

One approach to estimating Y consists of finding the ‘best’ strategy that provides a valid
inference under the sampling design. Godambe (1955) showed that there is no optimal estimator
in the class of linear estimators for all y1, . . . , yN that minimizes the design mean-squared error.
It is, however, not possible to determine an optimal design-based strategy without formalizing the
link between the auxiliary variables xk and the variables of interest yk . A model must therefore be
used to guide the choice of the estimator. Särndal et al. (1992) proposed the concept of ‘model-
assisted inference’. To be model-assisted, the estimator must be chosen so that it leads to a valid
inference with respect to the sampling design, even if the model is misspecified. In order to make
the inference, we need to estimate Ep(Ŷw − Y )2, but in order to find the optimal strategy, we need
to minimize Eξ Ep(Ŷw − Y )2 under the constraint that the estimator is design-unbiased or that its
design bias is small with respect to its design mean-squared error.

A bound for the model-assisted strategy given by Godambe & Joshi (1965) for a set of fixed
inclusion probabilities can be derived directly from Corollary 2. If Ŷw is a design-unbiased linear
estimator, then

EpEξ (Ŷw − Y )2 � L p = σ 2
∑

k∈U
ν2

k
1 − πk

πk
. (8)

If we suppose at least tentatively that the νk are known, a judicious choice of the inclusion
probabilities allows a smaller anticipated mean-squared error to be determined. If we minimize
L p in πk subject to ∑

k∈U
πk = n, 0 � πk � 1, (9)

for all k in U , then we obtain the optimal inclusion probabilities π∗
k = min(1, ανk/N ), where α

is such that ∑
k∈U

min
(

1,
ανk

N

)
= n.

The following general result gives a bound for any design-unbiased strategy with a sample
size n.
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RESULT 4. For any design-unbiased strategy,

EpEξ (Ŷw − Y )2 � L p = σ 2
∑

k∈U
ν2

k
1 − πk

πk

� σ 2
∑

k∈U
ν2

k
1 − π∗

k

π∗
k

= σ 2

(
N

α

∑
k∈U
π∗

k <1
νk −

∑
k∈U
π∗

k <1
ν2

k

)

� σ 2

(
N 2

n
−

∑
k∈U

ν2
k

)
= σ 2 N 2 N − n

Nn
− σ 2

∑
k∈U

(νk − 1)2 .

The proof is given in the Appendix.

DEFINITION 10. An optimal model-assisted strategy is one with a design-unbiased estimator
that, subject to (9), minimizes the anticipated mean-squared error of that estimator.

From § 4 and Result 4, we obtain directly an optimal model-assisted strategy.

STRATEGY 1. Under the superpopulation model (1), an optimal model-assisted strategy con-
sists of using inclusion probabilities that are proportional to νk subject to (9), selecting the sample
by means of a balanced sampling design on xk, and using the Horvitz–Thompson estimator.

6. THE MODEL-BASED APPROACH

Under the model-based approach, the aim is to find a strategy that leads to a valid inference
with respect to the model, i.e. a model-unbiased or approximately model-unbiased estimator and
a sample that minimizes the error variance Eξ (Ŷ − Y )2.

DEFINITION 11. An optimal model-based strategy is one with a linear model-unbiased estimator
that, subject to a fixed sample size n, minimizes the error variance of that estimator.

In the model-based approach, this strategy is strictly applied under ideal circumstances, which
occur when the model is known to hold. In practice, the modeller must bear model failure in mind,
and the model-based approach strongly emphasizes robustness to deviations from the working
model. The strictly optimal strategies that are not robust in case of misspecification of the model
are thus clearly rejected.

A well-known result (Royall, 1976) is that the model-unbiased linear estimator of Y that
minimizes the error variance is the best linear unbiased estimator

ŶBLU =
∑

k∈S
yk +

∑
k∈S̄

x ′
k β̂BLU,

where β̂BLU is the weighted least-squares estimator of the regression coefficients vector β

β̂BLU = A−1
∑

k∈S

xk yk

ν2
k

,

where

A =
∑

k∈S

xk x ′
k

ν2
k

.

The error variance of the best linear unbiased estimator is

Eξ (ŶBLU − Y )2 = σ 2
(∑

k∈S̄
x ′

k A−1
∑

�∈S̄
x� +

∑
k∈S̄

ν2
k

)
. (10)
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Consequently, to determine a model-based strategy, we look for a sample s that minimizes (10),
this sample being not necessarily unique.

STRATEGY 2. Under the superpopulation model (1), an optimal model-unbiased strategy
consists of using the best linear unbiased estimator, and choosing a sample of size n that
minimizes expression (10).

Again, this strategy must be put into perspective with respect to possible misspecification of the
model. If the sample that minimizes (10) is very particular, then a more robust strategy should
be considered.

With certain superpopulation models, expression (10) can be considerably simplified. More-
over, minimizing the anticipated mean-squared error given in (11) below in the class of linear
model-unbiased estimators also leads to Strategy 2,

EpEξ (ŶBLU − Y )2 = σ 2
{

Ep

(∑
k∈S̄

x ′
k A−1

∑
�∈S̄

x�

)
+

∑
k∈U

(1 − πk)ν2
k

}
. (11)

Unfortunately, expression (11) cannot be much simplified.

DEFINITION 12. Model (1) is said to have fully explainable heteroscedasticity if

(i) there exists a vector λ ∈ R
q such that λ′xk = ν2

k ;
(ii) there exists a vector θ ∈ R

q such that θ ′xk = νk .

RESULT 5 (Royall, 1992). If the superpopulation model (1) is such that condition (i) of
Definition 12 is met, then ŶBLU = ∑

k∈U x ′
k β̂BLU, and Eξ (ŶBLU − Y )2 = σ 2(X ′ A−1 X − ∑

k∈U ν2
k ).

RESULT 6 (Royall, 1992). If the superpopulation model (1) has fully explainable hetero-
scedasticity, then

Eξ (ŶBLU − Y )2 � σ 2

(
N 2

n
−

∑
k∈U

ν2
k

)
,

and, if the sample is such that

1

n

∑
k∈S

xk

νk
=

∑
k∈U xk

N
,

then the bound for the error variance is achieved.

Royall (1992) and later Valliant et al. (2000, pp. 98–100) in their Theorem 4·2·1 and consequent
Remark 4 present results which from a design-based point of view can be used to prove the
following result.

RESULT 7. If the superpopulation model (1) has fully explainable heteroscedasticity and if the
sample is balanced with inclusion probabilities proportional to νk , then the best linear unbiased
estimator ŶBLU equals the Horvitz–Thompson estimator Ŷπ and the bound for the error variance
is achieved.

Under the conditions of Result 7, Eξ (Ŷπ − Y )2 = EpEξ (Ŷπ − Y )2.

7. A COMBINED MODEL-BASED AND MODEL-ASSISTED APPROACH

A third option for estimating Y consists of finding a strategy that is simultaneously design-
unbiased and model-unbiased. From Corollary 4, we know that such a strategy has an anticipated
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mean-squared error equal to

EpEξ (Ŷw − Y )2 = σ 2
∑

k∈U
ν2

k

{
πkvarp(wkS | Ik = 1) + 1 − πk

πk

}
.

If the weights wks are not random, then we obtain the Godambe–Joshi bound

EpEξ (Ŷw − Y )2 � L p = σ 2
∑

k∈U
ν2

k
1 − πk

πk
. (12)

Thus, an optimal strategy that is at the same time model-unbiased and design-unbiased consists
simply of adopting Strategy 1, in which case the bound in expression (12) is achieved.

8. ESTIMATION OF VARIANCE

From the previous sections, it clearly appears that the Horvitz–Thompson estimator with a
balanced sampling design is a strategy that leads to valid inference under the model and under the
sampling design. The estimation of the total should be complemented by a confidence interval.
We will show that it is possible to construct a variance estimator that leads to a valid inference
under the model and under the sampling design.

In order to estimate the variance, it is prudent to treat the νk as if they were unknown, even
if the sample has been selected assuming known νk . This will make the estimation of model
variance in some sense robust to the failure of that assumption; see, for example, Cumberland &
Royall (1981). In the model-assisted framework, Deville & Tillé (2005) have proposed a family
of variance estimators for balanced sampling, of the form

ˆvar(Ŷπ ) =
∑

k∈S
ck

(yk − x ′
k b̂)2

π2
k

,

where

b̂ =
(∑

�∈S
c�

x�x ′
�

π2
�

)−1 ∑
�∈S

c�

x�y�

π2
�

and the ck are the solutions of the nonlinear system

1 − πk = ck − ck x ′
k

πk

(∑
�∈S

c�

x�x ′
�

π2
�

)−1
ck xk

πk
,

which can be solved by a fixed-point algorithm.
In Deville & Tillé (2005), simpler variants of ck are also proposed, based on the fact that

ck � n(1 − πk)/(n − q). The estimator ˆvar(Ŷπ ) is approximately design-unbiased because it is
an estimator by substitution (Deville, 1999) of the approximation given in expression (6), which
is a reasonable approximation of the variance under the sampling design.

For the model-based framework, the question of estimating Eξ (Ŷπ − Y )2 is complicated be-
cause it depends on all the νk of the population and not just on the νk of the sample. The following
result shows that ˆvar(Ŷπ ) is also a pertinent estimator of Eξ (Ŷπ − Y )2 and can be model-unbiased.

RESULT 8. Under model (1), if the sample is balanced on xk, then

Eξ { ˆvar(Ŷπ )} = Eξ (Ŷπ − Y )2 + σ 2

(∑
k∈S

ν2
k

πk
−

∑
k∈U

ν2
k

)
,

EpEξ { ˆvar(Ŷπ )} = EpEξ (Ŷπ − Y )2.

If condition (i) of Definition 12 is met, then ˆvar(Ŷπ ) is a model-unbiased estimator of Eξ (Ŷπ − Y )2.
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The proof is given in the Appendix.
If z1−α/2 denotes the 1 − α/2 quantile of the standard normal variable, the confidence interval[

Ŷπ − z1−α/2 √{ ˆvar(Ŷπ )}, Ŷπ + z1−α/2 √{ ˆvar(Ŷπ )}]
leads to a reasonable design-based inference and a valid model-based inference, provided that
the ν2

k can be expressed as linear combinations of the auxiliary variables. This inference does not
depend on assumed values of the standard deviations of the errors of the model.

9. EXAMPLES

In the examples, we will use the notation

X̄ = 1

N

∑
k∈U

xk, x̄ = 1

n

∑
k∈S

xk, ȳ = 1

n

∑
k∈S

yk, ȳh = 1

nh

∑
k∈Uh∩S

yk,

where U1, . . . , UH are strata, i.e. the Uh (h = 1, . . . , H ), are a partition of U . Moreover,

s2
x = 1

n − 1

∑
k∈S

(xk − x̄)2, s2
y = 1

n − 1

∑
k∈S

(yk − ȳ)2,

s2
xy = 1

n − 1

∑
k∈S

(xk − x̄)(yk − ȳ), s2
yh = 1

nh − 1

∑
k∈Uh∩S

(yk − ȳh)2.

Example 2. Suppose that the superpopulation model is the constant model yk = β + εk , for
all k ∈ U , with varξ (εk) = σ 2. This simple model is homoscedastic and has fully explainable
heteroscedasticity, which implies that the optimal model-assisted strategy is also an optimal
model-based strategy. The optimal model-based strategy consists of selecting any sample of fixed
sample size n, deliberately or randomly. The optimal model-assisted strategy consists of selecting
a sample that is balanced on the constant, which implies that it has a fixed sample size. This
sample must be selected with equal inclusion probabilities n/N . In practice, a simple random
sampling can be applied and the anticipated mean-squared error is

EpEξ (Ŷπ − Y )2 = σ 2 N 2 N − n

Nn
.

In this case, Ŷπ = N ȳ,

ck = (N − n)n

N (n − 1)
, ˆvar(Ŷπ ) = N 2 N − n

Nn
s2

y .

Example 3. Suppose that the superpopulation model consists of a constant and only one
independent variable, i.e. yk = β0 + xkβ1 + εk , for all k ∈ U , with varξ (εk) = σ 2. This model is
homoscedastic and has fully explainable heteroscedasticity, which implies that the optimal model-
assisted strategy is also an optimal model-based strategy. For a particular sample S, balanced or
not, and with fixed sample size, the error variance of the best linear unbiased estimator is

Eξ (ŶBLU − Y )2 = σ 2 N 2 N − n

Nn
+ σ 2 N 2 (x̄ − X̄ )2

(n − 1)Ns2
x

.
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The optimal model-based strategy consists of selecting a fixed-sample-size balanced sample in
the sense that x̄ = X̄ . The optimal model-assisted strategy consists of selecting a sample that is
balanced on xk , of fixed sample size and with equal inclusion probabilities. This can be done
by using the cube method. Next, one uses the Horvitz–Thompson estimator. The anticipated
mean-squared error is then

EpEξ (Ŷπ − Y )2 = σ 2 N 2 N − n

Nn
.

By using the approximation ck � (N − n)n/{N (n − 2)}, we obtain

ˆvar(Ŷπ ) = N 2 N − n

Nn

1

n − 2

∑
k∈S

(yk − β̂0 − β̂1xk)2,

where β̂0 = ȳ − β̂1 x̄ and β̂1 = sxy/s2
x .

Example 4. Suppose that the superpopulation model has only one independent variable,
i.e. yk = xkβ + εk , for all k ∈ U , with varξ (εk) = ν2

k σ 2, where νk = N xk/X , xk � 0 and
X = ∑

k∈U xk . This model does not have fully explainable heteroscedasticity, which implies
that the model-assisted and model-based optimal strategies are not the same. The optimal model-
based strategy consists of using the best linear unbiased estimator. From expression (10), knowing
that A = X2n/N 2, we obtain the anticipated mean-squared error,

EpEξ (ŶBLU − Y )2 = σ 2Ep

{
1

n

(∑
k∈S̄

νk

)2 +
∑

k∈S̄
ν2

k

}
. (13)

In this case, the best strictly model-based strategy consists of selecting a nonrandom sample
containing the largest n units. However, Valliant et al. (2000, p. 55) point out that, in this case,
‘selecting this sample may be risky if the working model is wrong’ because it fails to protect
against model failure. By using an alternative more general model, they conclude that a balanced
sample will protect against model bias resulting from misspecification. From a design-based
point of view, the strictly best model-based strategy leads to an incorrect design-based inference.
The optimal model-assisted strategy consists of using a sampling design that is balanced on xk

and has unequal inclusion probabilities proportional to xk with the Horvitz–Thompson estimator.
The anticipated mean-squared error is then

EpEξ (Ŷπ − Y )2 = σ 2

(
N 2

n
−

∑
k∈U

ν2
k

)
.

This strategy has a larger anticipated mean-squared error than (13), but leads to correct model-
assisted and model-based inferences. In this case, the estimator of the variance is

ˆvar(Ŷπ ) =
∑

k∈S

ck

π2
k

(
yk − πk

∑
�∈S c�y�/π�∑

�∈S c�

)2

,

where ck are the solutions of the nonlinear system 1 − πk = ck − c2
k (

∑
�∈S c�)−1 or more simply

can be approximated by ck � (1 − πk)n/(n − 1).

Example 5. We consider the superpopulation model presented in Kott (1986), given by yk =
xkβ1 + x2

k β2 + εk , for all k ∈ U , with varξ (εk) = ν2
k σ 2, where νk = N xk/X and X = ∑

k∈U xk .
This model has fully explainable heteroscedasticity, which implies that the model-assisted and
the model-based optimal strategies are the same. Therefore, a strategy that is optimal for both
the model-assisted and model-based frameworks consists of selecting a sample balanced on xk
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and x2
k with inclusion probabilities that are proportional to xk , and using the Horvitz–Thompson

estimator. The anticipated mean-squared error is then

EpEξ (Ŷπ − Y )2 = σ 2

(
N 2

n
−

∑
k∈U

ν2
k

)
.

This strategy leads to correct model-assisted and model-based inferences.

Example 6. Consider the stratified superpopulation model ykh = αh + εk , for all k ∈ Uh ,
h = 1, . . . , H , and suppose that varξ (εkh) = ν2

hσ 2, with
∑H

h=1 Nhνh = N . The stratified model
has fully explainable heteroscedasticity, which implies that the optimal model-assisted strategy
is also an optimal model-based strategy. The optimal model-based strategy consists of defining
the inclusion probabilities proportional to νh , which gives πkh = nνh/N , which is an optimal
stratification. Next, a sample is selected with a fixed sample size nh = nNhνh/N in each stratum
Uh . The Horvitz–Thompson estimator, Ŷπ = ∑H

h=1 Nh ȳh has anticipated mean-squared error

EpEξ (Ŷπ − Y )2 = σ 2

(
N 2

n
−

H∑
h=1

Nhν
2
h

)
= σ 2 N 2

n

(
1 − 1

n

H∑
h=1

n2
h

Nh

)
.

In this case,

ck = (Nh − nh)nh

Nh(nh − 1)
, k ∈ Uh,

and thus

ˆvar(Ŷπ ) =
H∑

h=1

N 2
h

Nh − nh

Nhnh
s2

yh .

10. DISCUSSION

The search for an optimal strategy rather than an optimal estimator allows the proponents of the
model-based and the model-assisted approaches to resolve their differences because, when the
superpopulation model has fully explainable heteroscedasticity, one chooses the same sampling
design, which is a balanced sampling design with inclusion probabilities that are proportional to
the standard deviations of the errors of the model. In this case, the best linear unbiased estimator
is the Horvitz–Thompson estimator. As a complement to this estimator, an estimator of the
variance can be given, which in turn leads to valid model-based and design-based inferences.
The controversy makes sense only if the sample is chosen inappropriately. If the superpopulation
model has fully explainable heteroscedasticity, then Strategy 1 is the best strategy in the model-
based, model-assisted and combined model-based and model-assisted frameworks, as presented
in Table 1.

If the heteroscedasticity is not fully explainable, the optimal strategy is not the same in the
model-assisted and model-based frameworks. In fact, Strategy 1 always leads to the selection
of a balanced sample, while the strict application of Strategy 2 can lead either to the selection
of a balanced sample or to the purposive selection of the sample as in Example 4 in § 9. In
this second case, a robustness argument is usually used by the modeller in order to protect
against misspecification of the model. The robustness is obtained by balancing the sample for the
variables that are in the alternative model, which gives the same strategy as in the model-assisted
framework. Thus the two approaches are not far apart. In any case, it can also be wise to balance
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Table 1. Optimal strategies in the model-assisted, model-based and
combined model-based and model-assisted approaches

Approach Fully explainable Non-fully explainable
heteroscedasticity heteroscedasticity

MB Strategy 1 Strategy 2
MA Strategy 1 Strategy 1
CMBMA Strategy 1 Strategy 1

MB, model-based; MA, model-assisted; CMBMA, combined model-based and model-
assisted.

the sampling design with respect to additional variables in order to protect against failure of the
model, such as the presence of curvature or an intercept. However, we suggest the use of models
that have fully explainable heteroscedasticity, which can be easily achieved by systematically
using νk and ν2

k as independent variables in the model. This was the advantage of the model
developed by Kott (1986) and summarized in Example 5 over the model given in Example 4,
which does not have a fully explainable heteroscedasticity.

The theory developed in this paper shows that the best approach is to select a sample that
is balanced on the auxiliary variables. If exact balancing is not possible, a nearly balanced
sample must first be selected. In this case, the rounding problem can be solved by a small
calibration, by using either the calibration estimator (Deville & Särndal, 1992) or the best linear
unbiased estimator, depending on the basis of the inference. An interesting particular case is
the so-called cosmetic calibration proposed by Brewer (1999a). In a set of simulations, Deville
& Tillé (2004) showed that the balanced sampling design with a calibration estimator strategy
achieves the best results among the following four strategies: (i) non-balanced sampling with
the Horvitz–Thompson estimator, (ii) balanced sampling with the Horvitz–Thompson estimator,
(iii) non-balanced sampling with a calibration estimator and (iv) balanced sampling with a
calibration estimator. With strategy (iv), the weights wks are less random than in the case of
strategy (iii), and this leads to a more accurate estimator.
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APPENDIX

Proofs

Proof of Result 1. Since

Ŷw − Y =
∑

k∈S
wkS yk −

∑
k∈U

yk

=
∑

k∈S
wkS x ′

kβ +
∑

k∈S
wkSεk −

∑
k∈U

x ′
kβ −

∑
k∈U

εk

=
∑

k∈S
(wkS − 1)εk −

∑
k∈S̄

εk +
∑

k∈S
wkS x ′

kβ −
∑

k∈U
x ′

kβ,

we have that

Eξ (Ŷw − Y )2 = σ 2
{∑

k∈S
(wkS − 1)2ν2

k +
∑

k∈S̄
ν2

k

}
+

(∑
k∈S

wkS x ′
kβ −

∑
k∈U

x ′
kβ

)2
, (A1)
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which leads to the first equality of Result 1. The second term of (A1) can be simplified. Indeed,

Ep

(∑
k∈S

wkS x ′
kβ −

∑
k∈U

x ′
kβ

)2

= Ep

{∑
k∈S

wkS x ′
kβ − Ep

(∑
k∈S

wkS x ′
kβ

)
+ Ep

(∑
k∈S

wkS x ′
kβ

)
−

∑
k∈U

x ′
kβ

}2

= Ep

{∑
k∈S

wkS x ′
kβ − Ep

(∑
k∈S

wkS x ′
kβ

)}2
+ Ep

{∑
k∈U

Ep(wkS Ik)x ′
kβ −

∑
k∈U

x ′
kβ

}2

+ 2Ep

[{∑
k∈S

wkS x ′
kβ − Ep

(∑
k∈S

wkS x ′
kβ

)}{∑
k∈U

Ep(wkS Ik)x ′
kβ −

∑
k∈U

x ′
kβ

}]
= varp

(∑
k∈S

wkS x ′
kβ

)
+

(∑
k∈U

Ck x ′
kβ −

∑
k∈U

x ′
kβ

)2
. (A2)

The first term of (A1) gives

σ 2Ep

{∑
k∈S

(wkS − 1)2ν2
k +

∑
k∈S̄

ν2
k

}
= σ 2

[∑
k∈U

Ep

{
(wkS − 1)2 Ik

}
ν2

k +
∑

k∈U
(1 − πk)ν2

k

]
= σ 2

∑
k∈U

ν2
k

[
Ep

{
(wkS − 1)2 Ik

} + 1 − πk

]
= σ 2

∑
k∈U

ν2
k

{
Ep

(
w2

kS Ik

) − 2Ep(wkS Ik) + πk + 1 − πk

}
= σ 2

∑
k∈U

ν2
k

{
Ep

(
w2

kS Ik

) − E2
p(wkS Ik) + E2

p(wkS Ik) − 2Ep(wkS Ik) + 1
}

= σ 2
∑

k∈U
ν2

k

{
varp(wkS Ik) + (Ck − 1)2

}
. (A3)

By the law of total variance,

varp(wkS Ik) = varpEp(wkS Ik | Ik) + Epvarp(wkS Ik | Ik)

= πk{Ep(wkS | Ik = 1)}2 − {Ep(wkS Ik)}2 + πkvarp(wkS | Ik = 1)

= 1 − πk

πk
C2

k + πkvarp(wkS | Ik = 1). (A4)

By inserting (A4) into (A3), and by adding (A2) and (A3), we finally obtain the second equality of
Result 1. �

Proof of Result 2. Result 2 comes directly from equation (2). Term B vanishes because the weights 1/πk do
not differ from sample to sample. Term C vanishes because the estimator is design-unbiased. Terms D and
E vanish because the estimator is model-unbiased under balanced sampling. All that remains is term A with
Ck = 1 because the estimator is design-unbiased. �

Proof of Result 3. Since yk = x ′
kβ + εk ,

varapp(Ŷπ ) =
∑

k∈U
dk

(yk − x ′
kb)2

π2
k

=
∑

k∈U
dk

{
εk

πk
− xk

πk

′ (∑
�∈U

d�

x�x ′
�

π2
�

)−1 ∑
�∈U

d�

x�ε�

π2
�

}2

=
∑

k∈U
dk

ε2
k

π2
k

−
∑

k∈U

dk x ′
kεk

π2
k

(∑
�∈U

d�x�x ′
�

π2
�

)−1 ∑
�∈U

d�x�ε�

π2
�

.
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Thus,

Eξ {varapp(Ŷπ )} = σ 2
∑

k∈U
dk

ν2
k

π2
k

− σ 2
∑

k∈U

ν2
k

π2
k

dk x ′
k

πk

(∑
�∈U

d�

x�x ′
�

π2
k

)−1 dk xk

πk
.

By using the definition of dk , given in expression (7), we obtain

Eξ {varapp(Ŷπ )} = σ 2
∑

k∈U
πk(1 − πk)

ν2
k

π2
k

= EpEξ (Ŷπ − Y )2,

which holds even when the νk are unknown. �

Proof of Result 4. The optimal inclusion probabilities π∗
k are obtained by minimizing (8) subject to∑

k∈U
πk = n, 0 � πk � 1,

which gives the second inequality. Now, if we minimize (8) subject to
∑

k∈U πk = n, but with-
out the constraint πk � 1, then we obtain π̃k = nνk/N , and we obtain a still lower bound in the third
inequality. �
Proof of Result 8. By Result 3, following the same steps, we obtain

Eξ { ˆvar(Ŷπ )} = σ 2
∑

k∈S
(1 − πk)

ν2
k

π2
k

= σ 2

{∑
k∈S

(1 − πk)2 ν2
k

π2
k

+
∑

k∈S̄
ν2

k

}
+ σ 2

(∑
k∈S

ν2
k

πk
−

∑
k∈U

ν2
k

)

= Eξ (Ŷπ − Y )2 + σ 2

(∑
k∈S

ν2
k

πk
−

∑
k∈U

ν2
k

)
.

Obviously, if there exists a vector λ such that λ′xk = ν2
k , then∑

k∈S

ν2
k

πk
−

∑
k∈U

ν2
k = 0. �
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DEVILLE, J.-C. & TILLÉ, Y. (2005). Variance approximation under balanced sampling. J. Statist. Plan. Infer. 128,
411–25.

GODAMBE, V. P. (1955). A unified theory of sampling from finite population. J. R. Statist. Soc. B 17, 269–78.
GODAMBE, V. P. & JOSHI, V. M. (1965). Admissibility and Bayes estimation in sampling finite populations I. Ann. Math.

Statist. 36, 1707–22.
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